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Summary 24 

1. To manage anthropogenic environmental change for the benefit of biodiversity we must improve our 25 

understanding of the complex relationships between organisms and their environment.  We have 26 

developed multiscale habitat suitability models (HSMs) for bats, a mobile group of mammals, for a 27 

geographically varied region of the UK. We ask if the models have sufficient accuracy to contribute to 28 

informed decision-making in habitat management and in minimizing the impact of climate change and 29 

human infrastructural development. 30 

2. We used acoustic surveys supplemented by catching to gather presence data for eight species from 31 

30 sites across the south of the Lake District National Park in NW England. Species were identified by 32 

manual and automated extraction and analysis of echolocation calls. Fine-resolution (50 and 100 m) 33 

habitat maps were generated at twelve spatial scales by calculating the variables across squares of 34 

increasing size, from 100–6000 m, around each focal 50 or 100 m square. Presence-only HSM software, 35 

MaxEnt, was used to determine the predictive power of each habitat variable at each scale. Multiscale 36 

models included data for each variable at the scale at which it had the strongest relationship with the 37 

presence of each species.  38 

3. The best multiscale models were selected using 5-fold cross-validation, with backwards, stepwise 39 

variable removal, whilst minimising residual spatial autocorrelation and sampling bias. Further tests with 40 

independent field data indicated good model transferability across the entire National Park. 41 

4. Foraging bats were generally most strongly associated with variables measured at small spatial scales 42 

and distance measures. However, each species responded differently across the range of scales, and 43 

strong associations were also found at the largest scale of analysis (6000 m). 44 

5. Synthesis and applications. The best models for determining habitat suitability had few variables, 45 

making them easy to interpret and use in practical conservation planning. The approach is applicable to 46 

any taxa for which reliable presence records are available, providing insight into the potential impacts of 47 

land use and environmental change. Maps identify areas of conservation concern, such as hotspots for 48 

diversity, rare or vulnerable species and potential or threatened network corridors, making them useful 49 

for ecological impact assessment of proposed developments, and to conservation managers planning 50 

habitat creation or improvement.  51 
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Introduction 56 

To protect our natural heritage in the face of climate change and increasingly intensive land-use, conservation 57 

management must operate on a landscape scale (e.g. Lindenmayer et al. 2008; Heller & Zavaleta 2009; Lawton 58 

et al. 2010). In addition to retaining and managing existing protected areas, we must improve the ecological 59 

connections between them and, where possible, improve the surrounding matrix of agricultural and urban 60 

landscapes.  This management, whether for a species, community or ecosystem, should be driven by an 61 

understanding of how the target species interact with their abiotic and biotic environment, since it is by 62 

changing this environment that management is achieved. To develop the best management solutions, we need 63 

to be able to predict the consequences of performing a particular task in a particular place. This could be 64 

deciding where to plant new woodland, or choosing the line of a new road to cause minimal ecological 65 

disturbance. This requires tools that facilitate decision-making in complex environments at a landscape scale. 66 

This paper uses bats to explore the usefulness of Habitat Suitability Modelling (HSM, or Species Distribution 67 

Modelling, SDM), generated by the program MaxEnt, as such a tool. 68 

 69 

Habitat Suitability Modelling is a statistical technique that predicts the distribution of a species over large areas 70 

from environmental data and occurrence records. It has been usefully applied using few presence-only data 71 

(e.g. Pearson et al. 2007), giving it considerable potential in practical conservation, since large 72 

presence/absence datasets are frequently unavailable or unreliable. GIS-based HSM can produce large extent, 73 

fine-resolution maps that encapsulate many of the interactions between species and environment. Maps can 74 

be generated from small datasets, are easily interpreted by conservation practitioners, and can be updated 75 

easily. However, HSMs can also have poor, and often over-estimated, predictive performance, due to residual 76 

spatial autocorrelation in the data, sampling bias, and inadequate testing with independent data (Phillips et al. 77 

2009; Veloz 2009; Merckx et al. 2011). Residual spatial autocorrelation (rSAC) can result from factors not 78 

studied, such as a species’ gregariousness, or when distribution is not adequately explained by the ecological 79 

variables in the model. Use of spatially autocorrelated data violates the assumptions of many tests. We 80 

explicitly test the effects of failing to account for these in models. 81 

 82 
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The interaction between an organism and its environment occurs on many scales (e.g. Wiens 1989). In the case 83 

of bats, habitat choice on a small scale is typically driven by the constraints of echolocation and flight: 84 

extremes include slow flying bats that feed by gleaning from the leaves and trunks of woodland trees and bats 85 

adapted for aerial hawking during rapid, efficient flight in the open. The distribution of many of the 86 

invertebrates that bats feed on is also likely to be determined by fine scale factors: insects with aquatic larvae 87 

will be close to water, flying insects more often in the lee of woodland trees. On a larger scale, the presence or 88 

absence of a species in a locality will be determined by such factors as woodland perimeter for edge habitat 89 

specialists, the permeability of the typically ‘disturbed’ landscape between their multiple roosts and foraging 90 

sites, and the distances between summer roosts and hibernacula. Our ecological understanding may therefore 91 

need to encompass many scales. To date, most studies on foraging bat-habitat relationships have been at a 92 

fixed spatial scale (e.g. Jaberg & Guisan 2001; Wickramasinghe et al. 2003; Rebelo & Jones 2010; Rainho & 93 

Palmeirim 2011). These studies tell us which habitat factors are important determinants of bat-habitat 94 

suitability, but only in relation to the scale considered. Multiscale models are now being used and a recent 95 

paper by Razgour, Hanmer & Jones (2011) used such models to predict the distribution of a rare UK bat.  96 

 97 

We have used field data collected specifically to develop multiscale HSMs for eight bat species in the Lake 98 

District National Park, NW England. Our aims were two-fold. (1) To investigate multiscale species-habitat 99 

relationships and provide accurate and easily interpretable habitat suitability maps for environmental impact 100 

assessment and conservation management. (2) To explicitly test the effects of sampling bias and rSAC on 101 

measures of model performance. The work thus serves as a template for HSMs for temperate bats in general, 102 

and since bats are increasingly recognised as good bioindicators (Jones et al. 2009) the maps have value 103 

beyond bat conservation. 104 

 105 

Materials and methods 106 

STUDY SITES AND SPECIES 107 

The study was carried out in the Lake District National Park, NW England (subsequently referred to as “Park”; 108 

Fig. 1). It has wide post-glacial valleys filled with a rich mosaic of woodland, plantations, lakes, farmland and 109 

open grassland, turning into moorland and rocky, mountainous terrain at higher elevations (up to 977 m a.s.l.). 110 
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Built areas vary from scattered farms linked by unlit tracks to small towns and well-lit, busy roads. Nine bat 111 

species were recorded: Pipistrellus pipistrellus, P. pygmaeus, Plecotus auritus, Myotis daubentonii, M. 112 

nattereri, M. brandtii, M. mystacinus and Nyctalus noctula and the locally rare N. leisleri. We used acoustic 113 

surveys to gather presence from thirty 1-km
2 

sites across the southern part of the Park from May to August 114 

inclusive in 2008 and 2009, walking two transects in each site each year (Fig.1 and Supplementary Appendix 115 

S1). Sites were chosen by aligning a 5 x 6 grid of 25 km
2
 squares with the Ordnance Survey grid. At the centre 116 

of each 25-km
2
 square was the 1-km

2
 study site, making the sites 5 km apart, centre to centre.  Two sites were 117 

repositioned to overcome access problems. Sites were highly varied in habitat composition, structure and 118 

altitude. Within each site, 2–3 km transects encompassed this variation. Full transect methodology is given in 119 

S1. Species were identified by manual and automated extraction and analysis of full-spectrum echolocation 120 

calls (S1). We captured bats to obtain additional data from Plecotus auritus since their low intensity calls are 121 

difficult to detect. Bats were captured as a component of other work at a single woodland site in over half of 122 

the study squares, using mist nets and harp traps. To assess how robust models were to geographic transferral, 123 

we collected independent data using the same methods in eight sites west and north of the training sites, 124 

selected to encompass a range of habitat types (Fig. 1, S1).  125 

 126 

ENVIRONMENTAL VARIABLES  127 

GIS data from multiple sources were used to create gridded environmental variables (50 or 100 m resolution 128 

rasters; Tables S1.1–1.3). Data were validated by comparing them with recent (2005) aerial photographs, 129 

provided by Natural England. GIS manipulation was performed in ArcGIS 9.3 (www.esri.com). In brief, two non-130 

scalar environmental variables were used in each model (distance to water and woodland edge) and all other 131 

variables were measured at 12 scales (100–6000 m) by measuring cell statistics within different sized windows 132 

centred on each raster cell using the focal statistics tool (details in S1).  133 

 134 

MODELLING 135 

Model fitting    136 

MaxEnt is a program that predicts the geographical distribution of a species based on the environmental 137 

conditions at locations where the species is known to occur, using the maximum entropy method (Phillips, 138 

Anderson & Schapire 2006). All models were run in MaxEnt Version 3.3.3e 139 

http://www.esri.com/


8 
 

(http://www.cs.princeton.edu/~schapire/maxent), using primarily default settings and one species record per 140 

cell (see S1). Models were evaluated using 5-fold cross validation: study site data were randomly partitioned 141 

into five roughly equal subsets, four being used to train a model and one to test the model. The process was 142 

repeated five times, using a different subset each time for testing, and the results averaged.  143 

 144 

Sampling bias and spatial autocorrelation   145 

Moran‘s correlograms were used to check for significant spatial autocorrelation of residuals (1 – predicted HSI 146 

for each species record; de Marco, Diniz-Filho & Bini 2008) using Spatial Analysis in Macroecology (SAM; 147 

Rangel, Diniz-Filho & Bini 2006). Significance of Moran‘s I was calculated using a randomisation test with 9,999 148 

Monte Carlo permutations, correcting for multiple testing. If significant residual spatial autocorrelation (rSAC) 149 

was detected we spatially constrained testing and training data: the first distance lags found to be positively 150 

spatially autocorrelated were used to set a distance threshold and data pairs closer to each other than this 151 

were placed in the same data partition (Parolo, Rossi & Ferrarini 2008). Models were also run using random 5-152 

fold cross validation for comparison.  153 

 154 

To prevent MaxEnt from using background data from environmental conditions outside the range sampled, we 155 

included a mask, forcing MaxEnt to calibrate models with data from each field site and a surrounding 0.5-km 156 

buffer. To factor out any bias introduced by sampling habitats more or less often than they were available 157 

within these sites, a bias file was created by scoring cells every time they were sampled by either a transect or 158 

catching.  When given the data, MaxEnt will correct for non-uniform sampling effort (Dudík, Schapire & Philips 159 

2005). 160 

 161 

Models were also run without measures to counteract sampling bias and rSAC, to explicitly determine the 162 

consequences. We hypothesised that this would result in falsely inflated measures of test performance.  This 163 

was analysed using paired t-tests on Area Under Curve (AUC) scores, the most commonly used HSM 164 

performance parameter (Merckx et al. 2011; Parolo, Rossi & Ferrarini 2008) and assessing changes in 165 

individual variable performance with and without measures to control for sampling bias for selected species 166 

(details in S1). AUC measures the probability that a randomly chosen presence point will rank above a 167 

randomly chosen background point (AUC = 0.5 = random; the closer to 1.0 the better the discrimination). 168 

http://www.cs.princeton.edu/~schapire/maxent
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Presence-only models vary in their maximum achievable AUC between species because of differences in the 169 

likelihood that background samples will be drawn from suitable habitat (Phillips, Anderson & Shapire 2006). 170 

Although this limits the ability to contrast model performance between species, scores can be used for 171 

comparing the performance of model settings and parameters for a particular species. Other measures of 172 

accuracy are available and are discussed in depth by Elith & Graham (2009). 173 

 174 

From univariate to multivariate models    175 

The predictive power of environmental variables was assessed using the MaxEnt jackknife measure of test 176 

AUC. The scale at which an environmental variable had the highest test AUC in a univariate model was entered 177 

into a species’ multivariate model, to create ‘full models’ of all variables at their best performing scale. 178 

Environmental variables with test AUC ≤0.5 were removed and those remaining were checked for 179 

multicollinearity (r ≥ 0.70) using ENMTools (www.ENMTools.com; Warren, Glor & Turelli 2008; 2010). Collinear 180 

variables were pruned by retaining those with higher test AUC scores. Models were further pruned to yield a 181 

set of variables with the highest predictive power, using a jackknife, leave-one-out stepwise approach (Parolo, 182 

Rossi & Ferrarini 2008). Environmental variables causing the smallest decrease (or largest increase) in test AUC 183 

when removed were pruned in turn until only one environmental variable remained. The ‘pruned model’ with 184 

the highest test AUC was used for further analysis. The contribution each remaining environmental variable 185 

made to a species’ pruned model was determined by randomly permuting the value of each environmental 186 

variable in turn at the presence and background locations and re-testing the model. The resulting, normalised 187 

drop in training AUC was compared between variables (Phillips 2011).  188 

 189 

Model selection    190 

The fit of full and pruned models were compared using Akaike Information Criteria corrected for small sample 191 

sizes (AICc), in ENMTools (Warren & Seifert 2011).  Models for each species were ranked by calculating the 192 

difference (ΔAICc) between a model‘s AICc and the minimum AICc (minAICc). Models were considered 193 

equivalent if ΔAICc was ≤ 2 values of the minAICc model, or potential alternatives if ≤ 10 of minAICc (Burnham 194 

& Anderson 2002). AICc was calculated using all records unique to a single raster cell from study and test sites 195 

separately.  We could only assess fit when a species sample size was greater than the number of model 196 

parameters (Burnham & Anderson 2002). 197 
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 198 

Model transferability: evaluation using independent data    199 

Models were trained with all data and predictions were projected to the entire Park. Their performance was 200 

assessed with new, independent field data from test sites. AUC was calculated in R (version 2.12.2, package 201 

ROCR; Sing et al. 2009), comparing Habitat Suitability Index (HSI) values at presence sites (one species record 202 

per cell) and at each cell within the eight test sites plus a 0.5-km buffer (background HSI values). Data were 203 

bootstrapped 2,000 times to generate 95% confidence intervals. We created multivariate environmental 204 

similarity surface (MESS) maps for the Park to highlight areas with habitat values outside the range 205 

encountered within the study sites (Elith, Kearney & Phillips 2010; Rodda, Jarnevich & Reed 2011).   206 

 207 

Pruned models have been found to perform better on independent test data, suggesting that they may be less 208 

prone to overfitting (Parolo, Rossi & Ferrarini 2008).  One-tailed paired t-tests, comparing species’ distributions 209 

predicted by the full and pruned models within the study and test sites, examined whether model pruning 210 

resulted in higher test AUC values, larger areas of suitable habitat, and lower and more statistically significant 211 

extrinsic omission rates after accounting for the size of the suitable area (lower binomial test P-values).  The 212 

extrinsic omission rate is the proportion of all test points that fall outside the area predicted to be suitable for 213 

the species.  214 

 215 

Plecotus auritus, a special case    216 

Due to the low intensity of P. auritus echolocation calls we recorded only eight independent bat passes.  This 217 

species was therefore modelled using records from all 38 study and test sites, incidental records made during 218 

other fieldwork and reliable county records. A target background approach was adopted rather than a bias file 219 

(Phillips et al. 2009). We used 9,827 six-figure grid referenced mammal records held by the county records 220 

office to extract background data (pseudoabsences) and a 100 x 100 m resolution. The principle is that these 221 

records will have been collected using similar, and therefore similarly biased, methods to the bat records so 222 

that differentiation between bat habitat and background is possible.  223 

 224 

Estimating species richness     225 
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Species’ habitat suitability maps were combined in ArcGIS to generate richness maps. Each species’ binary 226 

presence-absence (suitable-unsuitable habitat) maps, generated by two threshold rules, were overlaid to 227 

estimate the number of species predicted to be present at each cell. The Minimum Training Presence (MTP) 228 

threshold uses the lowest predicted HSI value for a known species location in the training data, and therefore 229 

always has a training omission rate of zero. The tenth percentile rule discards the lowest ten percent of 230 

predicted habitat suitability indices at training locations, so that ten percent of training locations fall outside of 231 

the suitable area. Alternative threshold rules are discussed in Liu et al. (2013). 232 

Results 233 

 234 

Presence data are summarised in Table S2.1. Pipistrellus records accounted for approximately 75% of all 235 

recordings. Since N. leisleri is rare in the study area we assumed all Nyctalus calls were N. noctula. Models built 236 

with random and spatially constrained data showed significant rSAC between data pairs at ≤3,000 m, i.e. those 237 

within a study site. Since all data from separate sites were separated by ≥4,000 m, data from within each site 238 

were placed in the same 20% partition of the data for 5-fold cross validation. P. auritus were modelled using 239 

random 5-fold cross validation because residuals were not found to be spatially autocorrelated. 240 

   241 

UNIVARIATE SPECIES–HABITAT ASSOCIATIONS 242 

Figure 2 shows the strength of association (test AUC as an estimate of predictive power) from univariate 243 

models, across the scales, between each species. Only the most important environmental variables are shown, 244 

those retained in the final, multivariate pruned models. Further results are shown in Appendix S2, Fig. S2.1, in 245 

the online Supporting Information. Representative MaxEnt response curves in Fig. 3 show the relationship 246 

between the probability of a species presence and the values of the more important environmental variables. 247 

Generally, habitat features measured at 100–500 m scales were the most important predictors of foraging 248 

habitat suitability (Fig.2, Fig.S2.1), but there was considerable variation between species and variables. Most 249 

species had strong, positive associations with cover of inland water (Fig. 2), and were negatively associated 250 

with slope (Fig. 3c) and distance to woodland edge and water (Fig. 3 a, b).  Deciduous woodland cover was also 251 

a strong, positive predictor (Fig. 3d). Bats responded in more complex ways to other variables, such as cover of 252 

roads and buildings (Fig. 3e, f).  253 
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 254 

Pipistrellus species showed similar associations across scales, but variable predictive power was usually higher 255 

for P. pygmaeus. Power tended to decrease with increasing scale, although slope maintained a strong negative 256 

association across scales. P. pygmaeus had an association with most environmental variables at small spatial 257 

scales, but was most likely to be found within short distances of woodland edge and water in areas with high, 258 

small scale, deciduous woodland cover and medium woodland edge densities. It was positively related to 259 

water cover at all scales < 6,000 m, but this relationship was strongest at 1,000–1,500 m. P. pipistrellus showed 260 

the same relationships with woodland edge distance and density. Small-scale road, building, and water cover 261 

were the only other useful (positive) habitat predictors for this species. 262 

 263 

The cover of water (positive) and average slope (negative) were important predictors for all Myotis species at 264 

small scales. The distance to water (negative), and the cover of roads (negative) and ancient woodland 265 

(positive) were also useful predictors for M. nattereri. Altitude (negative), distance to water and woodland 266 

edge (negative) and deciduous woodland cover (positive), had a strong association with M. daubentonii 267 

presence, and M. brandtii/mystacinus were strongly associated with areas close to woodland edge with 268 

medium densities of this edge habitat within small extents (≤ 500 m).  269 

 270 

Nyctalus noctula presence was best predicted by altitude (negative at all scales, but strongest ≥ 1,000 m) and 271 

road cover (positive, small scales). Deciduous woodland cover (positive) and structural variables (all negative: 272 

richness, woodland edge density and maximum woodland patch) were most important at small scales (200–273 

1,000 m). 274 

 275 

P. auritus presence was strongly and negatively associated with slope at all scales. Variable importance 276 

typically increased from 100 m to 400–500 m with little variation at larger scales. However, the positive effect 277 

of building cover decreased with increasing scale, and the negative effect of water and positive effect of mixed 278 

woodland became more important predictors at large scales. The positive relationships between P. auritus and 279 

ancient woodland cover, deciduous woodland cover and maximum woodland patch size were strongest at 280 

small scales. 281 

 282 
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MULTIVARIATE MODELS 283 

Only the final pruned models are discussed here. A comparison of the performance of full and pruned models 284 

can be found in S2.  Removing poor performing variables and subsequent pruning significantly increased 285 

model performance in study sites (test AUC increase = 0.20 ± 0.13 (mean ± s.d.); test gain = 0.90 ± 0.53; Fig. 4; 286 

Table S2.2). This process also increased the area predicted to be suitable for each species by a mean of 7.8% 287 

(MTP) and 12.7% (tenth percentile), suggesting pruning reduced overfitting (Tables S2.2, S2.3). Extrinsic 288 

omission rates fell from 9–36% to 0.002–8% (MTP) and from 29–73% to 8–22% (tenth percentile). Binomial 289 

test P-values also decreased significantly between full and pruned models, with fewer test points falling 290 

outside the suitable area than predicted by chance alone. 291 

 292 

rSAC and sampling bias    293 

The final models we present minimise the effects of rSAC and sampling bias. Failing to control for rSAC in full 294 

models (random cross-validation) significantly decreased training AUC (0.017 ± 0.02) and inflated test AUC 295 

(0.198 ± 0.10) relative to models with spatially constrained testing and training data (Table S2.4 & S2.5). A 296 

similar, significant increase in test AUC scores (0.104 ± 0.05) was found when the spatially constrained models 297 

were run without the bias file. Training AUC also increased slightly, but not significantly.  The selection of 298 

random background data for P. auritus, rather than accounting for bias using the target background approach, 299 

resulted in higher model training and test AUC (Table S2.4). Only small changes in the predictive power of all 300 

variables in the full P. pipistrellus model were found on removal of the bias file, whereas use of a random 301 

background increased test AUC for all variables in the P. auritus model, except coniferous woodland (Table 302 

S2.6). 303 

 304 

Environmental variables in the pruned models    305 

The pruned models with the highest test AUC retained only 2–4 primarily small scale variables and at least one 306 

distance variable (Fig. S2.2). Pipistrellus pruned models contained only 2–3 variables (Fig. 2), with distance to 307 

woodland edge contributing 74% to P. pygmaeus and 64% to P. pipistrellus pruned models. The importance of 308 

water to P. pygmaeus was evident in the contributions made by large scale water cover and distance to water. 309 

The P. pipistrellus model included a positive effect of small scale (100 m) road cover. However, only roads close 310 

to woodland (<100 m) increased habitat suitability and roads >500 m from woodland decreased suitability. 311 



14 
 

Myotis pruned models contained similar environmental variables: all included distance to water or woodland 312 

edge, and small scale (100–500 m) variables describing slope, water cover, and woodland composition or 313 

structure (Fig. 2). Distance to woodland edge contributed 73% to the M. brandtii/mystacinus model, and 314 

woodland edge density was the next most important variable (Fig. S2.2). Distance to water made the highest 315 

contribution to the M. daubentonii model and high deciduous woodland cover (200 m) was also important. 316 

Water cover was an important positive predictor of M. nattereri presence at the 100 m scale. However, the 317 

distance to water response curve suggests that the species forages close to, but not over water, preferring flat 318 

areas of ancient woodland (Fig. S2.2). The last variable to be pruned from the N. noctula model was average 319 

altitude measured at 4,000 m. Favoured habitat is land <250 m a.s.l. with small woodland patches (500 m), ~1 320 

km km
-2

 of woodland edge (400 m), and high road cover (200 m)( Fig. S2.2). The variable response curves for P. 321 

auritus indicate a preference for areas with high mixed woodland and low water cover (5,000 m), close to 322 

buildings on landscapes with gentle slopes (1,000 m) (Fig. S2.2). 323 

 324 

MODEL TRANSFERABILITY 325 

Pruned models performed well within new field sites (test AUC: 0.70–0.84). The pruned models gave the 326 

highest test AUC scores, except for N. noctula and M. brandtii/mystacinus, when full models had slightly higher 327 

test AUCs (Table S2.7). Low MTP thresholds produced larger areas of suitability and lower extrinsic omission 328 

rates for independent data than the tenth percentile rule (Table S2.7). Error rates were lower than expected by 329 

chance for 11 out of the 12 full and pruned species models using the tenth percentile rule, indicating good 330 

model performance. Pruning significantly increased the area predicted to be suitable for a species and 331 

decreased extrinsic omission rates (Fig. S2.3; Table S2.8).   332 

 333 

MODEL SELECTION 334 

AICc results indicate that Pipistrellus pruned models fitted better to independent test data compared to full 335 

models (Table S2.9). Although we were not able to perform this test on other species’ independent data 336 

because their sample size outweighed the number of model parameters, we were able to show that all 337 

species’ pruned models fit best to their training data (Table S2.9). This illustrates the positive effect of pruning 338 

on model transferability.  339 

 340 
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HABITAT SUITABILITY MAPS 341 

Pruned, multiscale models were used to create habitat suitability maps for all seven species or species groups. 342 

The maps (Fig. 5) show that the lowland networks of inland water and woodland were most suitable for most 343 

species. This pattern was emphasised by the species richness maps (Fig. 6). The lower MTP threshold 344 

generated more generous predictions of species richness across the Park compared to the tenth percentile 345 

threshold. Less than 0.1% of the Park held environmental conditions outside the range recorded in the training 346 

sites.  347 

 348 

Discussion 349 

 350 

We built useful habitat suitability models for eight species of UK bat from data collected on acoustic transects. 351 

The best results were obtained from multiscale models from which poor predictor variables had been removed 352 

and backward stepwise deletion had identified the most useful subsets of variables. Steps taken to minimise 353 

sampling bias and residual spatial autocorrelation led to significant improvements. Final models for the study 354 

area, when tested using independent field data, had test AUCs in the range 0.70–0.84, making them useful 355 

predictors of bat distributions. The small number of variables in the final models makes them easier to 356 

interpret by practitioners when using them to inform planning or practical management decisions. A 357 

discussion of the more technical aspects of the modelling process will be found in Appendix S2 and this 358 

discussion will focus on the ecological and practical aspects of the study. 359 

 360 

SPECIES–HABITAT RELATIONSHIPS AND THE IMPORTANCE OF SCALE. 361 

Presence was best predicted by a set of variables that varied significantly between species. However, water 362 

and ancient and deciduous woodland variables were generally the most important positive predictors of 363 

habitat suitability in univariate tests and the pruned models of most species included these variables. It is 364 

striking how similar the responses are among species for many variables. For example the probability of 365 

occurrence decreased with distance to water in all species in a very similar way (Fig.3a), yet the community 366 

includes a fast open-air forager (N. noctula), a trawler (M. daubentonii) woodland gleaners (e.g. M. nattereri) 367 

and a generalist (P. pipistrellus). Several ecologically different species also show a similar relationship with 368 
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deciduous woodland cover (Fig. 3d). This indicates that many habitat management interventions have the 369 

potential to benefit broad communities, not just individual species.  370 

 371 

Woodland structure (distance to woodland, woodland edge density, patch size) was particularly important at 372 

small spatial scales. In common with most small insectivorous bats, the species studied typically forage within 373 

1–3 km of their roost, rarely more than 6 km, and once established at a foraging site, many occupy ‘beats’ of 374 

less than 100 m (e.g. Senior, Butlin & Altringham 2005). The strongest relationships with environmental 375 

variables were typically observed at smaller spatial scales (100–500 m), coinciding with foraging beat and small 376 

home range distances (see e.g. Graf et al. (2005) who drew similar conclusions for capercaillie). Small-scale 377 

bat–habitat relationships will therefore reflect the decisions made by bats from local roosts on where to feed 378 

within their home range. Relationships at larger scales are more likely to reflect the ‘carrying capacity’ of a 379 

locality: how many colonies, of what size, an area can support. However, with the ability to fly, bats can exploit 380 

patchily distributed resources, so small areas of suitable habitat may still be important (and should be 381 

conserved), particularly in marginal habitat (Gorresen & Willig 2004; Meyer & Kalko 2008).  Because different 382 

processes may be operating at different scales, it is not surprising that the relative importance of variables 383 

often changed with scale. For example, in the N. noctula model, area of road cover and urban development 384 

becomes less important, and altitude more important, with increasing scale. Deciduous woodland cover and 385 

woodland edge density show more a complex, but similar pattern.   386 

 387 

Road and urban cover was a useful predictor at small scales: positive for N. noctula and Pipistrellus, negative 388 

for Myotis and P. auritus. As road cover increased above 5–10% it became a negative predictor for most 389 

species at large scales, highlighting the complex relationships bats have with roads. Bat activity and diversity 390 

are reduced by major roads, probably through a barrier effect (Berthinussen & Altringham 2012). However, 391 

the hedges and woodland lining many of the predominantly minor roads in the study area are utilised by open-392 

air foragers such as N. noctula and Pipistrellus. Woodland bats, such as many Myotis and Plecotus species, are 393 

likely to avoid all but the most minor roads, since roads are associated with high levels of noise, light and open 394 

space (Stone, Jones & Harris 2009; Siemers & Schaub 2011). Dense road cover, however small the roads may 395 

be, is associated with urban development, habitat loss and disturbance, so it is not surprising that all species 396 

avoid such areas. All species had a negative relationship with altitude, which is not surprising since higher 397 
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altitudes at the latitude of the study are associated with lower temperature, higher wind speed and higher 398 

rainfall. However, the only pruned model to retain altitude was that of N. noctula, in which it was an important 399 

negative predictor. Because N. noctula is a large bat that feeds in the open, it may be particularly prone to 400 

these climatic effects. It should not be forgotten that the two scale-independent variables, distance to 401 

woodland and water, were important components of most species’ models. 402 

 403 

SPECIES RICHNESS PATTERNS 404 

Richness maps based on presence should be interpreted with the occupancy thresholds in mind. The MTP 405 

threshold is low for all species, suggesting large portions of the study area were suitable habitat. The tenth 406 

percentile threshold is probably more useful at identifying critical foraging habitat. Generating species richness 407 

maps by overlaying species HSM maps may overestimate richness since factors that limit species distributions, 408 

such as competition and dispersal, are not accounted for (Graham & Hijmans 2006), but these effects are not 409 

likely to be significant for bats (e.g. Bloch, Stevens & Willig 2011), and indeed more intensive survey work may 410 

increase species richness (e.g. MacSwiney, Clarke & Racey 2007). Species richness is, as expected, high in the 411 

lower elevation valleys that hold most of the woodland and water. The south-east quadrant of the study area 412 

is strikingly rich compared to other areas, reflecting the generally lower elevations and the abundance of 413 

woodland patches of varying size. This is despite the higher (although still low) human population density with 414 

its associated development. 415 

 416 
 417 
Conclusions, recommendations and applications 418 

We have shown that useful bat HSMs can be built across a large and diverse area based on relatively limited 419 

data collected on acoustic transects.  Multiscale HSMs perform better than single scale models and will 420 

therefore have greater practical value. Model building should account for sampling bias and spatial 421 

autocorrelation. The most important variables for most species relate to distance to and coverage of woodland 422 

and water. Our study provides a methodology for future bat population monitoring and the updating and 423 

refining of the maps. The methodology also provides a template for mapping projects for a wide range of 424 

localities and taxa. How can the maps and models be used? In scientific terms, the models improve our 425 

understanding of how bats use large and complex habitats and help us to predict the consequences of climate 426 

change and more direct anthropogenic alteration of the landscape. Conservation practitioners can make use of 427 
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the maps in several ways. Cost path analysis can identify the least disruptive routes for new or upgraded roads, 428 

or locations for new developments that minimise impact. The maps can also be used to make more informed 429 

judgements about the most effective mitigation methods and locations by modelling proposed changes in the 430 

landscape. HSMs can be used in opportunity mapping for planning both large- and small-scale habitat 431 

management for maximum effectiveness by identifying, for example, critical locations for corridors and 432 

networks, hotspots for diversity and the location of rare or vulnerable species.  The maps can also help in the 433 

identification of unknown populations of rarer species (e.g. Razgour, Hanmer & Jones 2011), or in the 434 

identification of sites for reintroduction. 435 

 436 
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 537 

Fig. 1. (a) Lake District National Park, showing 5 km buffer, major lakes, relief, and study and test sites. (b) 538 

Typical transect, showing route and bat records. An Ordnance Survey/EDINA supplied service © Crown 539 

Copyright/database right 2008. Inset based on data provided through EDINA UKBORDERS with support of ESRC 540 

and JISC, boundary material © Crown Copyright and the Post Office. 541 
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 542 
Fig. 2.  The strength of association (as test AUC) between each species’ presence and individual environmental variables at different spatial scales. The average predictive power of 543 

the distance variables is shown as a dashed line: these were independent of scale. Environmental variables with a predictive power ≤ 0.5 are no better than random. Only variables 544 

retained in pruned models are shown (see S2 for others). NB. The scale range is not linear for improved clarity at small scales. 545 
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Fig. 3.  Representative MaxEnt response curves showing the probability of a species’ presence at a 547 

location for a range of parameters. (d) shows response curves at a species’ best performing small scale 548 

(100–500 m). These graphs are based on univariate models to prevent interacting or collinear variables 549 

from affecting the relationships modelled. Variables found to have poor predictive power at a particular 550 

scale (AUC ≤ 0.5) are not shown. 551 



26 
 

 552 

Fig. 4.  Effect of model pruning on test AUC scores after removal of collinear variables and poor predictors 553 

(AUC≤0.5) from a species full model. The best test AUC values are marked with a circle. 554 
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 555 

Fig 5. Habitat suitability maps made using each species’ pruned set of variables. Novel conditions are areas 556 

containing variables outside of the range on which a model was trained. HSI = Habitat Suitability Index. 557 
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 558 

Fig.6. Species richness maps using occupancy thresholds MTP (a) and tenth percentile (b). 559 
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Supporting Information 561 

Additional Supporting Information may be found in the online version of this article: 562 

Appendix S1: Methods. 563 

Appendix S2: Results and technical discussion 564 
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