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Abstract

A new test is presented for the BIBO stability of delay systems of
neutral type with a single delay, specified in terms of their transfer
functions, enabling us to decide on some cases that were previously
open. Next, a class of fractional systems is considered, and a method
is given for determining the stability intervals for such systems.

Keywords: Delay system, fractional system, BIBO stability, H∞ stability,
asymptotic stability.

1 Introduction

This paper deals with various stability notions of linear time-invariant sys-
tems, specified in the frequency domain by their transfer functions. The class
of systems that we shall consider contains delay systems of neutral type, as
well as fractional delay systems of neutral and retarded type: these notions
will be defined below. The three versions of stability that we shall consider
(in decreasing strength) are BIBO (i.e., bounded-input bounded-output)
stability, H∞ stability (i.e., finite L2–L2 gain), and asymptotic stability (no
poles in the closed right-hand half-plane C+). Here C+ denotes the open
right-hand half-plane C+ = {s ∈ C : Re s > 0}.

Our principal reference for infinite-dimensional systems is the book by Cur-
tain and Zwart [6], and for delay systems [1]. For fractional systems we
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mention also the work of Matignon [10] and the book [12]. More on transfer-
function and operatorial approaches to systems theory in general can be
found in [5] and [15].

Spectral-based techniques for obtaining stability results for delay systems
by making the link with the spectrum of the associated difference equation
may be found in [11], although they do not provide answers to the questions
we are addressing in this paper. See also [18].

Note that BIBO stability is equivalent to the condition that the impulse
response function h satisfies h ∈ L1(0,∞); that is,

∥h∥1 :=
∫ ∞

0
|h(t)| dt < ∞,

or, more generally, if the impulse response is a measure µ, that∫ ∞

0
d|µ|(t) < ∞.

Moreover, H∞ stability is equivalent to the condition that the transfer func-
tion G, the Laplace transform of the impulse response, is a bounded analytic
function in C+. As usual, we write

∥G∥∞ := sup{|G(s)| : s ∈ C+}.

In Section 2 we shall be analyse linear systems with transfer functions of
the form

G(s) =
r(s)

p(s) + q(s)e−hs
, s ∈ C+,

where h > 0 and p, q and r are polynomials. (In fact we need consider just
the case h = 1, since the general case reduces to this by a trivial change of
variable.)
More generally, they may be quasi-polynomials, that is, of the form a0s

α0 +
· · · + ans

αn , where 0 ≤ α0 < . . . < αn. Throughout this note, we regard
sα as being a single-valued holomorphic function defined on the cut plane
{s = reiθ : r > 0 : −π < θ < π} as sα = rαeiαθ, with the obvious convention
that 0α = 0.

If deg p > deg q, the system is said to be of retarded type; if deg p = deg q,
it is of neutral type, and if deg p < deg q, it is of advanced type. (See, for
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example [1, 15].)

Thus in Section 2, we give a new test for BIBO stability of delay systems of
neutral type, and use it to give answers to some delicate questions raised in
[4, 14].

In Section 3 we shall consider fractional systems, those in which the expo-
nential e−sh is replaced by a term of the form exp(−hsα) with 0 < α < 1.
These occur, for example, in the heat equation, where transfer functions
such as (sinhx0

√
s)/(sinh

√
s), with 0 < x0 < 1, are encountered: see, for

example, [6]. Here the main issue turns out to be the location of the ‘small’
poles (the large ones are asymptotically determinable, and lie in the left-
hand half-plane). Fractional systems also arise in the theory of transmission
lines: see, for example, [17].

Thus we develop a generalization of the Walton–Marshall test [16], which
finds stability intervals for delay systems with variable delay. The theory is
motivated by an example before being stated in detail.

2 Delay systems

Stability questions are well understood for delay systems of retarded and
advanced type: in this section we shall concentrate on systems of neutral
type, which are far more difficult to analyse. We shall necessarily assume
that the system is proper, i.e., deg r ≤ deg p.

As a motivating example which has been considered in several other papers,
we consider

Gk(s) =
1

(s+ 1)k(s+ 1 + se−s)
, k = 0, 1, 2, . . . . (1)

This transfer function is asymptotically stable (i.e., no poles in the closed
right-hand half-plane); it is known that it does not lie in H∞ for k = 0, but
it is H∞ stable for k ≥ 1 (see [14]). The question of BIBO stability is far
more difficult: Gk is clearly not BIBO stable for k = 0, but following the
results of [4, 14] it is known to be BIBO stable for k ≥ 4. The remaining
cases were open, but with new methods we are now able to resolve the cases
k = 2 and k = 3.
Before stating a more general result, we shall analyse Gk for k ≥ 2, as the
method is easiest to explain with this example.
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Note that in many cases of stability, its robustness will be subject to small
perturbations in the gap metric, but not to changes in the delay. Notions
such as w-stability may be used to shed further light on such delicate issues
(see [7]).

Lemma 1. For k ≥ 0 let hk ∈ L1(0,∞) satisfy Lhk(s) =
sk

(s+ 1)k+3
. Then

∥hk∥1 = O(k−5/4) as k → ∞.

Proof. Write gk(t) = et/4hk(t). Note that Lgk(s) =
(s− 1

4)
k

(s+ 3
4)

k+3
. Then, by

the Cauchy–Schwarz inequality we have

∥hk∥ ≤ ∥e−t/4∥L2∥gk∥L2 .

Now ∥gk∥L2 = 1√
2π
∥Lgk∥H2 , and

∥Lgk∥2H2 = 2

∫ ∞

0

|iy − 1
4 |

2k

|iy + 3
4 |2k+6

dy

= 2

(∫ √
k

0
+

∫ ∞

√
k

)
(y2 + 1

16)
k

(y2 + 9
16)

k+3
dy.

Wemay estimate the first integral as at most
√
k times the maximum value of

the integrand on [0,
√
k], or O(k1/2k−3), since the integrand is an increasing

function of y. The second integral is at most

∫ ∞

√
k
y−6 dy, which is also

O(k−5/2). This gives the result.

Theorem 2. The system with transfer function Gk(s) =
1

(s+ 1)k(s+ 1 + se−s)
is BIBO stable for k ≥ 2.

Proof. It is sufficient to consider the case k = 2, as higher-order Gk are
simply cascades of G2 with BIBO-stable finite-dimensional systems. Now

G2(s) =

∞∑
k=0

(−1)ke−sk sk

(s+ 1)k+3
,

converging pointwise in C+, and it is easy to see that the inverse Laplace
transforms converge pointwise on (0,∞), since the kth term vanishes on
[0, k). Thus if Lh = G2, we have

∥h∥1 ≤
∞∑
k=0

∥∥∥∥(−1)ke−sk sk

(s+ 1)k+3

∥∥∥∥
BIBO

=

∞∑
k=0

∥∥∥∥ sk

(s+ 1)k+3

∥∥∥∥
BIBO

,
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by Fatou’s lemma (in the form that asserts that if fn → f pointwise then
∥f∥1 ≤ lim inf ∥fn∥). Using Lemma 1, we conclude that h ∈ L1, and the
system G2 is BIBO stable.

A more general result can be proved by the same method. Note that one

necessary condition on p and q for a neutral system
1

p(s) + q(s)e−s
to be

asymptotically stable is that

lim
|s|→∞

|q(s)/p(s)| ≤ 1, (2)

(see [14, Prop. 2.1]), as otherwise the poles are asymptotic to a vertical line
strictly in C+.

Theorem 3. Let G(s) =
f(s)

p(s) + q(s)e−s
be the transfer function of a neutral

delay system, satisfying condition (2), and write p = rp̃, q = rq̃, where r is
the greatest common divisor of p and q. Suppose that

• deg f = N ′ and deg p = deg q = N ≥ 3 +N ′;

• all roots of p lie in C−;

• there is a c > 0 such that |Re(s1+c)| < |Re(s2+c)| for all s1, s2 with
q̃(s1) = p̃(s2) = 0;

• there exists an index α > 2/5 such that for sufficiently large k the

function y 7→
∣∣∣∣ f(iy − c)q̃(iy − c)k

r(iy − c)p̃(iy − c)k+1

∣∣∣∣ is increasing on an interval [0, δk]

where δk ≍ kα.

Then G is BIBO stable, and hence H∞ stable.

Proof. Let hk be such that Lhk(s) =
f(s)q̃(s)k

r(s)p̃(s)k+1
, and write gk(t) = ecthk(t).

Then by the Cauchy–Schwarz inequality

∥hk∥L1 ≤ ∥e−ct∥L2∥gk∥L2 .

Moreover

Lgk(s) = Lhk(s− c) =
f(s− c)q̃(s− c)k

r(s− c)p̃(s− c)k+1
.
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Hence

∥gk∥2L2 =
1

2π

∫ ∞

−∞

∣∣∣∣ f(s− c)q̃(s− c)k

r(s− c)p̃(s− c)k+1

∣∣∣∣2 ds

=
1

π

(∫ δk

0
+

∫ ∞

δk

) ∣∣∣∣ f(iy − c)2q̃(iy − c)2k

r(iy − c)2p̃(iy − c)2k+2

∣∣∣∣ dy.
We may estimate the first integral using the maximum value of the integrand
at δk, to obtain O(δ2N

′−2N+1
k ); for the second we use the fact that the

integrand is asymptotic to y2N
′−2N to obtain a similar quantity. That is,

∥gk∥2 = O(k(2N
′−2N+1)α/2),

and hence
∑

∥hk∥1 < ∞, so we may deduce BIBO stability using the series

G(s) =
∞∑
k=0

(−1)kf(s)e−skq(s)k

p(s)k+1
,

and Fatou’s lemma, as in Theorem 2.

Example 4. The transfer function G(s) =
1

(s+ 3)(s+ 2)2 + (s− 1
2)s

2e−s
,

for which the poles are asymptotic to iR, is BIBO stable: apply Theorem 3,
with c = 1

2 and α = 1
2 .

3 Fractional systems

In this section we discuss the asymptotic stability of fractional systems with
transfer functions of the form

G(s) =
r(s)

p(s) + q(s) exp(−hsα)
, (3)

where p and q are real quasi-polynomials, h > 0, and 0 < α < 1. For
analysis in the complex plane, we make a branch cut from 0 to −∞ along
the negative real axis, so that G is a single-valued function. The change of
variable u = sα transforms the transfer function into a function of the form

G̃(u) =
R(u)

P (u) +Q(u)e−hu
, (4)

the location of whose poles (in terms of u) can be determined from the
general theory of delay systems.
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Note that questions of BIBO stability and H∞ stability reduce to this case
since by the results in [2] all three notions of stability coincide for such sys-
tems. This is in contrast to the case α = 1 (delay systems), as we saw in
Section 2.

We start by discussing the asymptotic location of poles of G (“large poles”),
and then the determination of the poles closest to the origin (“small poles”).

Theorem 5. For a system with transfer function G̃, as given in (4), it holds
that for every ε > 0 the poles of large modulus lie in a sector

Sε :=
{
u ∈ C :

π

2
− ε < | arg u| < π

2
+ ε
}
.

Hence if 1
3 < α < 1 the poles of large modulus of G, as given in (3) lie in

the left-hand half-plane.

Proof. Standard results (see, e.g. [1, 15]) indicate that in the case that G̃
is of retarded type (degP > degQ), the large poles satisfy sn = xn + iyn
where xn < 0 and |xn| ≍ log |n|, while yn ≍ n (for n ∈ Z). Likewise, for G̃
of advanced type (degP < degQ), we have xn > 0 and xn ≍ log |n|, while
yn ≍ n (for n ∈ Z). Finally, for G̃ of neutral type (degP = degQ) we have
xn = O(1) and yn ≍ n. Thus in each case |yn/xn| → ∞ as n → ±∞. Thus
the poles lie in the sector Sε for n sufficiently large.
It follows that with s = u1/α and α−1 < 3, the corresponding values of s lie
in C−.

For stability analysis, it remains to consider the location of the small poles of
G, and for this purpose we develop a new technique inspired by the Walton–
Marshall method [16, 9, 15]. We illustrate it with a simple example, before
giving the complete algorithm.

Example 6. Let

Gh(s) =
1

√
s+ e−h

√
s
,

where h ≥ 0. Then Gh is stable for 0 ≤ h < 3π
2
√
2
e3π/4. As h increases, the

poles cross the axis from left to right.

Proof. We consider the variation in the zeroes of
√
s+ e−h

√
s as h increases:

in particular the values of h at which they cross the y-axis. Equivalently,
we consider the values of h > 0 for which Gh(u) = u + e−hu has a zero on
the line {u ∈ C : arg u = π/4}.
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Accordingly, suppose that e−hu = −u, and let u = xeiπ/4, where x > 0.
We have

xeiπ/4 + exp(−hxeiπ/4) = 0,

and so

xe−iπ/4 + exp(−hxe−iπ/4) = 0.

Thus

e2hx cosπ/4 = x2

and

e−2ihx sinπ/4 = e−iπ/2.

We now eliminate h and solve for x, so that

i log x2 =
iπ

2
+ 2inπ (n ∈ Z),

whence x = exp(π4 + nπ), and

h = −
π
2 + 2nπ

√
2 exp(π/4 + nπ)

.

The smallest positive value of h occurs at n = −1, giving h =
3π

2
√
2
e3π/4.

Now, it is straightforward to check that for very small positive values of h
the transfer function Gh is asymptotically stable, and so it remains stable

until the first pole-crossing, which is at h =
3π

2
√
2
e3π/4.

It is possible to show that the poles cross from left to right as h increases by

calculating
∂s

∂h
at a point where

√
s+ exp(−h

√
s) = 0. Similar calculations

are done for delay systems in [16] and [15]. Indeed, we have

1

2
√
s

∂s

∂h
−
[√

s exp(−h
√
s) +

h

2
√
s

∂s

∂h

]
exp(−h

√
s) = 0,

from which it is easy to obtain a formula for
∂s

∂h
.
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Remark 7. This leads to a general method for finding zero-crossings of a
transfer function p(s) + q(s) exp(−hsα) with 0 < α < 1; it involves setting
u = sα = xeiπα/2, with x > 0, and so

P (xeiπα/2) +Q(xeiπα/2) exp(−hxeiπα/2) = 0,

with a second equation obtained by complex conjugation, namely,

P (xe−iπα/2) +Q(xe−iπα/2) exp(−hxe−iπα/2) = 0.

From these two equations one can eliminate h and solve for x. Next, by
solving for h one obtains the values of the delay for which the poles of (3)
cross the axis.

4 Conclusions

The general question of BIBO stability of a linear system given in terms of
a transfer function is difficult in general; although our methods now enable
us to resolve the question for many systems, the case of G1, as defined in
(1) remains open. Recall also that BIBO stability is a necessary condition
for the Hankel operator of a linear system to be nuclear, a property that has
certain implications for model reduction [8], and several associated questions
remain open.

For fractional systems, stability issues seem to be somewhat easier to decide;
future research is expected to include the analysis of a more general class of
systems that can be presented by means of a diffusive representation [13].
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