promoting access to White Rose research papers
A
@S White Rose
ANSZ¥a Research Online

Universities of Leeds, Sheffield and York
http://eprints.whiterose.ac.uk/

This is an author produced version of a conference paper published in 11th
REHVA World Congress and the 8th International Conference on Indoor Air
Quality, Ventilation and Energy Conservation in Buildings

White Rose Research Online URL for this paper:

http://eprints.whiterose.ac.uk/id/eprint/77742

Paper:

Khan, Al, Delbosc, N, Noakes, CJ and Summers, J (2013) Development of Real-
time Flow Simulations for Indoor Environments. In: Kabele, K, Urban, M, Suchy,
K and Lain, M, (eds.) 11th REHVA World Congress and the 8th International
Conference on Indoor Air Quality, Ventilation and Energy Conservation in
Buildings. CLIMA 2013, 16-19 June 2013, Prague, Czech Republic. Elsevier ,
3044 - 3054. ISBN 978-80-260-4001-9

White Rose Research Online
eprints@whiterose.ac.uk

main latex file

Click here to view linked References

Optimised Implementation of the Lattice Boltzmann
Method on a Graphics Processing Unit Towards
Real-Time Fluid Simulation

N. Delbosc?, J.L. Summers?, A. Khan?, N. Kapur?®, C.J. NoakesP

*School of Mechanical Engineering, University of Leeds, England
bSchool of Civil Engineering, University of Leeds, England

Abstract

Real-time fluid simulation is an active field of research in computer graphics,
but they usually focus on visual impact rather than physical accuracy. However,
by combining a lattice Boltzmann model with the parallel computing power of
a graphics processing unit, both real-time compute capability and satisfactory
physical accuracy are now achievable. The implementation of an optimised 3D
real-time thermal and turbulent fluid flow solver with a performance of half
a billion lattice node updates per second is described in detail. The effects
of the hardware error checking code and the competition between appropriate
boundary conditions and performance capabilities are discussed.

Keywords: real-time, Lattice Boltzmann Method, Graphics Processing Unit,
CUDA

1. Introduction

A variety of applications are in need of real-time compute capability for the
simulation of indoor air-flow. A few examples are: the optimisation of designs,
control and prediction of thermal loads in a data center [1], or the simulation of
airborne pollutant transport in hospitals [2, 3]. Despite the growth in both speed
and memory of computers during the last decades, real-time fluid simulation is
still a challenge.

Computer graphics, such as video-games, achieve real-time fluid simulation
by using simplistic models (usually wave-based or particle-based [4]), but they
are focused on creating visually appealing animations rather than aiming for
physical accuracy. The more physical models, such as semi-Lagrangian meth-
ods [5], are still rarely used.

Email addresses: mnnd@leeds.ac.uk (N. Delbosc), J.L.Summers@leeds.ac.uk
(J.L. Summers), A.Khan@leeds.ac.uk (A. Khan), n.kapur@leeds.ac.uk (N. Kapur),
c.j.noakes@leeds.ac.uk (C.J. Noakes)

Preprint submitted to Elsevier 9th October 2013

Engineering applications commonly use a discrete version of the Navier-
Stokes Equations (NSE) to simulate fluid flow. They are highly accurate but
they require heavy computations, consuming a significant amount of memory
and a high number of iterations to converge, thus they are still incapable of
simulating flow in real-time with the current technology.

The implementation of early warning systems for data centers and hospitals
require both real-time (or faster than real-time) compute capability, and a level
of accuracy which cnables the resolution of global flow structurcs. The small
scale effects on the flow structures, however, are of minor importance in such
systems, and therefore the goal of this work is not to develop a solver with a high
level of accuracy. The efficiency of the Lattice Boltzmann Method (LBM) as a
real-time flow solver was selected for investigation. The LBM originates from the
lattice gas automata method and can be regarded as an explicit discretisation
of the Boltzmann equation. The LBM has been used successfullly in the past
to simulate indoor air flows [6, 7] and for interactive flow solver [8].

Fluid mechanics problem can be solved using the LBM or the NSE ap-
proaches. The former has advantages[9] that are useful for real-time imple-
mentation, it provides a simple algorithm both stable and accurate that can
cfficiently handle complex geometrics, and its inherent data-parallelism makes
it a good candidate for an implementation on massively parallel machines, like
graphics processing units (GPU). But it also has drawbacks such as a high
memory usage and the need to convert units between simulation and real-world
applications.

This paper discusses several optimisation techniques in order to develop an
efficient 3D LBM program on GPUs, that includes appropriate thermal and
turbulence models.

2. The lattice Boltzmann method for three dimensional thermal and
turbulent flow

The LBM can be derived from a special discretisation of the Boltzmann
equation, the fluid is described by particle distribution functions residing at the
sites of a regular grid (the lattice) and the macroscopic quantities of the fluid
(like the density p or the velocity v) can be recovered from moments of these
distribution functions. The movement of the particle populations is restricted
to a fixed set of directions e,, defined on the links between neighbouring lattice
sites.

The LBM is composed of two fundamental steps. First, the distribution
functions of each node are streamed to their neighbouring nodes (the streaming-
step). Then the distribution functions are relaxed toward a local equilibrium
based on the new macroscopic quantities at each lattice site (the collision-step).
While the streaming-step only depends on the lattice geometry, the collision-step
embodies all the physics of the model and the chosen relaxation scheme specifies
the stability and the accuracy of the method. Another important part of any
LBM simulation is the implementation of the boundary conditions which takes
place before or after the collision-step. Boundary conditions can be implemented

""" 3 :
‘ : M1
N1 ‘
L lg '3
B N it

’2:(: | Kl Z

5 4 g

A NS y

Figure 1: The D3Q19 node.

in various ways in the LBM, but in principle, they define the unknown distribu-
tion functions at the boundary (namely the distribution functions streamed from
outside of the domain) in order to recover the desired macroscopic equations.

2.1. The D3Q19 model

A common labelling for lattices used in LBM is DdQq, where d is the spa-
tial dimension and q the number of microscopic velocities. There are several
possible 3D lattice constructions for hydrodynamics, such as D3Q13, D3Q15,
D3Q19, D3Q27 and other higher order lattices that would require too many
computations for real-time implementation. The D3Q19 model, illustrated in
Figure 1, is applied here since it has minimum number of velocities while main-
taining sufficient isotropy of the lattice.

The simulation of the velocity field is carried out on such a D3Q19 lattice, the
complex collision operator is approximated by using the standard Bhatnagar-
Gross-Krook (BGK) scheme[10] which states that the distribution functions
f = {fi}icqo,..,15} I8 close to a local equilibrium flea) = {fiticqo,. 15y and
relaxes towards this equilibrium over a characteristic time 7. The evolution of
the distribution functions using the BGK collision approximation is described
by the following lattice Boltzmann equation (referred to as LBGK):

bt ettt + A1) = [e t) —— (i 6at) ~ 150 (1)), ()

where ¢ = Ax/At is the lattice speed, Az and At are the lattice spacing
and time increment, respectively.

The fluid density p and velocity u are determined from the zero and first
moments of the distribution functions,

18 18
p:qu puzzceifia
i=0 =0

where the discrete velocity set {e;} is defined in accordance with the Figure 1
as,

0,0,0) i=0,
+£1,0,0), (0,%1,0),(0,0,+1) i=1—6,
£1,+1,0) i=17-10,
£1,0,+1) i=11-14,
(0, +1, +1) i=15-18.

e;, =

(
(
(
(

The local equilibrium distribution functions are computed from the new
density p and velocity u (obtained after the streaming step) by the following
formula

c 2 c?

. Cou)? 2
£ Z pu, (1 Lg%u g (e; 2u) B §u_) 7
C

where w; are weight coefficients that depend on the magnitude of e;, wg =
..... 6 =1/18, wr,
It can be shown through a Chapman—Enskog expansion [11, 12] that the NSE
can be recovered from the lattice BGK model as:
PG () =0 2)
ot o
9 (pu)
ot

with an error proportional to O (M a3) in space[12] and proportional to
O (Ma - dt) in time[13], where Ma = u/c, is the Mach number of the system,
p = c2p is the pressure, ¢, = ¢/y/3 is the speed of sound and the kinematic
viscosity v is related to the relaxation time 7 by

+V - (puu) = —Vp+v (V2 (pu) + V(7 - (pu))) (3)

(T*l)AI
6 At’

V=

2.2. The coupled temperature model

In order to simulate the temperature, a coupled model[14] is used. In this
model, the velocity and density are solved as usual using a D3Q19 lattice with
a BGK collision operator and the temperature is solved on another, smaller,
D3Q6 lattice, as depicted in Figure 2. The temperature can be seen as a scalar
advected by the fluid, and the buoyancy effects are simulated by adding a forcing
term in the NSE, relative to the temperature differences. The fluid buoyancy is
accounted for by the application of the Boussinesq approximation.

It is worth noting that other models to simulate thermal flows within the
LBM framework exist and have been implemented on GPU[15]. In these models,
the velocity is solved using a standard LBM, and the temperature is solved with
a finite difference scheme.

Figure 2: The D3Q6 node.

The six temperature distribution functions T = {Ti};,c; g, are streamed
along the D3Q6 velocities and relaxed using the corresponding LBGK equation,

T, (x 4 ce; At t + At) = Tj (x,t) — 1 (Ti (x,t) = TV (x, t))) ,
T

where 77 is the relaxation time for the temperature; T; is the temperature
distribution function corresponding to the direction e;; and Ti(eq) is the equilib-
rium distribution function given by

Ti(eq) — Z (1+2ei'u),
6 c

The fluid temperature is calculated from the zero moment of the temperature
distribution functions:

T=>"T.

i=1
The thermal diffusivity D of the fluid is linked to the temperature relaxation
time by
(27r — 1) Az?
T 6 At
It can be shown[14] that the previous LBGK recovers the following temper-
ature equation

D

or + V- (uT) = DV?T
ot

with an error proportional to O (M a2) in space and proportional to O (Ma - dt)
in time.

In order to take account of the buoyancy effects the two lattice Boltzmann
simulations are coupled via the Boussinesq approximation. With this approx-
imation, it is assumed that all fluid properties (density, viscosity, thermal dif-
fusivity) can be considered to be constant except in the body force term, where

the fluid density p is assumed to be a linear function of the temperature:
p=po(1-6(T-Tp)),

where pg and Tj are respectively the average fluid density and temperature,
[is the coefficient of thermal expansion. For details on the limitations of the
Boussinesq approximation, the reader is referred to [16].

With the Boussinesq approximation, the gravity force may be rewritten as

G=pg ppT T)s,

where g is the gravity acceleration vector. With p considered constant,
equation (2) becomes simply,

V-u=0,

and after absorbing the first constant part of G into the pressure term,
equation (3) becomes with the Boussinesq approximation:

88—1;+(u~v)u:—Vp+uV2u—gﬁ(T—To)-

In the LBM, the Boussinesq forcing term Fp = —gf (T — 1) is added to
the right hand side of the LBGK equation (1),

. (eq)
it i g, (4)

P —
T

fi (X + ceiAt,t + At) = fz (X7 t) —

where F; is computed using the discretisation introduced in [17]

1 e;-u (e -u)’
Fi={1-5]w + e |-Fg,
27 c c?

and the macroscopic fluid velocity u is redefined by the following:
1 . At

2.8. The Smagorinsky turbulence model

Although most current simulation software to study the airflow in data cen-
ters and hospitals are limited to steady flows using the RANS! method, these
flows are in fact very dynamic as the load or the ventilation changes. In order to
simulate dynamic and turbulent flows with the lattice Boltzmann method, the
basic algorithm needs to be extended, as it is limited to low Reynolds number
and it becomes unstable as the relaxation time 7 in equation (1) approaches
1/2 (i.e., the viscosity tends toward 0). Resolving all the scales of a simulation,

IReynolds Average Navier-Stokes

including the smallest ones, would require very fine lattices and very long com-
putational times, thus making impossible the simulation in real-time. Instead
a sub-grid model, like the Smagorinsky model[18]|, can be used to model the
physical effects that the unresolved sub-grid motion has on the resolved fluid
motion. This model uses a positive turbulent eddy viscosity, v, to represent
small scale energy damping. This viscosity v is computed from the local stress
tensor, Sap, as follows,

I/t:C’AQ‘S", (5)

_ where C > 0 is the Smagorinsky constant®, A is the filter width®, and
‘S‘ = \/285,5S5.5 is the magnitude of the local stress tensor

= 1 /07, 61_)5
Sas = 3 (3_1“5 + E) .

The total viscosity of the fluid equals the sum of the physical viscosity and
the eddy viscosity
Viotal = V + V.

Turbulent thermal flows affected by Boussinesq forces require another term
to describe the effect of stratification on the subgrid kinetic energy. Follow-
ing [19], this term is added to the stress tensor in equation (5),

1

2

v = CA? <|§2+ﬂVT- E) (6)
Pry [

This term can also be simulated in the LBM[20], but it requires to store
the macroscopic temperature at each node of the lattice in order to compute
VT with finite differences, and the terms in the square root need to be capped
to remain positive. These added computations slow down the program while
having a minor impact on the considered flows. Thus, the second term in
equation (6) is neglected in this study.

In the LBM, the effect of the eddy viscosity is incorporated into a local
relaxation time 7g given by|21]

1 = 1
Ts = 3Votal +§ :3(U+CA2 ‘SD +§.

This modified relaxation time is then used in the relaxation process of the
LBGK equations; so each node of the lattice relaxes at different rates.

2The Smagorinsky constant C' can take values in the interval 0.01, 0.05, which was shown
to yield good modelling of the sub-grid vortices, but its actual value depends on the geometry
of the system.

3The filler width is the scale al witch Lhe sub-grid model is used, il corresponds Lo the
lattice spacing (often equal to 1 in the lattice Boltzmann method).

The local stress tensor is relatively easy to compute within the LBM, com-
pared to traditional schemes (requiring finite difference computations) and can
be computed locally from the non-equilibrium stress tensor,

18
ﬁa3 = Zei()ceiﬁ (fz o fi(eq)> ’
i=1

where « and 3 run over the three spatial dimensions.
The intensity of the local stress tensor S,z is then computed as

31 = g (Vo2 + 18C202 it —v).

The relaxation time for the temperature distribution functions can be ob-
tained with the following formula[20],

TT=3(D+Dt)+%:3(D+0A2\§\/prt)+%.

Where Pr; is the turbulent Prandtl number. It is a non-dimensional term
defined as the ratio between the eddy viscosity and the heat transfer cddy
diffusivity.

3. Implementation and optimisations on GPU

This section describes the numerical implementation of a real-time 3D LBM
on a GPU using the Compute Unified Device Architecture (CUDA), in addition
to optimisation strategies to achieve the highest computational efficiency.

Initiated in 2007 by the company NVIDIA, CUDA is a programming lan-
guage designed around the concept of Single Instruction Multiple Data (SIMD)
programming model and allows the use of NVIDIA GPPUs for scientific com-
puting. Although the algorithms and techniques presented in this section were
implemented in CUDA and tested on a NVIDIA GPU, they should be amenable
to other SIMD programming languages (e.g. OpenCL) as they do not rely on
any functionality specific to NVIDIA cards.

Start Initialise with

initial conditions

Streaming kernel

f f Lemp

Collide kernel
ftcmp > j
—>plot

Display kernel

plot —> screen

Figure 3: Main structure of the LBM program.

:Data Array: Temporary Data Array: Temporary .

1 Data Array | ! ' Data Array |
. , : E read : :
E E 5 ! ' stream & !
pLreadf 10 gpream : : > collide &
, i temp 1 ' H
: : writesf! : ' ' write femel !
E) read £ E H ! ,
E write f collide E | | ,
: P <)y
; time ! . ; :
: b SWAP :

; (loop)

Figure 4: Blending the streaming et collision kernels together reduces the num-
ber of memory accesses by a factor of two.

The structure of the LBM software is represented in Figure 3. At the start
of the program, two sets of 19 arrays, called f and f'**™P are allocated and
initialised on the CPU before being transferred to the GPU. The second set
of distribution functions f**™P is used during the streaming-step to store the
streamed distribution functions without overwriting the previous ones. Another
array, called plot, is also allocated on the GPU in order to save the macroscopic
quantity that the user wants to visualize in real-time. The program enters its
main loop and calls recursively the streaming, collide, and display kernels. The
streaming-kernel propagates the distribution functions stored in f into f*™P,
The collide kernel computes the equilibrium distributions from f**™P and saves
the result of the collision operator back into f, as well as the quantity for the
visual display into the plot array. The plot array can later be displayed on the
user’s screen by the display kernel.

3.1. Minimise memory accesses

The main drawback that rapidly appears when implementing the LBM on
GPU is the memory bandwidth, i.e., accessing data in the GPU memory takes
longer than the actual computations on these data. Thus, one should focus on
increasing the memory bandwidth in order to implement an optimised LBM
program. An easy and efficient way to increase the memory throughput of a
program is to reduce the number of accesses to global memory by avoiding
redundant accesses to data.

In an LBM program, the number of global memory accesses can be reduced
by a factor of two by blending the two streaming and collide kernels into a single
big kernel, as presented in Figure 4. Indeed, when using two kernels, the program
performs two read-accesses and two write-accesses (for each distribution function

fi), while using a single streamé&collide kernel only requires one read-access to
f; and one write-access to f;*"P, the two sets of arrays are then swapped (this
is a very fast operation that doesn’t require any memory transfer).

It is worth noting that the streamé&collide kernel should save intermediary
results (like for instance the equilibrium distribution functions), as saving them
in global memory would impair the optimisation. The registers are a set of
very-fast, low-latency memories, only available in limited quantity. Any variable
defined locally in a kernel will be stored in a register.

3.2. Increase data coalescence

Another efficient way to increase the memory throughput of a GPU program
is to ensure memory accesses are coalesced. A memory access pattern is called
coalesced when all the threads in a block access consecutive memory locations.
In this case, the accesses are combined into one single request by the hardware.
This is a limitation that the CPU does not suffer from, hecause it makes use of
cache memory and has more sophisticated control units than the GPU.

An example of an uncoalesced memory access pattern is the so-called Array
of Structures (AoS), described in Listing 1. The 19 distribution functions are
grouped together in a structure called Node, then all the nodes are aligned in a
one-dimensional array.

Listing 1: Array of Structures

//regroup 19 float variables together

struct Node { float fO, f1, f2, ..., f18; %}
//create an array of Nx*xNy*Nz nodes

Node Lattice [Nx*Ny*Nz];

//access the fifth distribution on the node (i,j,k)
float value = Lattice[i+j*Nx+k*xNx*Ny].f5

nodel node2 node3
[fol...[fid fol.. [fid fol.. Ifid]

)

threadl thread2 thread3

Figure 5: Memory access pattern for an Array of Structures

With the AoS pattern, each thread accesses a local area of the memory,
as depicted in Figure 5. This access pattern is not coalesced, as threads are
not accessing consecutive memory locations. For example, the accesses to the
distribution fy by each thread are separated in memory space by 18 - 4 = 72
bytes (the 18 distributions f1 to fis) and cannot be grouped into a single big
memory access. They need to be serialized into a lot of small accesses, which

10

nodel node2 node3

[folfolfol AL [2.

......
threadl thread?2 thread3

Figure 6: Access pattern for a Structure of Arrays.

significantly slows down the execution of the kernel. One should notice that this
pattern would be perfect for a CPU implementation because the main thread
would access the nodes one by one, and distribution functions would be likely
to be stored in fast cache memory using this pattern.

A more useful example is the Structure of Arrays pattern (SoA), described
in listing 2, which allows coalesced access to the memory. In this pattern, all
the distribution functions are grouped together into a set of 19 arrays, based on
their corresponding direction e;.

Listing 2: Structure of Arrays

//regroup 19 float arrays of size Nx*Ny*Nz together
struct Lattice
{

float fO[Nx*Ny*Nz];

float f1[Nx*xNy*Nz];

float f18[Nx*Nyx*Nz];
}
//access the fifth distribution on the node (i,j,k)
float value = Lattice.f5[i+j*Nx+k*Nx*Ny];

As shown in Figure 6, with an SoA pattern the set of 18 distribution functions
defining a node are not grouped together, instead they are spread throughout
the GPU memory. Memory accesses are now coalesced, and consecutive threads
access consecutive memory addresses, therefore they can be grouped into one
single big access (actually, one per distribution function).

In order to ensure coalesced memory access in an LBM program, it is re-
commended to match the layout of the memory and the layout of the threads.
The three-dimensional arrays containing the distribution functions are phys-
ically stored as one-dimensional arrays. The memory alignment follows the
standard alignment is C programming: first aligned in the z-direction, then in
the y-direction and finally in the z-direction. The following code snippet shows
how to access the element (x,y, z) of the three-dimensional array “array” using
this alignment:

11

//compute the 1D index corresponding to (x,y,z)
int index = x + y * Nx + z *x Nxx*Ny;

//access the element (x,y,z) in the array
array[index] =

The threads are organised in a similar way to the memory, as shown in
Figure 7: threads are aligned along a one-dimensional block of size N, and
the blocks of threads are aligned on a two-dimensional grid of size (N, N,).
Threads could also be organised on 2D blocks of size (N,, N,) aligned on a 1D
grid of size IV, but the number of threads in a block is limited? so this is only
possible for low resolution simulations.

Figure 7: 3-dimensional threads layout.

The following code snippet summarizes how to compute the 3D position
of a thread and the corresponding memory index in the CUDA programming
language.

Listing 3: Thread organisation in CUDA.

__global__ void ExampleKernel (real* array, int Nx, int Ny, int Nz)
{

// compute the 3D position of the thread

int x = threadlIdx.x;

int y = blockIdx.x;

int z = blockIdx.y;

// compute the corresponding 1D index

int index = x + y * Nx + z *x Nxx*xNy;
//access the element (x,y,z) in the array
array[index] =

}

int main(void)

{

// define grid and block sizes
dim3 block_size(Nx, 1, 1);

4There is a maximum of 1024 threads per block on the Tesla C2070.

12

dim3 grid_size(Ny, Nz, 1);
// launch the kermnel
ExampleKernel <<<grid_size, block_size>>> (array, Nx,

3.3. The streaming issue

Although using coalesced memory enables an important gain in memory
bandwidth, with a corresponding increase in program speed, the LBM algorithm
cannot be fully coalesced because of the streaming step, which requires access
to the distribution functions of the neighbouring nodes, hence breaking the co-
alesced access pattern. Therefore, the streaming step is the most critical step in
terms of computational time and limits the performances of the streamé&collide
kernel.

But after observing that uncoalesced reads are faster than uncoalesced writes,
the uncoalesced memory accesses performed in the streaming-step can be dealt
with more efficiently via a different interpretation of the streaming. Indeed, the
streaming of the distribution functions can achieved in two different ways:

o push-out (SLOWER):
N

!

coalesced read uncoalesced write

The distribution functions are pushed from the centre node to the adjacent
nodes. This involves local reads (so coalesced) of distribution functions
and non-local writes (so uncoalesced).

e pull-in (FASTER):

N

— e —
uncoalesced read coalesced write

13

Ny,

Nz);

w

Q)

wiJ

- [na
0.2

L
0.4

xIL

L
06

L
08

1

yiL

(a) Geometry of the cavity. (b) Velocity profiles through cavity geometric

centre at Re = 1000.

Figure 8: 3D lid-driven cavity

The distribution functions are pulled from the neighbouring nodes to the
centre node. This involves non-local uncoalesced reads and local coalesced
writes.

Because uncoalesced reads are faster than uncoalesced writes, the pull-in stream-
ing method is faster than the push-out method. Numerical experiments using a
Tesla, C2070 card showed that the pull-in method is about 6% faster than the
push-out method. The speed-up on this hardware is rather small because the
Fermi architecture from NVIDIA uses cached global memory access which tends
to hide uncoalesced accesses. Thus, this speed-up is likely to vary depending on
the hardware and should be more important for older GPU architecture.

4. Results and discussion

4.1. 3D lid-driven cavity

In order to first validate the results of the LBM program at low Reynolds
number, the standard lid-driven 3D cavity benchmark was simulated. In this
benchmark, a 3D cavity contains an incompressible viscous fluid and the flow is
driven by the constant translation of the top lid. The boundary condition on the
top-lid is: u(y = L) = Ujqge, and the no-slip boundary conditions on the other
walls are: u = 0, the geometry is sketched in Figure 8a. Its popularity comes
from its ability to generate rich flow structures while keeping a simuple geometry
and boundary conditions. Flow fields in the lid-driven cavity have been studied
extensively both experimentally[22, 23] and numerically[24, 25, 26].

As shown in Figure 8b the results of the 3D LBM simulation running on
a GPU are in good agreement with the benchmark results of [24], obtained
through spectral analysis method.

14

4.2. Test chamber

L os| drlet

:
1
L5 Q :
HE nlet !
P ! Soutlet
| o T
0.51 T R 9utht‘ P ———
0.28] === Fmm e]:l 7 50
0.47 0.95 325 3.73 4.2

Figure 9: Geometry of the environment test chamber, left figure shows a front
view, right figure shows a 3D representation.

In order to study the applicability of the previously described LBM program
for real-world applications in real-time, the simulation of a 32m? room filled
with air (kinematic viscosity v = 1.4610 °%kg.m '.s7!) is conducted. The
simulated room is based on a real Class II bioaerosol chamber built in the School
of Civil Engineering at the University of Leeds [27]. The results are compared
with a Smagorinsky LES (Large Eddy Simulation) finite volume simulations
using the ANSYS Fluent software[28]. The geometry of the room is shown
in Figure 9, there is an inlet on one side pushing hot air into the room at a
constant speed U = 0.48m.s 'and a constant temperature T}, = 22°C. On
the other side of the room, there is a free outlet (Neumann boundary). The
walls of the room use a no-slip boundary condition and they are maintained at
a temperature of T, = 15°C. The Reynolds number of the room computed
from the hydraulic diameter of the inlet L = 2% m is Re = 10200.

The LBM simulation is performed on a regular mesh of size 160 x 86 x 127
nodes to respect the room aspect ratios, this is a total of 1.7 million nodes. The
inlet surface is composed of only 171 nodes, this could be improved in the future
by using a refined mesh method [29, 30]. The speed at the inlet is Urgy = 0.1
in lattice units, and the viscosity is computed to recover the proper Reynolds
number in the room.

The ANSYS Fluent simulation is performed on a mesh composed of 534000
hexahedral cells, the mesh is refined such that the inlet surface contains 1100
nodes. The flow is simulated for a total of 560 physical seconds and the results
are considered to be converged when the residuals of all the equations are less
than 107°. The simulation is performed on a server with 16 Intel Xeon CPU
and each physical second of simulation requires 7 minutes of computations.

Figure 10 shows a comparison of the average velocity profile in a cross section
of the room that is aligned with the centerline of the inlet, as well as the average
temperature profile. The fields are averaged from ¢t = 460 s to t = 560 s. The
LBM simulation shows important fluctuations near the inlet but they are benign,
as they do not propagate to the rest of the fluid and the main flow structures are
still recovered. These fluctuations form a checkerboard pattern and are often
seen as instabilities of the BGK collision operator for high Reynolds number
flow. Using Figure 10, the profiles from the LBM simulation at 1.7 million nodes

15

can be compared with two other LBM simulations using respectively a lower
and a higher resolutions (with respectively 0.1 million nodes and 7.2 million
nodes). While the lower resolution is too coarse for a satisfactory solving of
the flow structures, the higher resolution captures more details in the velocity
profile and does not present instabilities; although without being significantly
different from the results at 1.7M resolution. This show that the 1.7M resolution
achieves a good trade-off between computational speed and accuracy. It is the
authors belief that the current accuracy would be sufficient for use as an carly
warning system, and such accuracy would be improved with the use of a multiple
relaxation-time approach [31, 32].

Mean velocity profile at inlet center line Mean temperature profile at inlet center line
g 0.5 - 30 T T T T T T
< 045 E D
8 04 g <
£ 035 E g
g o3 1 g
E 025 7 g
= 0.2 = €
8 0.5 i 2 10} LBM 0.1M -
® o4 i < LBM 1.7M ——
> : 3 s5f LBM 7.2M ------- g
3 0-03 - b = o)) | Ansys Fluent -
= 0o 05 1 165 2 25 3 35 0 0.5 1 1.5 2 25 3 3.5

Distance to the inlet (m) Distance to the inlet (m)

Figure 10: Comparison of the mean velocity and the mean temperature profiles
averaged from ¢t = 460 s to ¢ = 560 s across the room, computed from LBM
simulation and ANSYS Fluent simulation.

4.8. Performance

4.8.1. Observed performance

This section reports the observed performances of the 3D LBM program
running on a GPU NVIDIA Tesla C2070 with 448 cores working at 1.15 GHz
using the CUDA programming language version 4.1. A common method for
comparing the performances of LBM programs is to measure the number of
nodes updated per second. This number can be expressed in million of lattice-
node updated per second, i.e., MLups. It depends on the type of lattice used, as
the number of microscopic velocities of a node directly impacts the time required
to update a node, so it should be noted that a D3Q19 lattice with 19 velocities
is used for all the simulation tests. Moreover, on a GPU, the number of MLups
also depends on the lattice resolution because the GPU performs better when it
has more data to work on (as shown is Figure 11). Unless stated otherwise, the
following performance comparison where obtained with a cubic lattice of size
1283, The computations are always performed in single-precision, if computed
in double precision, performances would be divided by a factor of two.

The poor performance on a 323 lattice is a result of the thread layout de-
scribed in 3.2, using one-dimensional blocks of 32 threads is not enough for
a proper use of GPU resources. For such small lattice sizes, two-dimensional

16

Evolution of the performance with lattice size
800 T T T T T

Tesla C2070 ECC off —&—

700 | Tesla C2070 ECCon ---&----

600 -

500

400 |

300

Performance in MLups

200 -

100 -

|
|
|
|
|
|
|
|
|
|
|
|
1
|
|
|
|
|
|
|
|

328 643 96 128% 160° 192° 2043 256° 288°
Number of nodes along one axis

Figure 11: Performance fluctnations with lattice size

blocks of threads should be used in order to increase the number of threads per
block, and improve the occupancy of the GPU.

The GPU was observed to achieve a sustained 530 MLups performance for
the 3D isothermal LBM simulation. The 3D thermal simulation performs at
380 MLups, as it requires 6 additional distribution functions, and the program
is bandwidth-limited. The turbulence model, however, does not add any new
memory accesses but only increases the amount of computations required to
evaluate the equilibrium distributions, thus it only slows down the program by
10 MLups, for both the thermal and isothermal models.

Ultimately, the performances for each model are summarised in Table 1, and
compared with the performances with the ECC disabled (c.f. Section 4.3.4). The
LBM program reaches a computational speed better or similar to other recent
highly optimised GPU implementation published in the literature (even though
in our implementation, some time is spent on the visualisation). For example
J.Habitch et. al. [33] achieved 380 MLups (and 650 MLups with ECC disabled)
for an isothermal D3Q19 LBGK model running on the same Tesla C2070 card
model.

4.8.2. Discussion on real-time performance

This scction discusses the feasibility of real-time indoor air flow simulations
using the developed LBM program based on the test chamber discussed in Sec-
tion 4.2. A fluid is simulated in real-time (or faster than real-time) if the physical

17

time between two simulation-steps is equal to (or bigger than) the time taken
by the computer to simulate one time-step.

To compute the physical time corresponding to one time-step of the simula-
tion, the “lattice-units” used by the program need to be converted to “real-world
units”. Each physical quantity is rescaled into a dimensionless quantity through
a conversion factor, Qpnys = CoQreM Where Qpnys is the physical quantity
(with dimensions), Cg is the conversion factor (with dimensions) and Qrpm is
the dimensionless quantity used in the LBM.

For length, time, and speed the following scaling can be written: Lpnys =
CrLiMm, tphys = Citiem and Vpnys = CyvVipm. However, only two of these
factors are independent thus the conversion factor for the time can be expressed
as Ct = CL/C\/.

Based on the velocity at the inlet, the speed conversion factor can be com-
puted as Cy = Vpnys/Vipm = 0.48m.s /0.1 =4.8m.s '

Based on the size of the cavity in meters in the direction orthogonal to
the inlet (3.36 m) and the number of nodes along this direction (i.e.127), the
conversion factor for lengths can be computed: Cr = 3.36 m/127 = 0.026 m.

Finally, the physical time At between two time-steps is given by At = C; =
CL/CV =55x10"3s.

To compute the speed-up, the physical time needs to be compared to the
computational time. The flow in the test chamber can be simulated at up
to 460 MLups (see Table 1), this means that the room made of 1.7 million
nodes is updated 270 times per second, so each time-step is computed in 3.7 x
1073 s. Computing the ratio to the physical time shows that a speed-up of 1.5
is obtained. Thus, the air-flow in this room can be simulated 1.5 times faster
than the real flow.

4.8.8. Maximum theoretical performance

Observed performances can be compared with the theoretical performance.
A LBM program running on a GPU is limited by its bandwidth, hence the the-
oretical performance can be obtained from the theoretical bandwidth divided by
the number of bytes accessed in the global memory per iteration, which varies
depending on the model. According to the specification, the GPU Tesla C2070
has a maximum theoretical bandwidth of By, = 144 GB/s, this value is obtained
by multiplying the number of memory interfaces (also known as buses) by the
frequency at which they transfer data. In practice, the observed bandwidth is
less than (and guaranteed not to exceed) the advertised bandwidth. Therefore,
in order to obtain the effective bandwidth the “bandwidth-test” program, avail-
able in the CUDA Software Development Kit, was used. This program carries
out simple memory transfers (read, write, copy) and computes an average band-
width. The observed bandwidth for a GPU Tesla C2070 with this program is
Bspk = 97 GB/s, this is 32% less than the theoretical bandwidth Byy,.

The maximum performance for a given model can be computed based on
the observed bandwidth Bspk. For example the D3Q19 isothermal model reads
19 distributions in f and writes 19 distributions in f**™P as well as 1 write
in the plot array. Each of this access in single precision uses 4 Bytes, so

18

the D3Q19 isothermal model accesses a total of 4 - (19-2+ 1) = 156 Bytes of
memory per node. Based on this number and the observed bandwidth, the max-
imum performance for the D3Q19 isothermal model is 97 GB.s '/ (156 B) =
621 MLups. This number corresponds to the speed of the LBM program if
all memory accesses are fully optimised and no computations are made. It
is only 17% more than the actual performance of this model (530 MLups),
this indicates that the program is well optimised. The maximum perform-
ance for the D3Q19 thermal model can be computed using the same technique,
97 GB.s '/ (4-(2-(19+6) + 1) B) = 476 MLups, this is 25% more than the
actual performance of this model (380 MLups). The thermal model, is relatively
less efficient than the isothermal model because more computations are required
comparatively (for instance to apply the Boussinesq forcing term).

4.8.4. Effect of the error-correcting code (ECC)

The observed memory bandwidth can be improved by disabling the Error-
Correcting Code on the GPU. The ECC is a memory error checking system
available only on high-end NVIDIA GPU, like the Tesla cards. When this mode
is enabled, the GPU reserves 12% of the total memory and performs more
operations in order to check that no error occurs during each memory access.
Disabling this mode can obviously provide a performance boost but it may
introduce errors in the simulation. The decision of whether or not to activate
the ECC mode depends if the boost in performance is worth the loss in accuracy
and stability in a simulation.

Experiments conducted on the LBM program showed no noticeable differ-
ence in the velocity and pressure field when disabling the ECC mode, the errors
introduced by disabling ECC are smaller than discretisation errors. It is prob-
able that the collision operator in the LBM has a “smoothing-effect” on the
erroneous distribution functions by diluting them into the other 18 distribution
functions of the node

Moreover, disabling the ECC significantly improves the performance by in-
creasing the maximum memory bandwidth. Indeed, the bandwidth-test pro-
gram achieves Bgpke = 113 GB/s (a 16% improvement) after disabling ECC.
And the LBM isothermal model reaches 680 MLups (a 28% improvement). This
LBM performance is only 6% less than the maximum performance computed
from Bspks (724 MLups). The LBM program demonstrates a huge speed-up by
disabling ECC, and it is also getting closer to the maximum memory bandwidth.

According to these results, it is advised to disable the ECC when running
an LBM program on a GPU. The computational speed obtained with the ECC
disabled are summarized in Table 1.

4.8.5. The issue of branch divergence

The use of flow control instructions (like an “if” condition) inside a kernel
can cause branch divergences within each block of threads running this kernel
and drastically slow down the program. This is because the GPU uses a SIMD
programming model (where every thread executes the same instructions on a
scction of the data) and has limited control units. Implementing different actions

19

3D Model Performances on GPU (MLups)

with ECC without ECC
isothermal 530 680
isothermal and turbulent 520 670
thermal 380 470
thermal and turbulent 370 460

Table 1: Comparison of the performances of each model.

for each thread goes against the SIMD principle. However, some kind of flow
control is always required to implement boundary conditions.

In practice, branch divergence will slow-down the LBM program when using
complex boundary conditions instcad of periodic boundary conditions (cffect-
ively no boundary). The actual value of the slow-down, depends on how early
in the kernel the divergence happens, but it can be up to two times slower.
However, this slow-down can be avoided if one direction can be kept as peri-
odic. Indeed, branch divergence only happens within the same block of thread
(actually it is within a warp, a group of 32 threads inside a block), so as long
as the block is aligned with the boundary, there will be no divergence, as all
the threads will execute the same boundary code. On the contrary, if the block
of threads is normal to the boundary, the two threads on the edges execute the
boundary code while all the other threads execute the bulk code, this creates
branch divergence and slows down the computations.

In practice, using the thread organisation described in section 3.2, boundaries
along the x-axis do not create branch divergences, execution is fast. Whereas
boundaries perpendicular to the x-axis suffer from branch-divergence and slow
down the execution of the program. This is represented in Figure 12.

$
T

Y

Figure 12: Effect of branch divergence on the boundaries. Green boundaries are
fast, red boundaries are slow.

Periodic boundaries do not occur in most engineering applications and ob-
jects can be placed inside the domain, so thread divergences are likely to arrise.
However, the resulting performance degradation can be limited by aligning com-
plex boundaries (i.e. those requiring numerous computations and logical oper-
ations) with blocks of threads.

20

5. Conclusion

This study presents several optimisation principles, leading to an efficient 3D
LBM kernel for an NVIDIA GPU using CUDA. The proposed program reaches
up to 680 MLups for an isothermal model (and 460 MLups for a thermal and
turbulent model), aud achicves 94% of the cffective maximal memory bandwidth
in single precision, which is the main limiting factor of the current generation
of GPUs.

This near-optimal performance is made possible by a carefully chosen memory
access pattern in order to improve data-coalescence. It was also demonstrated
that the performance degradation caused by the branch divergences can be
avoided if one direction can be setup as periodic.

Enabling ECC on the hardware significantly slows down the execution (by
about 30%), and when disabled, no artefacts could be seen in the computed
simulation results. Therefore, the implementation of the LBM presented in this
paper does not require the use of ECC.

The high computational speed, combined with efficient visualisation tech-
niques, allows for real-time fluid simulation with interactive computational steer-
ing.

The benchmark problem of a fluid in a cubed lid-driven cavity demonstrates
excellent agreement with proven solutions. The simulation of the test chamber
showed an acceptable agreement with the finite volume simulation via ANSYS
Fluent, although fluctuations of the flow in the vicinity of the inlet were detected.

More accurate collision models (such as the multiple relaxation time model)
are required to remove these fluctuations and improve the program stability.
As highlighted in 4.3, the performance impact of using such models should be
minimal [34], as they usually require more computations and not necessarily
additional memory accesses.

References

[1] B. Sammakia, S. Bhopte, M. Ibrahim, Numerical modeling of data center
clusters, in: Y. Joshi, P. Kumar (Eds.), Energy Efficient Thermal Manage-
ment of Data Centers, 2012, pp. 335-382.

[2] Y. Li, G. M. Leung, J. W. Tang, X. Yang, C. Y. H. Chao, J. Z. Lin, J. W.
Lu, P. V. Nielsen, J. Niu, H. Qian, A. C. Sleigh, H.-J. J. Su, J. Sundell,
T. W. Wong, P. L. Yuen, Role of ventilation in airborne transmission of
infectious agents in the built environment - a multidisciplinary systematic
review, Indoor Air 17 (1) (2007) 2-18.

[3] C. Noakes, P. Sleigh, A. Escombe, C. Beggs, Use of CFD analysis in modi-
fying a TB ward in Lima, Peru, Indoor and Built Environment 15 (41).

[4] M. Miiller, D. Charypar, M. Gross, Particle-based fluid simulation for inter-
active applications, in: Proceedings of the 2003 ACM SIGGRAPH, 2003,
pp. 154-159.

21

5]

(6]

7]

18]

19]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

J. Stam, Stable fluids, in: Proceedings of SIGGRAPH 99, 1999, pp. 121-
128.

B. Crouse, M. Krafczyk, S. Kiihner, E. Rank, C. van Treeck, Indoor air
flow analysis based on lattice Boltzmann methods, Energy and Buildings
34 (9) (2002) 941-949.

C. van Treeck, E. Rank, M. Krafczyk, J. Tolke, B. Nachtwey, Extension
of a hybrid thermal LBE scheme for large-eddy simulations of turbulent
convective flows, Computers and Fluids 35 (8-9) (2006) 863-871.

J. Linxweiler, M. Krafczyk, J. To6lke, Highly interactive computational
steering for coupled 3D flow problems utilizing multiple GPUs, Computing
and Visualization in Science 13 (7) (2010) 299-314.

S. Succi, The Lattice Boltzmann Equation for Fluid Dynamics and Bey-
ond, Numerical mathematics and scientific computation, Oxford University

Press, USA, 2001.

P. L. Bhatnagar, E. P. Gross, M. Krook, A model for collision processes in
gases. I. Small amplitude processes in charged and neutral one-component
systems, Phys. Rev. 94 (1954) 511-525.

S. Chapman, T. Cowling, The mathematical theory of non-uniform gases,
3rd Edition, Cambridge : Cambridge University Press, 1970.

X. He, L. Luo, Lattice Boltzmann model for the incompressible Navier-
Stokes equation, Journal of Statistical Physics 88 (3-4) (1997) 927-944.

J. Wu, C. Shu, A solution-adaptive lattice Boltzmann method for two-
dimensional incompressible viscous flows, Journal of Computational Phys-
ics 230 (6) (2011) 2246-2269.

Z. Guo, B. Shi, C. Zheng, A coupled lattice BGK model for the Boussinesq
equations, International Journal for Numerical Methods in Fluids 39 (4)
(2002) 325-342.

C. Obrecht, F. Kuznik, B. Tourancheau, J. Roux, The TheLMA project:
A thermal lattice Boltzmann solver for the GPU, Computers and Fluids 54
(2012) 118-126.

D. Tritton, Physical Fluid Dynamics (Oxford Science Publications), 2nd
Edition, Oxford University Press, USA, 1988.

Z. Guo, C. Zheng, B. Shi, Discrete lattice effects on the forcing term in the
lattice Boltzmann method, Phys. Rev. E 65 (2002) 046308.

J. Smagorinsky, General circulation experiments with the primitive equa-
tions, Monthly Weather Review 91 (3) (1963) 99-164.

22

[19]

[20]

[21]

22]

23]

24]

[25]

[26]

[27]

28]

[29]

30]

31]

P. Sagaut, Large Eddy Simulation for Incompressible Flows, Springer, New
York, 2006.

H. Liu, C. Zou, B. Shi, Z. Tian, L. Zhang, C. Zheng, Thermal lattice-
BGK model based on large-eddy simulation of turbulent natural convection
due to internal heat generation, International Journal of Heat and Mass
Transfer 49 (23-24) (2006) 4672-4680.

S. Hou, J. Sterling, S. Chen, G. Doolen, A Lattice Boltzmann Subgrid
Model for High Reynolds Number Flows, Vol. 6 of Fields Institute Com-
munications, AMS, Providence, 1996, pp. 151-166.

N. G. T. C. K. Aidun, J. D. Benson, Global stability of a lid-driven cavity
with throughflow: Flow visualization studies, Physics of Fluids 3.

J. R. Koseff, R. L. Street, Visualization studics of a shear driven three-
dimensional recirculating flow, J. Fluids Eng.-Transactions ASME 106
(1984) 21-29.

S. Albensoeder, H. C. Kuhlmann, Accurate three-dimensional lid-driven
cavity flow, J. Comput. Phys. 206 (2) (2005) 536-558.

U. Ghia, K. Ghia, C. Shin, High-Re solutions for incompressible flow using
the Navier-Stokes equations and a multigrid method, Journal of Computa-
tional Physies 48 (3) (1982) 387-411.

H. Ku, R. Hirsh, T. Taylor, A pseudospectral method for solution of the
three-dimensional incompressible Navier-Stokes equations, Journal of Com-
putational Physics 70 (2) (1987) 439-462.

M. King, C. Noakes, P. Sleigh, M. Camargo-Valero, Bioaerosol deposition
in single and two-bed hospital rooms: A numerical and experimental study,
Building and Environment 59 (2013) 436—447.

ANSYS Academic Research, Release 13, Help System, FLUENT User’s
Guide, ANSYS, Inc. Southpointe, 275 Technology Drive, Canonsburg, PA
15317 .

O. Filippova, D. Hénel, Grid refinement for lattice-BGK models, Journal
of Computational Physics 147 (1) (1998) 219-228.

M. Schonherr, K. Kucher, M. Geier, M. Stiebler, S. Freudiger, M. Krafczyk,
Multi-thread implementations of the lattice Boltzmann method on non-
uniform grids for CPUs and GPUs, Computers and Mathematics with Ap-
plications 61 (12) (2011) 3730-3743.

D. d’'Humiéres, I. Ginzburg, M. Krafczyk, P. Lallemand, L. Luo, Multiple-
relaxation-time lattice Boltzmann models in three dimensions, Phil. Trans.
R. Soc. A 360 (2002) 437-451.

23

32]

33]

[34]

L. Luo, M. Krafczyk, J. Télke, Large-eddy simulations with a multiple-
relaxation-time LBE model, International Journal of Modern Physics B 17
(2003) 33-39.

J. Habich, C. Feichtinger, H. Kostler, G. Hager, G. Wellein, Performance
engineering for the lattice Boltzmann method on GPGPUs: Architectural

requirements and performance results, Computers and Fluids 80 (2013)
276—282.

C. Obrecht, F. Kuznik, B. Tourancheau, J. Roux, A new approach to the
lattice Boltzmann method for graphics processing units, Computers and
Mathematics with Applications 61 (12) (2011) 3628-3638.

24

	WRROcoversheetKhan.pdf
	CAMWA-D-12-02990R4[1]_preprint.pdf

