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Similarity Methods in Chemoinformatics 

PETER WILLETT 

University of Sheffield 

INTRODUCTION

Many information-processing techniques are applicable across a wide range of academic disciplines 

with little or no modification.  There are, however, some types of processing that are associated 

with a specific discipline that makes use of a particular type of data or representation and that has 

particular types of information need.  This is becoming more common as increasing amounts of 

data become available in digital form and as informatics techniques are developed to store, search 

and rationalise the resulting data archives.  An obvious example of such a discipline is molecular 

biology, where a range of bioinformatics techniques are available for processing biological data, 

initially protein and nucleic acid sequences but now also phylogenetic trees, metabolic pathway 

maps and protein three-dimensional (3D) structures inter alia (Lesk, 2005; Orengo, Thornton, & 

Jones, 2002); geography is another such discipline, where geographic information systems provide 

specialist facilities for the processing of cartographic data of all sorts (Longley, Goodchild, 

Maguire, & Rhind, 2005; Worboys, 1995).  Chemistry, the subject of this review, provides a further 

example since provision needs to be made for the processing of two-dimensional (2D) and 3D 

representations of molecule structure.  The techniques that are used are of widespread applicability 

since molecules - either traditional small molecules or, increasingly, biological macromolecules - 

play a key role across the physical and life sciences, and in many modern industries (agrochemicals, 

flavours and fragrances, food science, materials, petrochemistry, and – most importantly in the 

context of this review - pharmaceuticals).   
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The importance of the chemical structure has meant that it has formed the focus of four previous 

ARIST reviews, these appearing approximately once a decade; the processing of non-structural 

chemical information is described by Bottle and Rowland (1993) and by Maizel (1998).  The first 

ARIST review (Tate, 1967) appeared shortly after the creation of the Chemical Abstracts Service 

(CAS) Registry System, the principal source for information about the chemical molecules reported 

in the world’s chemical and related literatures (Leiter, Morgan, & Stobaugh, 1965; Shively, 2007; 

Weisgerber, 1997).  The second appeared eleven years later (Rush, 1978), by which time the basic 

techniques for the representation and substructure searching (vide infra) of databases of 2D 

structures were well established, as were the first operational systems, both public and corporate 

(Ash & Hyde, 1975).  A further eleven years passed before the appearance of the third review 

(Lipscomb, Lynch, & Willett, 1989), the intervening period having seen the extension of 2D 

techniques to encompass similarity and Markush searching (vide infra) and the first reports of 

systems for 3D substructure searching.  The latter had become well established by the time that the 

most recent review was reported by Paris (1997), this review also including early work on the 

analysis of molecular diversity (vide infra).  As the focus of this review is the processing of 2D and 

3D chemical molecules and as techniques for this are by now well established, the reader may be 

querying the need for a further review of the subject.  That there is such a need is perhaps best 

demonstrated by the fact that the title of this review contains a word – chemoinformatics – that did 

not even exist until 1998.  And yet within just a few years chemoinformatics has come to be 

recognised as playing a key role in chemical research, and has spawned the publication of three 

textbooks (Bunin, Bajorath, Siesel, & Morales, 2007; Gasteiger & Engel, 2003; Leach & Gillet, 

2003) and the introduction of several specialist academic programmes (Schofield, Wiggins, & 

Willett, 2001; Wild & Wiggins, 2006). 

THE EMERGENCE OF CHEMOINFORMATICS 

The recent recognition of chemoinformatics has come about principally as a result of changes in 

two of the basic technologies that underlie drug discovery, which is currently the most important 

application domain for chemoinformatics.  The pharmaceutical industry has traditionally discovered 

new drugs by a time-consuming and costly process that involved medicinal chemists synthesising 

novel molecules that were then tested by biologists to see whether the molecules exhibited 

beneficial therapeutic properties (Lombardino & Lowe, 2004).  This synthesise-and-test procedure 

is in two parts: lead-discovery involves identifying a molecule, called the lead, with the desired 

biological activity; and lead-optimisation involves identifying that member of the lead’s chemical 

class, called the candidate, that has the best combination of activity, side-effects, synthetic 

feasibility, and ease-of-delivery.  The candidate molecule is then passed on for testing in patients 
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during three phases of clinical testing, each more rigorous and more time-consuming than the 

previous one (Ekins, 2006; Rang, 2006).  Only once these tests have been carried out successfully 

can a pharmaceutical company obtain a license from a regulatory authority, such as the Food and 

Drug Administration in the USA or the Medicines and Healthcare Products Regulatory Agency in 

the UK, to market the molecule as a commercial product.  More than a decade can pass between the 

start of a new research programme and the launch of a new drug, meaning that drug discovery is 

very expensive.  The costs of drug discovery have been estimated in a much-cited (and much 

discussed) paper (DiMasi, Hansen, & Grabowski, 2003) that quoted a figure of $802 million (based 

on 2000 prices) as the mean research and development cost when averaged over 68 randomly 

selected new drugs from ten pharmaceutical firms.    

Computers have been used for many years in all aspects of pharmaceutical research and 

development to increase the cost-effectiveness of drug discovery (Boyd & Marsh, 2006).  

Technological developments in the early Nineties suggested that it might be possible to reduce 

significantly the time (and hence the cost) required for the lead-discovery and lead-optimisation 

stages.  Specifically, combinatorial chemistry is the name given to a body of techniques that allow 

large numbers of molecules to be synthesised in parallel.  Assume, for example, that a chemist 

wants to react an acid with an amine to create an amide, and that multiple amides need to be 

evaluated.  The conventional approach would be to react one acid with one amine to produce one 

amide, and then to repeat the process with sequences of different acids and amines.  Combinatorial 

chemistry allows hundreds of different acids to be reacted with hundreds of different amines to 

create tens of thousands of amides at the same time, in a manner analogous to the way that a 

massively parallel processor allows the same set of computer operations to be applied 

simultaneously to large numbers of data elements (Terrett, 1998).  Such large sets of compounds, 

called chemical libraries, are normally created using sophisticated robotics systems that control the 

dispensing of chemicals and the carrying out of the reaction.  Robotics also lies at the heart of the 

subsequent high-throughput screening (HTS) systems that are used to test the biological activities 

of the resulting reaction products (Hertzberg & Pope, 2000; Huser, 2006).  A parallel mode of 

operation is again used, initially with samples of 96-compounds being tested at a time, then 384 

compounds and now 1536 compounds as the standard.  The combination of these two technologies 

means that there has been an explosion in the amounts of chemical and biological data that need to 

be analysed and, hopefully, rationalised in the search for potential leads and then candidates.  

Computer techniques had already been used for many years, but the introduction of combinatorial 

synthesis and HTS led to a significant interest in the use of chemoinformatics techniques in lead-

discovery and lead-optimisation, in much the same way as the availability of massive amounts of 

sequence information spurred the development of bioinformatics to support research in molecular 

biology.   
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Indeed, the new technologies spurred a new name – chemoinformatics – which seems to have first 

been used in 1998: “The use of information technology and management has become a critical part 

of the drug discovery process.  Chemoinformatics is the mixing of those information resources to 

transform data into information and information into knowledge for the intended purpose of making 

better decisions faster in the area of drug lead identification and optimization” (Brown, 1998).  This 

definition clearly ties the discipline to the pharmaceutical industry: whilst that has been its most 

important application area thus far, chemoinformatics techniques are equally applicable to many 

types of specialty-chemical (as noted above).  A more general definition is hence that of Paris: 

“Chem(o)informatics is a generic term that encompasses the design, creation, organization, 

management, retrieval, analysis, dissemination, visualization and use of chemical information” 

(Warr, 1999).  The inclusion of the bracketed “o” in Paris’ definition is significant since there has 

been much discussion as to whether the word should be chemoinformatics – presumably by analogy 

with bioinformatics – or the etymologically-informed cheminformatics.  The usage of the two 

terms, and of others, has been discussed in some detail by Willett (2007); we shall use 

chemoinformatics in this review.   

It is important to emphasize that whilst chemoinformatics is a new word it is not a new discipline: 

indeed, as noted above, there have already been four previous appearances in ARIST, and an early 

review of the subject took as its title “Chemoinformatics - a new name for an old problem” (Hann 

& Green, 1999).  The novelty arises from the difference in the scale of operation and 

implementation, and in the much greater integration than previously of two rather different 

applications of computers to drug discovery.  One application was the creation and searching of 

databases of chemical molecules, initially in 2D and then later in 3D.  The previous ARIST reviews 

have focused on these approaches, which are often referred to as chemical structure handling and 

which involve the use of sophisticated database methods to process files that can contain millions of 

molecules.  The other application was the prediction of bioactivity in previously untested 

molecules.  Techniques here include the use of highly detailed computational chemistry approaches 

to compute the structures and properties of molecules (Clark, 2004; Cramer, 2004), molecular

modelling, which uses a range of simpler, and computationally much less-demanding, approaches 

to the same end (Hinchcliffe, 2003; Leach, 2001), and quantitative structure-activity relationship 

(QSAR) studies, which seek to establish statistical relationships between chemical structure and 

biological activity (Kubinyi, 1997a, 1997b).  These predictive techniques were able to handle only 

very small files, a few tens of molecules (or a few hundreds at most), when compared with those 

routinely handled by the various database approaches.  This limitation arose not just from the 

computational requirements of some of the techniques but also from the fact that large amounts of 

experimental, and hence costly, bioactivity training-data may be required, whereas only limited 
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amounts may be available.  The rise of chemoinformatics has been spurred by the integration of 

these two distinct approaches so as to develop methods of activity prediction that can be used at the 

database level.   

The integration of the database and modelling approaches is reflected in the title of the core journal 

in the field, the Journal of Chemical Information and Modeling.  This started life in 1961 as the 

Journal of Chemical Documentation, at a time when the principal focus of the subject was the 

(printed) chemical literature.  It changed its name to the Journal of Chemical Information and 

Computer Sciences in 1975 to reflect the by-then central role of computer methods in the 

processing of chemical information, and adopted its current title as recently as 2005 to reflect the 

substantial changes that have taken place in the discipline over the past few years; the effects of 

these changes in bibliometric terms have been discussed elsewhere (Onodera, 2001; Willett, 2007). 

Apart from the Journal of Chemical Information and Modeling, the other most important journals 

for chemoinformatics material are the Journal of Computer-Aided Molecular Design, the Journal of 

Molecular Graphics and Modelling, and QSAR and Combinatorial Science, although an increasing 

number of journals across the chemical and life sciences now include chemoinformatics papers 

(Willett, 2007).

SCOPE OF THE REVIEW 

Having introduced the subject of chemoinformatics, we now describe the format of this review, 

which is rather different in scope from many that appear in ARIST in that this one is designedly not 

comprehensive in scope.  There are two reasons for this.  First, “chemoinformatics is a vast 

discipline, standing on the interface of chemistry, biology, and computer science” (Agrafiotis, 

Bandyopadhyay, Wegner, & van Vlijmen, 2007) and a comprehensive discussion is not feasible 

given the confines of the typical ARIST review, with the standard text containing four volumes and 

over 2000 pages (Gasteiger, 2003).  Second, many of the topics that are of concern to researchers in 

chemoinformatics have a strong medicinal chemistry focus and thus require considerable 

knowledge of chemistry and biology to understand the details of the work that is being carried out.  

For example, one of the most important topics in the current literature (Willett, 2007) is the 

computation of the energies of interaction that are involved when a potential drug molecule, or 

ligand, binds to a biological target such as the binding site of an enzyme (Raha & Merz, 2005).  

The accurate computation of binding energies plays a central role in the scoring functions of many 

protein-ligand docking algorithms (vide infra), but an understanding of the relevant papers requires 

the reader to have some knowledge of medicinal chemistry in general, and of molecular interactions 

in particular.  The prediction of a molecule’s pharmacokinetic and toxic properties (as discussed 
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very briefly near the end of this review) is another focus of interest that requires considerable 

specialist knowledge, and there are other such topics in chemoinfomatics that are likely to be 

equally far removed from the interests and knowledge of ARIST readers,  However, as we discuss 

in the following two paragraphs, there are some aspects of chemoinformatics that are markedly 

similar to the topic of information retrieval (IR), one of the most important components of library 

and information science.  The review here will hence focus on that aspect of chemoinformatics that 

is most closely related to IR, viz the methods that are used to select molecules from databases of 

chemical structures, in much the same way as research in IR emphasises methods for selecting 

records from document databases.  Screening is the name given to the selection of molecules for 

bioactivity testing, and the use of computer methods for the selection of molecules is hence 

generally referred to as virtual screening.  In fact, we shall restrict the review still further, focusing 

on those methods for virtual screening that are based on the concept of molecular similarity and that 

are closely related to those used in IR.    

IR systems have traditionally considered the processing of textual documents, but are increasingly 

also being applied to the processing of multimedia documents (Downie, 2003; Rasmussen, 1997; 

Smeaton, 2004).  Multimedia is normally considered to encompass speech, image and video 

retrieval but the basic algorithms and data structures that are used in IR are more generally 

applicable: specifically, it is my view that many are applicable to the processing of chemical 

structure information.  The basis for this view is the very extensive studies of textual and chemical 

retrieval that have been carried out at the University of Sheffield over many years (Lynch & 

Willett, 1987), where we have found that studies using textual data have often yielded results that, 

with relatively little modification, can be applied to chemical data, and vice versa.

The relationships that we have identified between IR and chemoinformatics have been explored at 

some length (Willett, 2000), and so will not be repeated here; however, it is worth briefly 

summarising the similarities that exist in the ways that chemical and textual database records are 

characterised.  First, the documents in a text database are each typically indexed by some small 

number of keywords, in just the same way as the 2D or 3D molecular representations in a chemical 

database are each characterised by some small number of substructural features chosen from a 

much larger number of potential attributes, i.e., the bits that are set in a fingerprint to denote the 

presence of a fragment substructure (vide infra).  Second, both types of attribute follow a well-

marked Zipfian distribution, with the skewed distributions that characterise the frequencies of 

occurrence of characters, character substrings and words in text databases being mirrored by the 

comparable distributions for the frequencies of chemical moieties.  Thus, the overwhelming 

majority of all of the many millions of molecules that have ever been made contain the element 

carbon but even the tenth most frequent element, iodine, occurs only about one thousandth as 
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frequently, with the great majority of the elements having vanishingly small frequencies of 

occurrence; similar distributions are observed for other types of chemical substructure (Lynch, 

1977).  These shared characteristics mean that the two types of database are amenable to efficient 

processing using the same type of file structure.  For example, one of the first studies of what would 

now be referred to as text signature searching (Barton, Creasey, Lynch, & Snell, 1974) arose from 

previous studies of chemical bit-string processing (Adamson, Cowell, Lynch, McLure, Town, & 

Yapp, 1973); and our early work on chemical similarity searching used an inverted-file search 

algorithm that had originally been devised for computing inter-document similarities (Willett, 

1981).  Third, and importantly in the context of this review, in just the same way as a document 

either is, or is not, relevant to some particular user query, so a molecule is active, or is not active, in 

some particular biological test.  This means that performance measures that have been developed 

for evaluating the effectiveness of IR systems (in terms of the numbers of relevant and non-relevant 

documents retrieved) can also be used for evaluating the performance of systems for virtual 

screening (in terms of the numbers of active and inactive molecules retrieved) (Edgar, Holliday, & 

Willett, 2000).  In addition, just as document test collections, such as Cranfield in the early days or 

TREC (Text Retrieval Conference) now, play an important role in the development and validation 

of IR systems, so novel virtual screening methods are routinely tested on publicly available 

databases of chemical molecules and associated biological activity data.  Typical files that are used 

are: the MDL Drug Data Report (MDDR) database from Symyx Technologies Inc., a set of ca. 

130K molecules that have been reported in the literature as having undergone biological testing; ca. 

40K molecules that have been tested for HIV-1 activity in the National Cancer Institute’s anti-

AIDS programme; and the increasing volumes of data available in the PubChem system, which 

provides access to the structural and bioassay data that is being generated by the Molecular libraries 

Roadmap Initiative of the National Institutes of Health.  Other such public datasets are becoming 

available to complement the huge volumes of structural and activity data held within corporate 

chemoinformatics systems.  

The review is structured as follows.  The next section provides an historical overview of the 

development of the subject up to the late Nineties when Paris’ review appeared in ARIST (more 

extended historical accounts have been reported by Chen (2006) and Willett (2008)).  This section 

is intended to introduce chemoinformatics’ basic technologies to the reader who has no familiarity 

with the subject, and thus to provide a basis for the main review.  This describes the techniques that 

are used for similarity-based virtual screening in chemical databases, emphasising the computer 

techniques that are used and making less reference to those approaches that require significant 

knowledge of chemistry and/or biology for detailed comprehension.  We next describe the use of 

data fusion methods for combining the results of similarity searches.  There follow less detailed 

discussions of two similarity-related topics (chemical clustering, and molecular diversity analysis), 
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and then of other approaches to virtual screening (including machine learning, ligand-protein 

docking, and drug-likeness and ADMET prediction studies).  

HISTORICAL BACKGROUND 

The material in this historical overview has been rather arbitrarily divided into two parts: methods 

for processing databases of 2D chemical structures; and methods for 3D databases and for the 

prediction of biological activity using QSAR methods.  This division has been chosen given the two 

principal sources on which modern chemoinformatics has drawn, i.e., the archival functions of 

chemical databases and the predictive functions of molecular modelling and QSAR (vide supra).

These and other topics are reviewed in more detail in two textbooks (Gasteiger & Engel, 2003; 

Leach & Gillet, 2003) and in very considerable detail in the multi-volume standard work, the 

Handbook of Chemoinformatics (Gasteiger, 2003).   

Processing Databases of 2D Structures 

Searching databases of chemical structures lies at the heart of chemoinformatics, and has been 

studied for many years.  A searching method requires some computer-readable representation that 

encodes a molecule’s structure, and many types of representation have been suggested.  Two have 

been of particular significance in the development of the subject: linear notations and connection 

tables.  Both were studied in the early Sixties but it was the linear notation that first became widely 

established, initially the Dyson/IUPAC notation and then the Wiswesser Line Notation (or WLN), 

which formed the basis for both in-house and public chemical information systems during the 

Sixties and early Seventies (Ash & Hyde, 1975).  More recently the Simplified Molecular Input 

Line Entry Specification (or SMILES) notation has become an important component of in-house 

systems, where it is used as a simple input mechanism, for compound registration (i.e., adding a 

new molecule to a database) and structure search (as discussed below), and as an interface between 

a range of chemoinformatics programs (Weininger, 1988).  There is also much current interest in 

the International Chemical Identifier (or InChI), which has been developed as an open-source, non-

proprietary notation for encoding chemical compounds (Coles, Day, Murray-Rust, Rzepa, & Zha, 

2005).  An InChI is generated algorithmically from a connection table and is being increasingly 

used by publishers and database suppliers as a standard compound identifier; the development of  

this standard is overseen by the International Union of Pure and Applied Chemistry (2007).  A 

connection table provides an explicit encoding of a molecule’s topology (i.e., the way that its 

components are connected together) and can hence be considered as a graph, in which the atoms 

and bonds of a molecule are represented by the nodes and edges of a graph (Diestel, 2000; Wilson, 
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1996).  The use of such a graph representation permits the application of graph-match algorithms 

for a range of searching and structure matching applications in chemoinformatics (Gasteiger & 

Engel, 2003; Leach & Gillet, 2003).  Connection tables attracted attention when they were chosen 

to form the basis for the first version of the CAS Registry System (Leiter, Morgan, & Stobaugh, 

1965) and they are now the most important type of structure representation; many different formats 

have been described in the literature, but it is normally possible to convert from one to another 

without too much trouble (Barnard, 1990; Dalby, Nourse, Hounshell, Gushurst, Grier, Leland, et 

al., 1992).

Once chemical compounds could be stored in machine-readable form, it was natural to think of 

ways in which the resulting databases could be searched.  The simplest type of search mechanism is 

structure searching, i.e., checking for the presence or absence of a specific molecule in a database.  

This is very simple to implement if a canonical (i.e., unique and unambiguous) character-string 

representation of a molecule is available, such as a WLN; structure searches of connection-table 

files were more problematic till the development by Morgan (1965) at CAS of a simple 

canonicalisation procedure that, with enhancements (Freeland, Funk, O'Korn, & Wilson, 1979; 

Wipke & Dyott, 1974), continues to be widely used, although the new InChI notation (vide supra)

has developed an alternative canonicalisation procedure (Warr, 2003). 

Probably the most important retrieval facility in chemical databases is substructure searching,

which involves checking for the presence of a partial structure in a complete molecule (Barnard, 

1993).  The first algorithm for substructure searching was described half-a-century ago (Ray & 

Kirsch, 1957) and involved a backtracking subgraph-isomorphism procedure that exhaustively 

searched a connection table for the presence of the query pattern.  This algorithm is effective, in 

that it enables searches to be carried out with complete recall, but it is also highly inefficient, and 

several years were to pass before the introduction of set-reduction (Sussenguth, 1965) provided a 

rapid and simple technique for the identification of subgraph isomorphism.  Set-reduction, and 

developments such as the fast algorithm due to Ullmann (1976), enabled significant increases in 

search speeds but were still totally unable to make subgraph matching feasible on databases of non-

trivial size in a reasonable amount of time.  Large-scale substructure searching only became a 

viable retrieval option with the introduction of fragment-based screening methods.  These involve 

the application of a filter that allows only those molecules, a very small minority, that contain all of 

the query’s substructural fragments to pass on to the time-consuming subgraph-isomorphism 

search.  This idea is analogous to the use of keyword-based IR to filter a database prior to the 

application of sophisticated natural language processing techniques such as automatic 

summarisation.   
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The presence of fragments (either in a query substructure or in a database structure) is encoded in a 

binary vector (also called a bit-string or a fingerprint).  Two main approaches have been developed 

for selecting the fragments that are used for screening: either each bit-position in the binary vector 

corresponds to one, or a small number, of fragments selected from a dictionary of possible screens 

(see, e.g., Adamson, Cowell, Lynch, McLure, Town, & Yapp (1973)); or hashing algorithms are 

used to allocate multiple fragments to each bit-position (see, e.g., (Feldman & Hodes, 1975)).  

These screening approaches were rapidly developed for first batch (Graf, Kaindl, Kniess, Schmidt, 

& Warszawski, 1979) and then online (Attias, 1983; Dittmar, Farmer, Fisanick, Haines, & Mockus, 

1983) systems for 2D substructure searching in the CAS Registry System, and they also formed the 

basis for the new generation of in-house chemoinformatics systems that became available in the 

Eighties (Ash, Warr, & Willett, 1991).

Following the establishment of systems for 2D structure and substructure searching, the next 

development was the introduction of similarity searching.  This involves the user submitting an 

entire molecule (referred to as the reference structure or the target structure), typically one that has 

previously exhibited activity in a biological screening experiment.  The search calculates a measure 

of similarity between the reference structure and each of the molecules, and then ranks the database 

in order of decreasing similarity.  The rationale for such a retrieval mechanism is the Similar

Property Principle (Johnson & Maggiora, 1990), which states that molecules that are structurally 

similar are likely to have similar properties (and which is discussed in detail later in the review).  

Thus, if a bioactive target structure is searched for, then the top-ranked, nearest-neighbour 

molecules are also likely to possess that activity: these molecules are hence prime candidates for 

biological testing, as compared to other molecules that occur further down the ranking.  Similarity 

searching will be effective if, and only if, an appropriate similarity measure is employed, and there 

has hence been much discussion as to what sorts of measure should be employed (Bender & Glen, 

2004; Dean, 1994; Nikolova & Jaworska, 2003; Sheridan & Kearsley, 2002; Willett, Barnard, & 

Downs, 1998).  Of the measures that have been suggested, by far the most common are those based 

on the numbers of substructural fragments common to a pair of molecules, this number being 

normalised in the range zero (no fragments in common) to unity (all fragments in common) by 

means of an association coefficient (usually the Tanimoto coefficient (Willett, Barnard, & Downs, 

1998)).  The quantification of structural resemblance by comparing sets of fragment substructures 

was first used for predicting chemical and biological properties in small datasets (Adamson & 

Bush, 1973), but was later applied in two near-contemporaneous papers (Carhart, Smith, & 

Venkataraghavan, 1985; Willett, Winterman, & Bawden, 1986a) that appeared over a decade later 

and that clearly demonstrated the power and the simplicity of fragment-based approaches for 

chemical database applications.  Similarity searching was thus rapidly adopted (not least because 

the requisite fragment occurrence data was already available from its use for 2D substructure 
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searching), and continues to be one of the principal building-blocks of any system for 

chemoinformatics, as discussed below in the main review.   

The methods discussed thus far have been designed to search databases of individual, specific 

molecules.  However, account also needs to be taken of the generic (or Markush) structures that 

often play a key role in defining the claims made in chemical patents, since a single generic 

structure provides a simple way of encoding large numbers, or even an infinite number, of distinct 

individual molecules (Barnard, 1984).  Patents represent a vital information resource for the 

chemical industry, and the early fragment-based systems for the retrieval of chemical patents were 

developed by industrial organisations, e.g., Derwent Information Ltd. (Nübling & Steidle, 1970) 

and International Documentation in Chemistry (Rössler & Kolb, 1970).  Such systems are limited 

in that they cannot provide a detailed graph representation of a Markush structure, and it was not till 

the end of the Eighties that operational systems were developed that allowed effective substructure 

searches of patent databases to be carried out.  These systems (Berks, 2001; Fisanick, 1990; 

Shenton, Norton, & Fearns, 1988) were based in large part on over a decade of academic research 

(as reviewed by Lynch & Holliday (1996)) that developed techniques for the graph-based screening 

and searching of a fully explicit 2D representation of each of the molecules covered by a patent. 

The techniques described above have focused on the representation and searching of chemical 

molecules, but chemistry is based on the inter-conversion of molecules by means of reactions.  It 

was hence recognised at an early stage in the development of chemoinformatics that there was a 

need to represent and to search reaction information.  The basic problem is much more complex 

than with molecules, since in a reaction one must consider not just a single molecule but linked 

ensembles of molecules, i.e., the sets of reactants and of products in the reaction; moreover, one 

must consider both the constituent molecules and the reaction sites, i.e., the parts of the reacting 

molecules where the reaction has taken place.  Much of the early work on reaction information 

processing focused on ways of representing the reaction sites, since the substructural transformation 

engendered by a reaction is a vital component of many of the queries put to a reactions database.  

Vleduts was the first person to realise that a reaction site could be identified automatically by a 

detailed comparison of the connection tables of the reactants and products, this comparison 

identifying the parts of the reacting molecules where structural changes had occurred (Vleduts, 

1963).  The idea is a simple one but almost two decades were to pass before a matching procedure 

was described that could identify reaction sites effectively and efficiently using a maximum 

common subgraph (MCS) isomorphism procedure (Willett, 1980); this graph-based approach has 

since been much enhanced (Chen, Nourse, Christie, Leland, & Grier, 2002).  Once the reaction sites 

had been detected, it was possible to carry out substructure searches for reacting molecules and/or 

reaction sites and the early Eighties saw the first operational reaction-database systems (Willett, 
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1986), with later work adding facilities for reaction similarity searching (Moock et al., 1988) and 

reaction classification (InfoChem, 2007).   

Information is a necessary precursor of knowledge, and the Seventies onwards saw much interest in 

expert systems, knowledge-based information systems that could go beyond simple retrieval to 

provide expert advice analogous to that provided by a human expert in a specific domain.  Much 

early expert-systems work involved processing chemical knowledge, specifically knowledge about 

chemical syntheses and knowledge about the elucidation of structures from spectral information.  

The first of these applications, computer-aided synthesis design (or CASD), was first suggested as a 

possible area of research in Vleduts’ automatic reaction-indexing paper (Vleduts, 1963).  This 

suggested that if one could store information about common reactions and about the conditions 

under which those reactions could be used successfully, then an automated inference engine could 

suggest a series of reactions that, taken in sequence, would result in the synthesis of a desired 

molecule in acceptable yield.  This idea was embodied in OCSS, the first operational CASD 

program (Corey & Wipke, 1969), with subsequent developments (Corey, Wipke, Cramer, & Howe, 

1972; Wipke, Ouchi, & Krishnan, 1978) occasioning much interest during the Seventies and 

Eighties, despite the very large amounts of high-quality chemical knowledge that needed to be 

encoded if an acceptable level of performance were to be achieved (Loftus, 1991; Wipke & Howe, 

1977).  A less labour-intensive approach to CASD was pioneered by Gasteiger and his collaborators 

(Blair, Gasteiger, Gillespie, Gillespie, & Ugi, 1974; Gasteiger & Jochum, 1978), who took very 

simple starting-point molecules and then created complex synthetic pathways using approximate 

physicochemical calculations to estimate the feasibility of the suggested molecules.  The reader is 

referred to a recent review for further details of CASD (Ott, 2004). 

In fact, the work on CASD was preceded by that on computer-aided structure elucidation (CASE), 

which was the first major scientific application of expert systems technology and which involves 

the use of (principally) spectroscopic information for determining the identity of an unknown 

compound (Gray, 1986).  Starting in 1965, the DENDRAL project developed a range of methods 

for structure generation and elucidation based on the analysis of mass spectral information 

(Lindsay, Buchanan, Feigenbaum, & Lederberg, 1980).  These methods have formed the basis for 

much subsequent research, using not just mass spectra but also infra-red and nuclear magnetic 

resonance (NMR) data (Bremser, Klier, & Meyer, 1975; Gray, 1986; Munk, 1998; Sasaki, Abe, 

Ouki, Sakamoto, & Ochiai, 1968; Shelley, Hays, Munk, & Roman, 1978).  The basic approach in 

CASE is to use the spectral information to suggest substructural fragments that may be present in 

the unknown molecule.  These fragments are then connected together in all possible ways, and the 

spectra simulated for each of the resulting molecules: these predicted spectra can then be compared 

with the available experimental data to confirm or to deny the presence of larger substructural 
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moieties.  This plan-generate-test procedure is continued until a molecule has been suggested that is 

fully compatible with the experimental data.  The reader is referred to a recent review for further 

details of CASE (Pretsch, Tóth, Munk, & Badertscher, 2003)  

Finally in this section, we mention molecular diversity analysis, which was just starting to come to 

the fore at the time of Paris’s ARIST review.  Molecular diversity analysis takes as its starting point 

the need to maximise the diversity (i.e., the structural heterogeneity or the structural dissimilarity) 

of the molecules that are submitted for biological testing.  Although HTS is very rapid, it is still 

costly if implemented on the very large scales that characterise pharmaceutical research 

programmes, and there is hence a strong economic imperative to minimise the numbers of 

molecules that are assayed.  An implication of the Similar Property Principle is that structurally 

similar molecules are likely to give similar results when biological testing is carried out; thus, the 

information that can be gained from a set of molecules about the relationship between structure and 

activity will be maximised if those that are submitted for HTS are as structurally diverse as possible 

(Martin, Willett, Lajiness, Johnson, Maggiora, Martin, et al., 2001; Patterson, Cramer, Ferguson, 

Clark, & Weinberger, 1996).   

The need for diversity may sound like a statement of the obvious, but the practical realisation of 

this has proved to be very difficult.  Early approaches involved selecting a diverse subset of a 

database by consideration of their inter-molecular structural similarities, typically as determined by 

use of fragment bit-string similarity measures (Bawden, 1993; Lajiness, 1990; Martin, Blaney, 

Siani, Spellmeyer, Wong, & Moos, 1995).  The problem is the astronomical number of possible 

subsets that can be generated from a database of non-trivial size: it is infeasible to consider all of 

them so as to identify the most diverse subset that can then be submitted for HTS.  There has thus 

been much interest in alternative approaches for selecting diverse sets of molecules that maximise 

the coverage of structural space, whilst minimising the numbers of molecules put forward for 

testing.  Cluster analysis, or automatic classification, was the first such technique to be used for this 

purpose (Brown & Martin, 1996; Shemetulskis, Dunbar, Dunbar, Moreland, & Humblet, 1995; 

Willett, Winterman, & Bawden, 1986b), but several other algorithmic approaches are now being 

used (vide infra).

Processing 3D Information and the Prediction of Biological Activity 

Thus far, we have focused on techniques that are suitable for handling databases of 2D chemical 

structures.  However, the activities and properties of molecules are crucially dependent on their 3D 

characteristics; there is thus a need to extend 2D techniques to encompass not just the topologies 
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but also the geometries of molecules, this leading naturally to a discussion of the tools that are 

available for predicting biological activity.   

Methods for 2D substructure searching based on bit-string screening and subgraph isomorphism 

matching were well established by the mid-Seventies.  Whilst providing a valuable means of 

accessing a chemical database, either corporate or public, such techniques took no account of the 

geometric characteristics of the individual molecules.  Gund was the first person to suggest that 

graph-based methods could also be applied to the retrieval of 3D chemical structures, with the 

nodes and edges of a graph being used to represent the atoms and inter-atomic distances, 

respectively, in a 3D molecule (Gund, 1977; Gund, Wipke, & Langridge, 1974).  The resulting 

inter-atomic distance matrix could then be inspected for the presence of a query pharmacophore, or 

pharmacophoric pattern, i.e., the arrangement of structural features in 3D space necessary for a 

molecule to bind at an active site (Güner, 2000).  The importance of Gund’s work was widely 

recognised but no further significant developments occurred for almost a decade.  There were two 

reasons for this apparently surprising lack of interest: first, there was no obvious way to obtain 3D 

atomic coordinate data for the structures in corporate chemical databases, the principal source of the 

novel bioactive compounds that drive the pharmaceutical industry; second, while Gund had 

demonstrated the feasibility of 3D substructure searching, his search algorithm could only be used 

with very small numbers of molecules and was not obviously scalable to the database context.  The 

development of operational systems for 3D substructure searching in the late-Eighties and early 

Nineties was due to the emergence of near-contemporaneous solutions to both of these long-

standing problems.  

The obvious source of 3D structural data is the X-ray crystal structures in the Cambridge Structural 

Database (CSD) produced by the Cambridge Crystallographic Data Centre (Allen, 2002). However, 

even now there are only ca. 400K molecules in the Database for which an experimental structure 

determination has been published, and many of these structures are of crystallographic, rather than 

of pharmaceutical, interest.  The creation of large searchable databases hence required the 

development of software that could generate computational, rather than experimental, structures.  

The late-Eighties saw the introduction of several programs that met these criteria and that thus 

enabled companies to convert their corporate databases to 3D form.  The two most important 

programs are CONCORD (Pearlman, 1987) and CORINA (Hiller & Gasteiger, 1987), which permit 

the rapid computation of a reasonably accurate low-energy structure for a large fraction of the 

molecules in a typical corporate database (Green, 1998).     

In a series of papers starting in 1986 (Jakes & Willett, 1986), Willett and collaborators showed that 

the bit-string screening and graph-matching techniques that had been developed for efficient 2D 
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substructure searching could be modified to enable rapid searching of 3D databases for 

pharmacophoric patterns, with operational systems soon being reported (Jakes, Watts, Willett, 

Bawden, & Fisher, 1987; Sheridan et al., 1989).  These early systems were, however, limited in that 

they took no account of the flexibility that characterises many molecules: specifically, a molecule 

may exist in some, or many, different geometric forms (called conformations) that have different 

shapes and energies, with those of lowest energy being the most stable.  Accordingly, a 

pharmacophore search of a database of rigid structures, in which each molecule is represented by 

just a single, low-energy conformation, is likely to miss large numbers of matching molecules that 

can adopt a conformation containing the query pattern but that are represented in the database by a 

low-energy conformation that does not contain this pattern.  Two main approaches to flexible 3D 

searching have been described in the literature (Warr & Willett, 1997).  ChemDBS3D was 

developed by Chemical Design Limited and was the first system to allow flexible 3D searching; 

this was achieved by summarising the conformational space (i.e., the full range of conformations 

that a molecule can adopt) of a molecule by selecting a number of its low-energy conformations 

when it is added to a database, with a rigid-searching algorithm being applied to each of the 

conformations describing a molecule (Murrall & Davies, 1990).  Alternatively, work at Sheffield 

and subsequently by Tripos Inc. and MDL Information Systems Inc. developed representational and 

searching techniques that allow exploration of the entire conformational space of a molecule when 

a pharmacophoric query is submitted (Clark, Willett, & Kenny, 1992; Hurst, 1994; Moock, Henry, 

Ozkaback, & Alamgir, 1994).   

Research and development of systems for 3D substructure searching was driven in part by the 

knowledge that the 3D structure of a molecule plays a key role in determining its biological 

activity.  3D substructure searching was hence seen as one way of linking two previously separate 

areas of research: 2D database searching and the prediction of biological activity by means of 

molecular modelling and QSAR techniques.  By the late Eighties, the latter had already reached an 

advanced stage of development when applied to the detailed analysis of datasets containing small 

numbers of structurally related molecules (or analogues) such as are commonly considered in 

medicinal chemistry lead-optimization programmes.  Database searching, conversely, has as its aim 

the provision of simple retrieval mechanisms for even the largest files of compounds, covering the 

full range of structural types.  This focus had resulted in an emphasis on computational efficiency 

and highly scalable algorithms, in marked contrast to the sophisticated processing methods that had 

been developed to rationalise the relationships between chemical structure and biological activity.    

Perhaps the most important single contribution to the development of QSAR was work by Hansch 

in the early Sixties that introduced the use of multivariate statistical methods, specifically multiple 

regression, to correlate molecular physicochemical properties (most importantly the octanol-water 
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partition coefficient but also other properties such as molar refractivity) with quantitative data 

describing the biological activity of molecules (Hansch & Fujita, 1964; Hansch, Maloney, Fujita, & 

Muir, 1962).  The importance of this approach is evidenced by it rapidly becoming known as 

Hansch analysis and being used, with continuing development (Martin, 1978), to the present day 

(Hansch & Leo, 1995; Hansch, Hoekman, Leo, Weininger, & Selassie, 2002).  A characteristic, 

some would say a limitation, of Hansch analysis is that it is based on the correlation of properties 

(which may be difficult to measure or to compute), rather than structures (which are readily 

available in 2D or 3D form) with activity.  Shortly after the appearance of Hansch’s initial paper, 

Free and Wilson (1964), working at Smith Kline & French, developed an alternative approach to 

QSAR that again used multiple regression but that correlated activity data with structural variables 

indicating the presence or absence of substituents on a common core ring-system. 

Application of the Free-Wilson approach requires assuming that a given substituent at a given 

position on a fixed, central ring-system makes an additive and constant contribution to the overall 

activity of a molecule that contains it, irrespective of the other substituents that are present; 

moreover, like Hansch analysis, it is restricted to the analysis of small sets of analogues 

(specifically sets that involve an invariant central ring system).  These limitations were tackled by 

the introduction of substructural analysis, an approach to the prediction of biological activity that 

can be applied to large, structurally diverse datasets (such as the compounds in a corporate database 

that have been tested in a primary biological screen) (Cramer, Redl, & Berkoff, 1974).  

Substructural analysis is applicable when the activity data is binary in nature (i.e., active or 

inactive), and involves calculating weights that describe the extent to which the presence of a 

particular fragment in a molecule is associated with the likelihood that that molecule will be active 

(or inactive).  The probability that a previously untested molecule is active can then be computed by 

combining the weights for its constituent fragments, this step again making the assumption that a 

fragment’s contribution to activity is independent of the precise substructural environment in which 

it occurs.  Although not realised at the time, substructural analysis was the first chemical 

application of machine learning (vide infra).

The SAR methods described above have been based on the properties of molecules or their 2D 

structures, without direct consideration of the 3D geometries of the molecules that were being 

analysed.  With improved computer technology, 3D graphics started to be used for visualisation 

purposes in the early Eighties (Gund, Andose, Rhodes, & Smith, 1980; Langridge, Ferrin, Kuntz, & 

Connolly, 1981) and then for the detailed modelling of molecules.  An important early study 

(Marshall, Barry, Bosshard, Dammkoehler, & Dunn, 1979) described the first efficient algorithms 

for searching the conformational spaces of molecules to identify the potential shapes that they could 

adopt.  Not only did this work facilitate the computation of a range of types of geometry-related 
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molecular properties but it also inaugurated the concept of pharmacophore mapping.  Assume that 

several molecules have all been found to exhibit some particular biological activity, and that 

information is available as to the atoms (or other molecular features) that comprise the 

pharmacophoric pattern that is involved in binding to the biological target.  Then the active 

analogue approach (Marshall, Barry, Bosshard, Dammkoehler, & Dunn, 1979) provided the first 

systematic way to identify those conformations that would enable the points comprising the 

pharmacophore in each molecule to adopt a common arrangement.  An IR analogy might be the 

analysis of search outputs to identify words and phrases occurring in known relevant documents.  

The active-analogue approach provided the first automated procedure for the identification of 

pharmacophoric patterns, which in turn provided the spur for the work on 3D database searching 

described previously in this section.  Crandell and Smith (1983) and then Brint and Willett (1987) 

described the use of MCS algorithms to identify automatically the sets of points comprising the 

pharmacophore, thus removing the need for the user to specify this information prior to the 

conformational-analysis stage of pharmacophore mapping.  This graph matching work led in due 

course to the development by Martin et al. (1993) of DISCO, the first of many operational systems 

for pharmacophore mapping (Güner, 2000).  Once efficient and effective tools had become 

available for structure generation and for conformational searching, it was not long before workers 

in QSAR began to consider how these techniques could be used to assist in the prediction of 

biological activity.  Several 3D-QSAR approaches have been described in the literature (Doweyko, 

2004; Greco, Novellino, & Martin, 1998; Kubinyi, Folkers, & Martin, 1998).  An example of these 

is Comparative Molecular Field Analysis (CoMFA) (Cramer, Patterson, & Bunce, 1988), which 

correlates bioactivity with descriptors derived from 3D grid representations of molecular steric or 

electrostatic fields (i.e., the distribution of shape and of charge around a molecule in 3D space) and 

which is now very widely used in lead-optimisation studies (Cramer, DePriest, Patterson, & Hecht, 

1993; Cramer & Wendt, 2007).   

Pharmacophore mapping, CoMFA and related tools permit the analysis of datasets where 3D 

structural information is available for a set of potential drug molecules (known as ligands), but 

more sophisticated methods are available if the 3D structure of the biological target has been 

determined experimentally (using the methods of X-ray crystallography, protein NMR or homology 

modelling).  Structure-based design methods seek to identify compounds that might bind to a 

biological target of known geometry, with two approaches being of importance: docking, where one 

scans a database to find molecules that are complementary to a binding site; and de novo design, 

where one assembles molecules from scratch that are complementary to a binding site.  Fitting a 

molecule into a protein is analogous to fitting a key into a lock, an idea that was first described in 

the DOCK program (Kuntz, Blaney, Oatley, Langridge, & Ferrin, 1982).  This docked a 3D 
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structure from the Cambridge Structural Database into a receptor (i.e., a protein that binds to a 

specific ligand), focusing initially on shape complementarity, as represented by a sphere-based 

description of the geometries of the receptor and of the potential ligands.  Early extensions to the 

program included the additional use of chemical complementarity and the sequential docking of 

multiple molecules, thus providing an extremely sophisticated approach to database scanning; more 

recent developments in docking are discussed later in the review.  Docking is very effective in 

suggesting molecules that are complementary to the receptor (i.e., potential ligands) but is restricted 

to molecules contained in the database that is being searched.  De novo structure generation goes 

one stage further in suggesting novel substances, by building molecules into the active site of a 

protein so as to ensure a high level of complementarity (Gillet & Johnson, 1998). The construction 

of a new molecule involves joining together atoms or small substructural fragments to form 

increasingly larger species until one is achieved that provides a satisfactory degree of fit to the 

active site.  The combinatorial explosion of possible substances is alleviated by the application of 

strict constraints based both on the nature of the active site and on the stability and the synthetic 

feasibility of the grown ligands.  The process is exceedingly complex, and computationally 

demanding, and progress has thus been quite slow since the first such programs were reported in the 

late Eighties and early Nineties (Böhm, 1992; Danziger & Dean, 1989; Gillet, Johnson, Mata, & 

Sike, 1990; Moon & Howe, 1991; Nishibata & Itai, 1991); however, the ability to suggest novel, 

previously unrecognised structural classes suggests that such techniques will become of increasing 

importance in lead-discovery programmes in the future (Schneider & Fechner, 2005).  

SIMILARITY-BASED VIRTUAL SCREENING 

Introduction

Virtual screening is the generic name given to the computational methods that are used for selecting 

molecules from a chemical database, and there are three main ways in which this can be done: 

selecting molecules for acquisition from amongst the published catalogues of commercial chemical 

suppliers; selecting molecules from an existing database, which in drug research normally means a 

company’s corporate database of structures that it has synthesised over the years; or selecting 

molecules from a virtual database, i.e., a set of molecules that has been created by a computer 

program of some sort but that could be synthesised if required.  The principal selection criterion in 

virtual screening is to maximise the probability that the molecules selected by computer processing 

will prove to be active when subjected to biological testing, thus maximising the cost-effectiveness 

of the testing process. The ranking of a database in order of decreasing probability of activity is a 

task that is clearly analogous to the many models of IR that seek to order the documents in a 
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database in order of decreasing probability of relevance (Spärck Jones & Willett, 1997; van 

Rijsbergen, 1979).

The virtual screening approaches that can be used in any particular circumstances depend 

principally upon the amounts and types of data that are available.  If just a single active molecule is 

available, such as a competitor’s compound or a natural product, then similarity searching can be 

used, in which a database is ranked in decreasing order of similarity to the known active structure.  

If several structurally related actives have been identified then pharmacophore mapping can be 

carried out to ascertain common patterns of features that may be responsible for the observed 

activity, with a 3D substructure search of the database then being carried out to identify further 

molecules that contain the pharmacophore, or a less-precise 2D substructure search if there are few 

geometric commonalities.  If it is not possible to identify a common pharmacophore, as often 

occurs with heterogeneous sets of actives (e.g., the initial hits from an HTS programme), and if 

significant numbers of both active and inactive molecules are available, then these can be used as 

training data for a machine learning system.  Finally, if the 3D structure of the biological target is 

known then a docking study can be carried out to identify those database molecules that are 

complementary to the binding site.  Docking is an example of structure-based virtual screening; the 

other approaches are examples of ligand-based virtual screening (since information is available 

about the ligands for some biological target, rather than about the target itself).  Both types of 

virtual screening are likely to be used in a research project (Prathipati, Dixit, & Saxena, 2007) and 

their importance for drug discovery has occasioned many excellent reviews, to which the reader is 

referred for further details of the topics discussed here (Alvarez & Shoichet, 2005; Bajorath, 2002; 

H.-J. Böhm & Schneider, 2000; Klebe, 2000; Lengauer, Lemmen, Rarey, & Zimmermann, 2004; 

Lyne, 2002; Maldonado, Doucet, Petitjean, & Fan, 2006; Oprea, 2002; Oprea & Matter, 2004; 

Walters, Stahl, & Murcko, 1998).   

Of the virtual-screening approaches that are available, similarity searching is the most closely 

related to procedures in IR, specifically to the classical ad hoc retrieval problem where a database is 

ranked in decreasing order of similarity to the query. In (textual) IR, the query is a set of words or 

phrases describing the user’s information need; in chemoinformatics, the query is a known 

bioactive molecule (i.e., the reference structure).  Pharmacophore searching and machine learning 

can both be thought of as chemoinformatics equivalent of query expansion by relevance feedback.  

Pharmacophore searching uses features extracted from sets of bioactive molecules (as against sets 

of relevant documents); and machine learning uses weighted features extracted from sets of active 

and inactive molecules (as against relevant and non-relevant documents).  
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This section focuses on similarity searching, describing in some detail both the methods themselves 

and the techniques available to compare the effectiveness of different methods.  Subsequent 

sections will discuss the use of data fusion to combine multiple screening methods, an approach 

that seeks to overcome the limitations of individual methods, and of two other techniques in which 

measures of molecule similarity play a central role, viz the clustering of chemical databases and 

molecular diversity analysis.   

The Similar Property Principle 

Similarity searching was first described (Carhart et al., 1985; Willett et al., 1986a) in the mid-

Eighties as a complement to existing systems for 2D substructure searching.  Although highly 

effective, substructure searching systems have several obvious limitations: there is little control 

over the volume of output that is obtained in response to a query; the output is not ranked in any 

way (other than by date of accession to the database); and query formulation can be complex for the 

non-expert.  Similarity searching suffers from none of these problems, and was hence rapidly 

adopted as a standard method for database-access, in much the same way as ranked-output 

searching was rapidly adopted in operational IR systems as a way of alleviating the manifest 

problems of Boolean text searching (Davis & McKim, 1999; Salton, 1989; Spärck Jones & Willett, 

1997).  2D similarity searching was thus well established by 1997 when Paris’ ARIST review 

appeared, and he hence described it only briefly, referring the reader to a then-recent, detailed 

review (Downs & Willett, 1995).  However it is now, some ten years later, the subject of significant 

renewed interest: indeed, it is probably the most widely used technique for virtual screening.  There 

are several reasons for its popularity, including its conceptual simplicity, ease of use, availability 

(not just in-house but also since 2006 for searching the CAS Registry System), and proven 

effectiveness (Bender & Glen, 2004; Sheridan, 2007; Sheridan & Kearsley, 2002; Willett et al., 

1998).   

The rationale for similarity-based virtual screening is the Similar Property Principle, which has 

been introduced previously and which also underlies much research into molecular diversity (as 

discussed later in this review when discussing the concept of neighbourhood behaviour).  It must be 

emphasised that the Principle is, in fact, just an assumption: but if the assumption is valid for some 

dataset then the nearest neighbours of a bioactive reference structure are also likely to be active, 

with database molecules that appear lower down the similarity ranking being de-emphasised when 

considering which molecules should be submitted for biological testing.  There are many 

exceptions to the Principle (Kubinyi, 1998; Maldonado, Doucet, Petitjean, & Fan, 2006; Nikolova 

& Jaworska, 2003; Stahura & Bajorath, 2002), but these do not invalidate its use in drug research.  

Indeed, if there were not at least some relationship between chemical similarity and biological 
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similarity then it would be very difficult to develop rational approaches for drug discovery that took 

account of the structures of the molecules. Willett and Winterman (1986) carried out the first 

detailed investigation of the extent of the correlation between chemical (i.e., structural) similarity 

and biological activity, using an approach based on simulated property prediction that has formed 

the basis for many subsequent studies.  Important examples include work carried out by the 

research groups under Bajorath (Eckert & Bajorath, 2006; Eckert & Bajorath, 2007; Godden, 

Stahura, & Bajorath, 2004), Martin (Brown & Martin, 1996, 1997b; Martin, Kofron, & Traphagen, 

2002), Maggiora (Cheng, Maggiora, Lajiness, & Johnson, 1996; Shanmugasundaram, Maggiora, & 

Lajiness, 2005) and Sheridan (Kearsley et al., 1996; Sheridan, 2000, 2007; Sheridan & Miller, 

1998) inter alia.  It is worthy of note that many of these studies have been carried out by groups 

based in the pharmaceutical industry, rather than in academe as would be the case for most 

scientific disciplines.

We note here a further relationship between IR and chemoinformatics, since the Similar Property 

Principle has a direct IR analogue in the Cluster Hypothesis, which states that similar documents 

tend to be relevant to the same requests (van Rijsbergen, 1979; Willett, 1988).  The Hypothesis is a 

direct equivalent of the Principle: as can be demonstrated by replacing “documents” with 

“molecules” and “be relevant to the same requests” by “exhibit the same biological properties”.  

Indeed, it was our studies of hierarchic document clustering (El-Hamdouchi & Willett, 1989; 

Griffiths, Robinson, & Willett, 1984) that inspired our extensive studies of chemical clustering 

(Willett, 1987), an approach that is now extensively used in compound-selection programmes (vide

infra).

Three recent papers have provided further evidence for the general applicability of the Similar 

Property Principle.  The first two of these studies (He & Jurs, 2005; Sheridan, Feuston, Maiorov, & 

Kearsley, 2004) showed that the predictive power of a QSAR model is dependent on the extent to 

which the test-set molecules, for which predictions are required, are similar to the training-set 

molecules, on which the QSAR model has been based.  Thus, strong structural similarities between 

the test-set and training-set molecules enable the making of accurate bioactivity predictions, as 

would be the case if the Principle is, indeed, correct (although it has been suggested that there are 

some situations where such QSAR behaviour might not be observed (Maggiora, 2006)).  The third 

study (Bostrom, Hogner, & Schmitt, 2006) used data from the Protein Data Bank (the principal 

repository of information regarding the 3D structures of proteins (Berman, Battistuz, Bhat, Blum, 

Bourne, Burkhardt, et al., 2002)) to show that structurally similar molecules bind in the same way, 

i.e., they not only exhibit the same bioactivity but they also do this by the same mode of action.  

The Similar Property Principle also underlies recent work in the emerging field of chemogenomics,

which seeks to establish the relationships that exist between small molecules and biological 
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macromolecules that might be drug targets (Jacoby, 2006; Kubinyi & Muller, 2004).  For example, 

two recent studies  have shown that molecules with similar 2D fingerprints bind to protein targets 

that are in the same structural class (Paolini, Shapland, van Hoorn, Mason, & Hopkins, 2006; 

Schuffenhauer, Floersheim, Acklin, & Jacoby, 2003), another has demonstrated that it is possible to 

use molecule-based similarities to suggest novel functional relationships between protein targets 

that have little sequence similarity to each other (Keiser et al., 2007), and a fourth that pairs of 

drugs that act at the same biological target are more similar to each other than pairs of drugs that do 

not have a common target (Cleves & Jain, 2006).  

Similarity Coefficients And Weighting Schemes 

The extent to which the Principle holds for a particular set of compounds will be crucially 

dependent on the effectiveness of the measure that is used to quantify the degree of similarity 

between a pair of molecules, and much research into molecular similarity (and also molecular 

diversity analysis) has focussed on the key components of a similarity measure that control the 

effectiveness of searching.  There are three such components: the representation that is used to 

characterise the molecules that are being compared; the weighting scheme that is used to assign 

differing degrees of importance to the various components of these representations; and the 

similarity coefficient that is used to provide a quantitative measure of the degree of structural 

relatedness between a pair of structural representations.  Thus far, there have been only a few 

reports in the literature on the extent to which the weighting scheme affects the utility of a 

similarity measure.  The principal finding has been that fingerprints that note the frequency of 

occurrence of a fragment are more effective in operation than those that note merely its presence or 

absence (Chen & Reynolds, 2002; Ewing, Baber, & Feher, 2006; Fetchner, Paetz, & Schneider, 

2005), as exemplified in the commercial HQSAR fingerprints produced by Tripos Inc. (Tong, 

Lowis, Perkins, Chen, Welsh, Goddette, Heritage, & Sheehan, 1998) and the Pipeline Pilot 

fingerprints produced by SciTegic Inc. (Hassan, Brown, Varma-O’Brien, & Rogers, 2006).  

However, the general lack of interest is rather surprising given the prominence of weighting in the 

IR context, as exemplified, e.g., by Spärck Jones’ extended series of studies of the weighting of 

index terms in documents and queries (Robertson & Spärck Jones, 1976; Spärck Jones, 1972; 

Spärck Jones, Walker, & Robertson, 2000).  Instead, most interest in chemoinformatics has 

focussed on the ways that the molecules are represented and on the coefficients that are used to 

quantify the similarity of two such representations.  

Early work on similarity coefficients (Willett & Winterman, 1986) demonstrated that a simple 

association coefficient - the Tanimoto coefficient – provided an effective way of comparing 2D 

fingerprints and this rapidly established itself as the standard coefficient for similarity-based virtual 
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screening, despite the very many alternative coefficients that might be used for this purpose 

(Willett, Barnard, & Downs, 1998).  However, Flower noted that the Tanimoto typically yields low 

similarity values when the reference molecule in a similarity search has just a few bits set in its 

fingerprint (Flower, 1988).  This marked size-dependency was confirmed in later studies (Dixon & 

Koehler, 1999; Fligner, Verducci, & Blower, 2002), and it was also demonstrated that the 

coefficient has an inherent bias towards certain similarity values (Godden, Xue, & Bajorath, 2000).  

These problems spurred studies of the characteristics of over 20 fingerprint-based similarity 

coefficients (Holliday, Hu, & Willett, 2002; Salim, Holliday, & Willett, 2003).  The work was 

arguably unsuccessful, in that it did not prove possible to identify a coefficient (or a combination of 

coefficients) with a consistently better level of performance than the Tanimoto; however, the 

studies did show that most coefficients, and not just the Tanimoto, had inherent biases dependent on 

the sizes of the molecules that were being retrieved.  These empirical findings, and similar ones that 

had been noted previously in research on molecular diversity analysis, were later rationalised by a 

mathematical analysis that related a coefficient’s degree of bias to the relative sizes (i.e., numbers 

of bits) of a reference molecule and the database-molecules with which it was being compared 

(Holliday, Salim, Whittle, & Willett, 2003).  The majority of the coefficients studied by Holliday et

al. were symmetric, in the sense that they gave the same result whether the reference structure was 

compared to a database structure, or vice versa.  There have, however, been some calls for the use 

of asymmetric coefficients, based on ideas first put forward by Tversky (1977), for the calculation 

of inter-molecular structural similarities (Bradshaw, 1997; Maggiora, Mestres, Hagadone, & 

Lajiness, 1997). A recent study has suggested that the use of such a coefficient can be beneficial for 

database searching (Chen & Brown, 2006), although this conclusion has been criticised on the 

grounds that the observed effects are a result of the size biases noted above (Wang, Eckert, & 

Bajorath, 2007). 

Structural Representations For 2D Similarity Searching 

A huge number of types of descriptor has been suggested for characterising the structures of 

chemical molecules (Gasteiger, 2003; Glen & Adams, 2006; Todeschini & Consonni, 2002), and 

many of these have been used in studies of molecular similarity (e.g., (Bender & Glen, 2004; 

Brown & Martin, 1998; Willett, Barnard, & Downs, 1998), inter alia).  It is common to divide them 

into three main classes: whole molecule (sometimes called 1D) descriptors; descriptors that can be 

calculated from 2D representations of molecules; and descriptors that can be calculated from 3D 

representations (which are discussed in the next section).   

Whole molecule descriptors are single numbers, each of which represents a different property of a 

molecule such as its molecular weight, the numbers of heteroatoms or rotatable bonds, or a 
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computed physicochemical parameter such as logP (the logarithm of the octanol/water partition 

coefficient as used in Hansch analysis (vide supra)).  A single 1D descriptor is not usually 

discriminating enough to allow meaningful comparisons of molecules and a molecule is hence 

normally represented by several (or many) such descriptors, possibly after standardisation so that 

they are all measured on the same scale.  For example, a set of 104 such properties has been used 

by Godden et al. for similarity-based virtual screening (Godden, Furr, Xue, Stahura, & Bajorath, 

2004) and molecular diversity analysis (Godden, Xue, Kitchen, Stahura, Schermerhorn, & Bajorath, 

2002).  It is also convenient to mention here affinity fingerprints, which are vectors containing a 

molecule’s binding affinities or docking scores obtained with a reference panel of proteins: 

examples of the use of such fingerprints are reported by Briem and Lessel (2000), Kauver et al. 

(1995) and Dixon and Villar (1998). 

2D descriptors include topological indices and substructural descriptors.  A topological index is a 

single number that typically characterises a structure according to its size and shape (Kier & Hall, 

1986). Many different topological indices have been devised and, as for whole molecule properties, 

multiple different indices are normally used in combination (Estrada & Uriarte, 2001).  

Substructure-based descriptors characterise a molecule by the substructural features that it contains, 

either by the molecule’s connection table (i.e., the underlying 2D chemical graph), or by its 

fragment bit-string: they are the most important type of descriptor for similarity studies and are thus 

described in some detail.

Early comparative studies demonstrated both the effectiveness and the efficiency of 2D fingerprints 

for similarity searching (Downs & Willett, 1995) and these continue to be very widely used (as 

reviewed by Hert, Willett, Wilton, Acklin, Azzaoui, Jacoby, et al. (2004b).  In the past, the 

fingerprints were normally those used for substructure searching but there has been recent interest 

in alternative types that are intended specifically for similarity searching.  The fragments in 

substructure-searching systems are typically small patterns of atoms and bonds, with the atoms 

being denoted by their elemental types, whereas the newer types of fingerprint describe atoms in 

terms of their associated properties.  The aim of this change is to facilitate the retrieval of molecules 

that have similar properties to the reference structure in a similarity search but that have different 

sets of atoms, thus permitting the identification of new classes of molecules with the requisite 

bioactivity.  The ability to discover such novel structural types is commonly referred to as scaffold-

hopping, and is of considerable commercial importance since it provides a way of circumventing an 

existing patent (Böhm, Flohr, & Stahl, 2004; Brown & Jacoby, 2006; Schneider, Schneider, & 

Renner, 2006). 
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An early example of the use of atom-types is the work of Kearsley et al. (1996) at Merck, who 

characterised atoms as belonging to one of seven classes: cations; anions; hydrogen bond donors; 

hydrogen bond acceptors; atoms that are both donors and acceptors; hydrophobic atoms (i.e., atoms 

that prefer to interact with non-aqueous solvents rather than with water); and all others.  A related, 

four-part classification is used to characterise atoms in the Similog fingerprints developed by 

Schuffenhauer et al. (2003) at Novartis, where a fragment consists of a triplet of atoms, together 

with the numbers of bonds separating each pair of them, and the frequency of occurrence of that 

triplet in the molecule.  A similar triplet description has been described by Ewing et al. (2006), and 

a further four-part classification scheme is used in the CATS descriptor, which is based on counts 

of pairs of atoms separated by up to ten bonds (Schneider, Neidhart, Giller, & Schmid, 1999).  The 

SciTegic fingerprints encode circular substructures surrounding each of the atoms in a molecule, 

with the atoms being described either by their elemental type or by means of a six-part 

classification scheme.  The former type of SciTegic fingerprint was found to be the most effective 

in an extended comparison of a large number of 2D fingerprints for similarity searching, including 

not just all those described here but also those in other commercial and in-house chemoinformatics 

systems (Hert, Willett, Wilton, Acklin, Azzaoui, Jacoby, et al., 2004b); however, a comparably 

extended study found a much less consistent pattern of behaviour in a comparison of 2D 

fingerprints for QSAR applications (Gedeck, Rhode, & Bartels, 2006).   

Arguably the most obvious way to compute the similarity between two 2D molecules is to compare 

their underlying chemical graphs, i.e., their connection tables, using an MCS isomorphism 

algorithm.  However, these are extremely time-consuming, and thus not generally appropriate for 

use in a database context (where the MCS must be computed between the reference structure and 

each of the molecules in the database that is being searched) unless an approximate procedure is 

used (Hagadone, 1992; Sheridan & Miller, 1998).  A recent, exact MCS algorithm has been 

described  that is able to perform thousands of similarity comparisons a second (Raymond, 

Gardiner, & Willett, 2002a, 2002b).  The method uses a number of sophisticated screening steps to 

eliminate compounds from the MCS calculation, together with a rapid graph-matching step that 

pre-processes the graphs so that the atoms become bonds and vice versa, this maximising the speed 

with which subgraph mis-matches can be identified.  The algorithm has become the method of 

choice for computing similarities between 2D chemical graphs, and its availability enabled a 

comparison to be carried out for the first time of the effectiveness of fingerprint-based and graph-

based virtual screening (Raymond & Willett, 2002).  Surprisingly, it was found that the simpler, 

and computationally far more efficient, fingerprint representations were in no way inferior to the 

full chemical graphs in terms of the numbers of active molecules retrieved, although there were 

differences in the identities of the actives retrieved by the two approaches. 
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Rather than using the full chemical graph, there has been interest in using a condensed form that 

subsumes some of the individual atoms into higher-level structural aggregates: examples of this 

approach are the reduced graph (Gillet, Willett, & Bradshaw, 2003) and the feature tree (Rarey & 

Dixon, 1998).  The level of aggregation can be chosen to highlight functional features in a 

molecule, such as ring systems or hydrophobic regions, in a manner analogous to the atom-typing 

described previously.  A condensed graph provides a level of representation that is less complex 

than a full chemical graph, and that hence allows much more rapid processing.  Indeed, just as a full 

graph can be searched at the graph level or at the level of fingerprints derived from it, so can a 

reduced graph or feature tree, and there have been several evaluations of the effectiveness of both 

types of representation for virtual screening (Barker, Cosgrove, Gardiner, Gillet, Kitts, & Willett, 

2006; Barker, Gardiner, Gillet, Kitts, & Morris, 2003; Harper, Bravi, Pickett, Hussain, & Green, 

2004; Rarey & Stahl, 2001; Stiefl, Watson, Baumann, & Zaliani, 2006; Stiefl & Zaliani, 2006; 

Takahashi, Sukekawa, & Sasaki, 1992).  Bohl et al. (2006) describe a reduced-graph representation 

of the 3D structure of complex ring systems that has been found effective for scaffold-hopping 

searches. 

Conventional similarity searching involves using a single reference structure as the basis for a 

search, but it may be the case that several actives are available.  If they have structural 

commonalities it may be possible to derive a 2D or 3D pharmacophore, but this is often not 

possible, e.g., a set of diverse hits from an HTS experiment or molecules from the journal or patent 

literatures.  There has hence been interest in ways of combining the information contained in the 

structures of the actives.  Hessler et al. (2005) have suggested superimposing the feature-trees of 

individual molecules to form a multiple feature tree (or MTree) that is then matched against each of 

the molecules in the database.  This overlaying of multiple actives is similar to an approach that has 

been described for the analysis of HTS data and the generation of 2D pharmacophores (Brown, 

Willett, Wilton, & Lewis, 2003).  However, most work on using multiple actives has involved 

fingerprint representations, and Hert et al. (2004a) have reported a detailed comparison of ways in 

which the fingerprints of a set of known actives could be exploited.  This study found that the most 

effective of the tested approaches involved carrying out a conventional similarity search using each 

of the set of actives in turn as the target, and then merging the individual rankings to give a single, 

combined ranking: this is an example of data fusion, which is described in some detail later in the 

review.

Structural Representations For 3D Similarity Searching 

Similarity searching, at both the operational and the research level, continues to be dominated by 

the use of 2D representations; that said, the 3D characteristics of a molecule are a key determinant 
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of biological activity and there have hence been many descriptions of measures that could be used 

for 3D searching.  The methods can be organised on the basis of: whether they consider just single, 

low-energy conformations or take account of the conformational flexibility of most molecules; and 

whether they require that the molecules that are being compared are aligned with each other prior to 

the similarity calculation.  Alignment procedures, in which molecules are superimposed so as 

maximise the degree of structural fit, are described in an excellent review by Lemmen and 

Lengauer (2000).

Substructural descriptors have been discussed previously when considering 2D representations for 

similarity searching.  This approach can be extended to encompass the use of geometric information 

such as pairs of atoms and the associated inter-atomic distances, with early such studies being 

reviewed by Willett et al. (1998).  The approach can also encompass conformationally flexible 

molecules by superimposing the fingerprints for multiple low-energy conformers of a molecule, and 

this has formed the basis for fingerprints based on fragments describing three-point or four-point 

pharmacophores.  Here, atoms are classified by their potential pharmacophore characteristics (as 

discussed previously for 2D fingerprints) and then the distances computed between sets of three or 

sets of four atoms to yield the fragment that is encoded in a fingerprint (Mason, Morize, Menard, 

Cheney, Hulme, & Labaudiniere, 1999; Pickett, Mason, & McLay, 1996).  These pharmacophore 

descriptors have been shown to be effective search tools (Good, Cho, & Mason, 2004; Zhang & 

Muegge, 2006) and are now available in commercial chemoinformatics software systems.  The 3D 

graphs themselves can be compared using an MCS procedure, but this is even more time-

consuming than in the 2D case, especially when the molecules are allowed to be flexible (Raymond 

& Willett, 2003).

Studies of 3D QSAR have demonstrated the importance of molecular fields and this has been 

reflected in the use of field-based descriptors for 3D similarity searching.  The basic approach 

involves computing the electrostatic, steric or hydrophobic field at each point of a 3D grid 

surrounding a molecule and then aligning the grids describing two molecules so as to maximise the 

fit of the computed field values.  Similarities based on the alignment of grids were first described 

by Carbo et al. (1980) but the approach aroused little interest because of the computational costs 

required to align the two molecules and then to compute the field-based similarity.  Good et al.

(1992) described an approach based on the use of Gaussian approximations to the exact form of the 

distribution of charge around a molecule (the molecular electrostatic potential, or MEP) that 

permitted a substantial increase in the speed of the similarity calculation.  Gaussian methods are 

widely used in computational chemistry to enhance the efficiency of quantum mechanical 

calculations, and their use by Good et al. encouraged the use of MCS algorithms and genetic 

algorithms that could carry out the alignment stage sufficiently rapidly to allow the implementation 
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of MEP-based 3D similarity searching (Thorner, Wild, Willett, & Wright, 1996; Thorner, Willett, 

Wright, & Taylor, 1997; Wild & Willett, 1996).  A subsequent study showed that such approaches 

yielded noticeably different sets of molecules than did conventional 2D fingerprints searches 

(Schuffenhauer, Gillet, & Willett, 2000) hence making it suitable for scaffold-hopping applications 

(Bohl et al., 2002).  The effectiveness of MEP-based similarity searching was further demonstrated 

in studies by Mestres and co-workers (Mestres & Knegtel, 2000; Mestres, Rohrer, & Maggiora, 

1997; Mestres, Rohrer, & Maggiora, 2000), with CRESSET being an example of a commercial 

software package that uses electrostatics-based similarity searching for drug discovery 

(Cheeseright, Mackey, Rose, & Vinter, 2006; Low, Buck, Cooke, Cushnir, Kalindjian, Kotecha, et 

al., 2005).  

Gaussian methods can also be used to characterise the steric characteristics of molecules (Good & 

Richards, 1993; Grant, Gallardo, & Pickup, 1996), with ROCS being a commercial package that 

uses this approach to similarity searching (Hawkins, Skillman, & Nicholls, 2007; Rush, Grant, 

Mosyak, & Nicholls, 2005).  A recent paper described a fingerprint representation that uses the 

Gaussian approach to shape similarity together with a standard dictionary of molecular shapes (in a 

manner reminiscent of the affinity fingerprints mentioned previously).  Each bit in the fingerprint 

describing a molecule is set if that molecule has a Gaussian shape similarity with the corresponding 

standard shape that exceeds some threshold value (Haigh, Pickup, Grant, & Nicholls, 2005) (an 

analogous idea, but using 2D similarities to a set of standard molecules, forms the basis of the 

SIBAR (for Similarity-Based SAR) system (Klein, Kaiser, Kopp, Chiba, & Ecker, 2002)). Ballester 

and Richards report a simpler shape fingerprint that summarises the main components of the 

distribution of distances in a molecule (Ballester & Richards, 2007a, 2007b).  All of these 

approaches enable the detection of shape resemblance in both an efficient and an effective manner.   

There are many further types of 3D structural descriptor that can be generated using the methods of 

computational chemistry, but these are currently far too time-consuming to be used routinely in a 

database context. 

Evaluation Of Similarity Measures 

The combination of the many similarity coefficients, structure representations and search 

algorithms that are available means that there are now a very large number of different methods that 

could be used for similarity-based virtual screening: there is hence a need to measure the 

effectiveness of the various procedures.  The most important evaluation criterion in the context of 

virtual screening is the ability to retrieve molecules from a database that prove, on inspection, to 

share the same bioactivity as the reference structure: only if this is the case will a particular 
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similarity measure be useful for virtual screening (in much the same way as an effective IR 

procedure is one that is able to retrieve relevant documents).  There have been several reviews of 

performance criteria (Dixon & Merz, 2001; Edgar, Holliday, & Willett, 2000; Willett, 2004), these 

including: the enrichment factor, i.e., the number of actives retrieved relative to the number that 

would have been retrieved if compounds had been picked from the database at random (Kearsley, 

Sallamack, Fluder, Andose, Mosley, & Sheridan, 1996); the numbers of actives that have been 

retrieved at some fixed position in the ranking, e.g., the top 1% of the ranked database (Hert, 

Willett, Wilton, Acklin, Azzaoui, Jacoby, et al., 2004a); and (increasingly) the receiver operating 

characteristic curve (Cuissart, Touffet, Crémilleux, Bureau, & Rault, 2002; Triballeau, Acher, 

Brabet, Pin, & Bertrand, 2005) although the use of this last criterion for virtual screening 

experiments has been criticised recently (Truchon & Bayly, 2007).   

The numbers of active molecules retrieved, in essence a recall parameter, is clearly of great 

importance, but Good et al. have emphasised the need for structural novelty in comparing screening 

methods in the industrial context (Good, Hermsmeier, & Hindle, 2004).  Thus, a search method 

retrieving 50 molecules that prove to be active but that all belong to the same structural class as the 

reference structure is probably less useful than a method that retrieves five molecules that prove to 

be active but that belong to two different structural classes, i.e., the scaffold-hopping capability that 

has been discussed above.  Good et al. hence argue that comparisons of screening methods should 

focus less on the numbers of active molecules and more on the numbers of active classes, although 

Hert et al. (2004b) found that the two approaches provided very similar rankings of methods when 

evaluating virtual screening experiments using 2D fingerprints. 

It is not possible in a review of this sort to discuss the details of the very many comparisons of 

similarity methods that have been carried out; instead the reader is referred to existing reviews of 

molecular similarity (Bender & Glen, 2004; Glen & Adams, 2006; Maldonado, Doucet, Petitjean, 

& Fan, 2006; Nikolova & Jaworska, 2003; Sheridan & Kearsley, 2002; Willett, Barnard, & Downs, 

1998).  Reference will, however, be made to the work of Brown and Martin (1996, 1997b).  These 

much-cited studies involved an extensive comparison of a range of structural descriptors, both 2D 

and 3D, for the clustering of chemical databases and for the analysis of ligand binding.  The study 

is notable not only for the breadth of the experiments but also for the conclusion that simple 2D 

fingerprints were superior to more sophisticated 3D descriptors.  This would appear to be counter-

intuitive, given the importance of steric effects in determining biological activity, but subsequent 

experiments have shown that 2D representations are indeed generally superior to 3D 

representations for similarity-based virtual screening (and also diversity analysis).  There are 

several reasons why this might be so.  For example, conformational effects may best be left 

unconsidered at the simple similarity level, although they are, of course, of paramount importance 
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in more sophisticated types of processing such as ligand docking (in much the same way as simple 

“bag of words” approaches are often found to be more effective for IR than sophisticated 

approaches based on natural language processing).  Alternatively, it may be that the experimental 

environment, where averaging takes place over large numbers of reference structures, favours 

approaches that perform at a reasonable level in all (or most) circumstances, which is certainly the 

case with 2D fingerprints.  Finally, it may simply be that the appropriate way of encoding 3D 

information remains to be identified.  Whatever the reason, there is a continuing debate as to the 

relative effectiveness of 2D and 3D measures (see, e.g., (Cramer, Jilek, Guessregen, Clark, Wendt, 

& Clark, 2004; Cruciani, Pastor, & Mannhold, 2002; Gedeck, Rhode, & Bartels, 2006; Makara, 

2001; Matter, 1997; Schuffenhauer, Gillet, & Willett, 2000; Sheridan & Kearsley, 2002) inter alia).

Finally here, there has been some interest in assessing the statistical significance, or otherwise, of 

computed inter-molecular similarity values.  The basic approach has been to use randomisation 

procedures of various sorts to generate null hypotheses against which observed distributions of 

similarity values can be compared.  The first such study was by Bradshaw and Sayle, assessing the 

significance of fingerprint-based similarities using an approach based on those that have been 

developed to assess the significance of protein sequence homology (Bradshaw & Sayle, 1997).  

Other fingerprint-based studies have been reported (Holliday, Salim, & Willett, 2005; Keiser, Roth, 

Armbruster, Ernsberger, Irwin, & Shoichet, 2007), as has the significance of MCS-based 

similarities (Sheridan & Miller, 1998).  

COMBINATION OF SIMILARITY SEARCHES USING DATA FUSION 

Given the range of similarity methods that are now available, there have been many comparative 

studies that seek to identify the “best” virtual-screening method; however, it seems inherently 

unlikely that any single method could be expected to perform equally well under all circumstances 

(Sheridan, 2007; Sheridan & Kearsley, 2002).  A more realistic approach, instead, is to carry out 

multiple searches and to combine the results using the methods of data fusion (Hall, 1992; Klein, 

1999). This refers to a range of techniques for the detection, capture, pre-processing and 

combination of multiple sources of digital information, typically the signals output by some type (or 

types) of sensor.  Data fusion methods were first developed for military applications but are now 

used in a wide range of contexts: here, we shall consider the combination of different rankings of a 

database that result from the use of different searching methods, an approach that is well 

established in the IR literature (Belkin, Kantor, Fox, & Shaw, 1995; Croft, 2000). 
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The basic idea is a simple one.  Assume that it is possible to carry out multiple similarity searches, 

e.g., searches using three different types of 2D fingerprint.  A search is carried out using the first 

fingerprint-type to describe the reference structure and each of the database structures, and the 

database ranked in decreasing order of the computed similarity.  The procedure is repeated using 

the other two types of fingerprint, and the three database rankings are then combined using a fusion 

rule.  A typical rule involves summing the ranks obtained by each specific molecule in each of the 

searches; the final output is then obtained by ranking the database molecules in decreasing order of 

these computed sums.  Data fusion was first used for similarity searching in the mid-Nineties (Ginn, 

Turner, Willett, Ferguson, & Heritage, 1997; Kearsley, Sallamack, Fluder, Andose, Mosley, & 

Sheridan, 1996; Sheridan, Miller, Underwood, & Kearsley, 1996) with applications in docking, 

where the approach is called consensus scoring, appearing shortly afterwards (Charifsen, Corkery, 

Murcko, & Walters, 1999; Clark, Strizhev, Leonard, Blake, & Matthew, 2002; Stahl & Rarey, 

2001).  There has now been extensive work in these two areas, as detailed in two recent reviews 

(Feher, 2006; Willett, 2006).  

Early studies of data fusion involved combining searches that were based on different types of 

structural representation.  For example, two papers by the group at Merck involved searching using 

fingerprints based on pairs of atoms (described either by elemental type or by physicochemical 

properties) and the associated inter-atomic distances (either through-bond or through-space).  

Searches were carried out using pairs of types of fingerprint and then the final score for a database 

molecule was the sum of its scores in the two individual searches, or its higher rank position in the 

two searches (Kearsley, Sallamack, Fluder, Andose, Mosley, & Sheridan, 1996; (Ginn, Turner, 

Willett, Ferguson, & Heritage, 1997; Kearsley, Sallamack, Fluder, Andose, Mosley, & Sheridan, 

1996; Sheridan, Miller, Underwood, & Kearsley, 1996).  A wide range of types of representation - 

including 2D fingerprints, vectors of physicochemical properties (such as molecular weight, 

number of rings, and molecular volume), MEP descriptors, and infra-red spectral descriptors – and 

of combination rules were studied by Ginn et al. (1997, 2000).  Both the Merck and Sheffield 

studies suggested that combined searches yielded at least as many bioactive molecules as could the 

best of the individual searches that were being combined: since the latter often varied unpredictably 

from one search to another search, it was concluded that the use of a fusion rule would generally 

provide a more consistent level of search performance than would a single similarity measure.  

There is continuing interest in combining different representations for similarity searching (Kogej, 

Engkvist, Blomberg, & Muresan, 2006; Zhang & Muegge, 2006), and there has also been interest in 

combining different similarity coefficients (Holliday, Hu, & Willett, 2002; Salim, Holliday, & 

Willett, 2003).
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There are many different fusion rules, including the use of voting procedures, both weighted and 

unweighted arithmetic functions, and statistical procedures that require the availability of training 

data (Feher, 2006).  A comparison of six fusion rules for similarity searching showed that the best 

virtual-screening performance came from the use of a logistic regression procedure; this requires 

training data and it was hence suggested that it might best be used in the lead-optimisation of a 

discovery project when such data would have become available (Baber, Shirley, Gao, & Feher, 

2006).  Training data is also required for the conditional probability fusion rule (Raymond, Jalaie, 

& Bradley, 2004), which seeks to estimate the probability that a database molecule is active given 

the value of its similarity score to a reference structure.  The overall score for the database molecule 

is then the product of the probabilities computed for each of the individual scoring functions; a 

similar approach has been described for ranking documents in IR (Manmatha, Rath, & F. Feng, 

2001).  Several other comparisons of fusion rules have been reported (Oda, Tsuchida, Takakura, 

Yamaotsu, & Hirono, 2006; Yang, Chen, Shen, Kristal, & Hsu, 2005; Zhang & Muegge, 2006). 

The discussion of data fusion thus far has assumed that a single reference structure forms the basis 

for a series of searches, each using a different representation or coefficient. The use of a single 

molecule but multiple similarity measures is referred to by Whittle et al. (2004) as similarity fusion.

An alternative approach, group fusion, involves a single similarity measure (e.g., the Tanimoto 

coefficient and 2D fingerprints) but multiple reference structures.  Drawing on earlier work 

(Schuffenhauer, Floersheim, Acklin, &Jacoby, 2003; Xue, Stahura, Godden, & Bajorath, 2001), 

Hert et al. (2004a) studied the search-effectiveness of group fusion, comparing it with conventional 

similarity searching and with other ways of combining the results of multiple similarity searches.  

Using one particular fusion rule – specifically taking the maximum similarity coefficient for a 

database molecule with each of the multiple reference structures – they found that picking as few as 

ten active reference structures and combining them using group fusion enabled searches to be 

carried out that were comparable to even the very best from amongst many hundreds of 

conventional similarity searches using individual reference structures. Further studies (Hert, 

Willett, Wilton, Acklin, Azzaoui, Jacoby, et al., 2006; Whittle, Gillet, Willett, Alex, & Loesel, 

2004) demonstrated that the benefits of group fusion are greatest when the sought actives are 

structurally diverse; conventional similarity searching or similarity fusion, conversely, are most 

effective when the actives are strongly clustered in structural space.  The group fusion approach has 

now been taken up by other workers, who have confirmed its effectiveness as a general tool for 

similarity searching (Williams, 2006; Zhang & Muegge, 2006).   

Hert et al. (2005, 2006) have also described a modification of conventional similarity searching that 

makes use of group fusion.  Given a bioactive reference structure, the top-ranked structures 

resulting from a similarity search are expected to have a high probability of activity as a 
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consequence of the Similar Property Principle.  The assumption was then made that such molecules 

are indeed active (rather than just probably active) and that they can hence be used as the reference 

structures for further similarity searches; the rankings from the set of searches are then combined 

using group fusion.  Extensive testing demonstrated that this activity-assumption resulted in 

searches that were nearly always superior to conventional similarity searching (where just the initial 

reference structure is used) in its ability to identify active molecules, with some of the increases in 

performance being quite marked.  

Most studies of combination methods have found that they result in an improvement in screening 

performance.  In some cases, it has been found that the combined search is better than even the best 

of the individual searches that are being fused; more generally, the combined search is found to be 

comparable to the best individual search or better than the average function.  Importantly, the best 

individual search is quite variable, whereas an effective fusion rule is robust to changes in reference 

structure, database and biological activity, ensuring a consistent level of search performance. There 

is hence considerable experimental support for the use of data fusion or consensus scoring but it is 

only recently that there has been interest in the theoretical basis of the various combination methods 

that have been studied, whereas this has been the subject of debate in the IR context for some years 

(Beitzel, Jensen, Chowdhury, Grossman, Goharian, & Frieder, 2004; Hsu & Taksa, 2005; Lee, 

1997; Ng & Kantor, 2000).  The first investigation in the chemoinformatics area was a simulation 

study (Wang & Wang, 2001).  This simulation demonstrated that performance initially increased 

rapidly with an increase in the number of scoring functions, but then levelled off after three or four 

functions had been included in the combination, and that the consensus performance was superior 

to any individual scoring function.  The latter result was explained by the simple statistical fact that 

the mean of repeated samplings will tend to be closer to the true value than any individual 

sampling: in other words, multiple rankings will better reproduce the ideal database ranking than 

will any individual ranking.  However, the study has been criticised (Baber, Shirley, Gao, & Feher, 

2006; Verdonk, Berdini, Hartshorn, Mooij, Murray, Taylor, et al., 2004) as it assumes that the 

scoring functions that are being combined are of comparable effectiveness and are independent; 

neither of which is likely to be the case in practice.  An empirical study of data fusion (Baber, 

Shirley, Gao, & Feher, 2006) showed that active molecules are more tightly clustered than are 

inactive molecules (as would be expected if the Similar Property Principle holds.)  Thus when 

multiple scoring functions are used they are likely to repeatedly select many actives but not 

necessarily the same inactives, a finding that is paralleled by work in IR (Lee, 1997).  

A rigorous theoretical approach to the modelling of data fusion has been reported recently (Whittle, 

Gillet, Willett, & Loesel, 2006a, 2006b).  The theoretical model shows that the origin of 

performance enhancement for simple fusion rules can be traced to a combination of differences 
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between the retrieved active (i.e., true positives) and retrieved inactive (i.e., false positives) 

similarity distributions and the geometrical difference between the regions of these multivariate 

distributions that the chosen fusion rule is able to access.  There are many factors involved, e.g., the 

fusion of just two lists of similarity values (e.g., similarity searches using the Tanimoto coefficient 

and the cosine coefficient) depends on no less than eight distinct distributions.  These complex 

interactions mean that it is extremely difficult to predict with any degree of accuracy the exact level 

of search performance that will result from the use of data fusion.  The analysis was able to 

demonstrate that improvements over conventional similarity searching should be obtainable on a 

routine basis if large amounts of training data are available; however, this is not normally the case 

in the early stages of drug-discovery programmes where similarity searching is most commonly 

used.

OTHER APPLICATIONS OF MOLECULAR SIMILARITY 

Measures of inter-molecular structural similarity lie at heart of similarity-based virtual screening, as 

they also do at the heart of two related topics: the clustering of chemical structures and methods for 

molecular diversity analysis.   

Clustering Databases Of Chemical Molecules 

Similarity searching involves comparing a single molecule, the reference structure, with each of the 

molecules in a database; clustering involves (in many clustering methods) comparing every 

molecule in a database with every other molecule, and thus many of the comments above regarding 

the types of measure that are used and their effectiveness are equally applicable to the calculation of 

the similarities involved in clustering applications.  Clustering is the process of subdividing a group 

of objects (chemical molecules in the present context) into groups, or clusters, of objects that 

exhibit a high degree of both intra-cluster similarity and inter-cluster dissimilarity (Everitt, Landau, 

& Leese, 2001; Sneath & Sokal, 1973).  It is thus possible to obtain an overview of the range of 

structural types present within a dataset by selecting one (or some small number) of the molecules 

from each of the clusters resulting from the application of an appropriate clustering method to that 

dataset.  The representative molecule for each cluster is either selected at random or selected as 

being the closest to the centre of that cluster, and can be used to maximise the efficiency of random 

screening in lead-discovery programmes.  Thus, if a representative molecule proves active when 

tested in the bioassay of interest then it is appropriate to assay the other compounds in its cluster 

since these may also exhibit the activity of interest; alternatively, if the representative molecule 
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proves to be inactive then attention should be transferred to another cluster (Downs & Willett, 

1994).

Very many different clustering methods have been described in the literature.  Early studies of over 

30 hierarchic and non-hierarchic methods (Willett, 1987) showed that the best results were obtained 

from Ward’s hierarchical-agglomerative method (Ward, 1963), with the non-hierarchical nearest-

neighbour method of Jarvis and Patrick (1973) performing almost as well. The latter is far faster in 

operation and was hence the method of choice for many years not only for selecting molecules for 

random screening but also for clustering the outputs of substructure searches that retrieve very large 

numbers of molecules, thus providing the searcher with an overview of the structural classes that 

contain the substructure of interest.  However, the method does have limitations (see, e.g., (Doman, 

Cibulskis, Cibulskis, McCray, & Spangler, 1996)) and improvements in hardware and software, 

such as the efficient reciprocal nearest neighbours algorithm (Murtagh, 1985), and further 

comparative studies (Brown & Martin, 1996) have led to Ward’s method becoming accepted as the 

standard method for files containing up to ca. half-a-million structures.  Ward’s is an example of an 

agglomerative hierarchical clustering method, in which the most similar molecules or clusters of 

molecules are progressively merged until all of the molecules are in a single cluster.  The sequence 

or mergers, or agglomerations, results in a hierarchy, called a dendrogram, and a level in this 

hierarchy must then be chosen to obtain a set of clusters.  A comparison of the many methods 

available for this purpose (Wild & Blankley, 2000) showed that the Kelley index (Kelley, Gardner, 

& Sutcliffe, 1996) seemed to yield the most generally useful clusters of molecules.   

Developments in clustering since the last ARIST review (Paris, 1997) have focused on the 

evaluation of further types of clustering method.  For example, the Ward and Jarvis-Patrick 

methods were compared with two clustering methods that had been developed for the processing of 

gene expression data and one that had been developed for the fuzzy clustering of chemical graphs 

(Raymond, Blankley, & Willett, 2003).  The study found that the two gene-expression methods 

(Ben-Dor, Shamir, & Yakhini, 1999; Yin & Chen, 1994) provided robust and effective approaches 

to the clustering of a range of datasets, and suggested that these methods were worthy of further 

consideration.  The experiments involved both fingerprint-based and graph-based measures of 2D 

similarity, with no obvious advantage being identified from the use of the latter, more time-

consuming measure.  A study of the fuzzy k-means method for clustering chemical structures 

(Holliday, Rodgers, Willett, Chen, Mahfouf, Lawson, et al., 2004) showed that this gave generally 

superior results to the conventional, non-fuzzy k–means clustering method, a non-hierarchic 

relocation procedure (Everitt, Landau, & Leese, 2001).  However, the most important development 

has been the identification of the divisive k-means clustering method (Boecker, Derksen, Schmidt, 

Teckentrup, & Schneider, 2005; Steinbach, Karypis, & Kumar, 2000) as an effective way of 
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clustering chemical datasets that are too large for processing by Ward’s method.  The method, 

which has also been used in bioinformatics by Sultan et al. (2002), is an hierarchical version of the 

k-means method, and has been shown to be well suited to applications such as comparing the 

effectiveness of classifications based on substructural fragments and on ring scaffolds 

(Schuffenhauer, Brown, Ertl, Jenkins, Selzer, & Hamon, 2007) and the merging of corporate 

databases (Engels, Gibbs, Jaeger, Verbinnen, Lobanov, & Agrafiotis, 2006). 

Downs and Barnard (2002) provide an authoritative overview of developments in chemical 

clustering.

Molecular Diversity Analysis 

Much of the recent work in clustering has been carried out to support work in molecular diversity 

analysis.  This has been introduced previously and takes as its starting point the need to maximise 

the diversity of the molecules that are submitted for biological testing (rather than maximising the 

probability of activity, which is the main aim of virtual screening) (Dean & Lewis, 1999; Ghose & 

Viswanadhan, 2001; Gorse, 2006; Lewis, Pickett, & Clark, 2000).  Although HTS is very rapid, it is 

still costly and there is hence a need to minimise the numbers of molecules that are assayed.  The 

Similar Property Principle means that structurally similar molecules are likely to give similar 

biological responses; thus, if one wishes to maximise the information that can be gained from a 

fixed number of molecules about the relationship between structure and activity, then one should 

try to ensure that the molecules submitted for HTS are as structurally diverse as possible.  This has 

been formalised in the concept of Neighbourhood Behaviour, which is, in essence, a quantitative 

reformulation of the Similar Property Principle that focuses on differences in biological activity and 

in molecular similarity.  Specifically, the approach considers absolute differences in biological 

activity (as measured on some quantitative scale, rather than the active/inactive nature of much 

bioactivity data) for all pairs of molecules in a dataset, and plots these differences against the 

dissimilarity values for these pairs.  If the molecular description that is being used exhibits a good 

Neighbourhood Behaviour then there will be few points in the resulting plot that correspond to a 

large difference in property being associated with a small dissimilarity value; however, the 

remainder of the plot is expected to be heavily populated.  Analysis of such plots hence provides a 

simple way of validating the performance of a molecular descriptor for similarity and diversity 

applications.  Initial studies (Dixon & Merz, 2001; Patterson, Cramer, Ferguson, Clark, & 

Weinberger, 1996) used QSAR datasets, containing small numbers of structurally related 

molecules, for the comparison of descriptors, but the utility of the approach on a large-scale has 

been demonstrated recently by Perekhodtsev (2007).  This study involved combining multiple 
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literature sources to produce four large sets of structurally heterogeneous molecules, and showed 

that excellent Neighbourhood Behaviour was exhibited by simple 2D fingerprints.   

Molecular diversity methods established themselves in the mid-Nineties: initial studies were 

discussed in the previous ARIST review (Paris, 1997), and an historical overview of much of this 

early work has been reported by Martin et al. (2001).  Since then, four main approaches to the 

selection of compounds have been identified.  The first, and still probably the most widely used, is 

cluster analysis, with a database subset being obtained by selecting one, or a small number, of the 

compounds from each of the clusters identified by the clustering method (vide supra). Cluster-

based selection methods require the explicit computation of inter-molecular similarity; partition-

based (or cell-based) methods compute the similarities implicitly by defining a low-dimensional 

grid in which molecules can be located.  The grid is defined by a small number of physicochemical 

properties such as molecular weight or calculated logP, and a molecule is allocated to that cell in 

the grid that corresponds to its particular values for the chosen properties.  A diverse subset is then 

obtained by selecting one or more molecules from each cell.  Mason and Pickett (1997) review 

early work on this approach, whilst Bayley and Willett (1999) describe statistical criteria for the 

design of the grid.  Partition-based methods are widely used, normally by means of the BCUT 

software (Pearlman & Smith, 1998, 1999).    

Cluster-based and partition-based selection involve finding the most similar molecules before 

identifying a diverse subset: dissimilarity-based selection methods derive from early work by 

Bawden (1993) and Lajiness (1990) and tackle the problem directly.  In essence, the methods select 

a molecule for inclusion in the chosen subset, and then repeatedly add to the subset that molecule 

from the database that is most dissimilar to those already in the selected subset, with the 

dissimilarity calculations continuing until the subset is of the required size.  A comparison of 

algorithms for this purpose (Snarey, Terrett, Willett, & Wilton, 1997) highlighted the general 

effectiveness of the MaxMin algorithm, in which that database molecule is selected at each stage 

that has the maximum dissimilarity to its nearest neighbour in the subset of already-chosen 

molecules. This comparison used 2D fingerprints, and these are probably the most popular structure 

representation for selection purposes.  Sets of a few physicochemical properties are also widely 

employed (as for partition-based selection), with the use of a limited numbers of descriptors 

enabling the use of a particularly rapid implementation of the MaxMin algorithm (Agrafiotis & 

Lobanov, 1999).  Sphere-exclusion algorithms are closely related to dissimilarity-based algorithms, 

but use a dissimilarity threshold to eliminate molecules from consideration that are close to 

previously selected molecules.  The threshold defines the radius of an exclusion sphere and each 

time that a molecule is selected for inclusion in the chosen subset, then all database molecules 

within the threshold distance are excluded from further consideration (Hudson, Hyde, Rahr, & 
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Wood, 1996; Pearlman & Smith, 1998); a similar idea underlies the single-pass clustering methods 

that have been described for chemical applications (Butina, 1999; Taylor, 1995).  The OptiSim 

algorithm involves concepts from both dissimilarity-based and sphere-exclusion selection, with a 

user-defined parameter specifying the extent to which the two types of selection criterion are 

reflected in the final set of molecules that is selected (Clark, 1997; Clark & Langton, 1998).  

Systematic selection methods such as those described above are now widely used, although there 

have been suggestions that the resulting compound selections are not obviously superior to those 

obtained by random selection (Schuffenhauer, Brown, Selzer, Ertl, & Jacoby, 2006).  

An alternative approach to compound selection formulates the identification of the most diverse 

subset as a problem in combinatorial optimisation.  Whilst methods based on D-optimal designs 

have been described (Martin, Blaney, Siani, Spellmeyer, Wong, & Moos, 1995), most work has 

involved the use of genetic algorithms or simulated annealing.  The approach requires the 

availability of a diversity index, some quantitative measure of the degree of structural diversity in a 

set of molecules: an optimal (or, more likely, near-optimal) subset can then be obtained by 

exploring the space of all possible subsets to find that with the largest value of the chosen index.  

There have been reports of methods for the design of structurally diverse combinatorial libraries 

using both genetic algorithms (Brown & Martin, 1997a; Gillet, Willett, & Bradshaw, 1997; 

Sheridan & Kearsley, 1995) and simulated annealing (Agrafiotis, 1997; Good & Lewis, 1997; 

Hassan, Bielawski, Hempel, & Waldman, 1996) to effect the optimisation.  Many diversity indices 

have been described: for example, Gillet et al. (1997) quantified the diversity of a set of molecules 

by the mean pair-wise complement of the Tanimoto coefficient when averaged over all the pairs of 

2D fingerprints for molecules in the subset whilst Good and Lewis (1997) quantified the diversity 

by the number of distinct three-point 3D pharmacophores identified in the molecules in the subset.  

Waldman et al. (2000) provide a detailed review of diversity indices and of their use for the 

selection of molecules.   

The scoring function in the program by Good and Lewis (1997) involved not just the maximisation 

of the structural diversity but also an attempt to ensure an approximately even distribution of a set 

of molecules across three properties that provide a crude, but rapidly computable, measure of 

molecular shape.  The idea of including a range of factors in a scoring function has since been 

studied in detail.  Initial studies used a simple weighted sum approach (Agrafiotis, 2002; Brown, 

Hassan, & Waldman, 2000; Gillet, Willett, Bradshaw, & Green, 1999), but this requires specifying 

the weights for the scoring function’s individual components, which is particularly difficult if these 

components are in competition (e.g., maximising diversity is often in conflict with ease of 

synthesis).  This problem has been addressed by means of a multi-objective genetic algorithm 

(MOGA) in which the various components are optimised independently and a family of equivalent 
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solutions is obtained by means of Pareto optimization: each solution then represents a different 

trade-off between the often conflicting requirements of the various objectives (Gillet, 2004; Gillet, 

Khatib, Willett, Fleming, & Green, 2002).   

OTHER VIRTUAL SCREENING METHODS 

We have noted previously that similarity searching is but one of a range of methods that are 

available for virtual screening, and this section briefly describes developments in some of these 

other methods.  There have historically been four main approaches -  similarity searching, 3D 

pharmacophore searching, machine learning and docking – but these have now been augmented by 

two further, and closely related, approaches: drug-likeness and ADMET (for absorption, 

distribution, metabolism, excretion and toxicity, vide infra) prediction.  Of these, similarity 

searching has been discussed in great detail above, as it forms the principal focus of the review; 

while pharmacophore mapping followed by 3D substructure searching had already become well-

established by the time of the previous ARIST review (Paris, 1997), although there is continuing 

interest, as exemplified in studies by Dixon et al. (2006), Steindl et al. (2006) and Kurogi and 

Guner (2001), inter alia.   

Machine Learning 

Machine learning involves the assignment of objects of unknown classification (these objects 

comprising the test-set) to one of two or more existing classes, the classification rule having been 

derived from analysis of a set of objects of known classification (these objects comprising the 

training-set).  For example, in the IR context, this might involve the categorisation of a newswire to 

one or more types of news story, or the assignment of a document to the class of relevant (or non-

relevant) for some particular query.  When machine learning is used in chemoinformatics, the task 

is to categorise a molecule as either active or inactive.  In practice, some of the methods available 

are used for ranking, rather then categorisation, with a scoring scheme being used to rank molecules 

in decreasing probability of activity, rather than setting a threshold value above which the molecule 

will be judged active. 

As noted previously, the first such method to be used in chemoinformatics was substructural 

analysis (Cramer, Redl, & Berkoff, 1974).  After relative neglect for many years, there has been 

renewed interest in this approach (Capelli, Feriani, Tedesco, & Pozzan, 2006; Cosgrove & Willett, 

1998; Medina-Franco, Petit, & Maggiora, 2006; Schreyer, Parker, & Maggiora, 2004), not least 

because it has been realised that the weighting schemes used in substructural analysis are very close 
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to those used in naive Bayesian classifiers, one of the most widely used tools for machine learning 

(Hert, Willett, Wilton, Acklin, Azzaoui, Jacoby, et al., 2006).  Indeed, some of the weighting 

schemes that are used in substructural analysis are closely related to the weights developed by 

Robertson-and Spärck Jones (1976) for use in IR relevance-feedback systems.  Examples of the use 

of naive Bayesian classifiers (Bender, Mussa, Glen, & Reiling, 2004; Xia, Maliski, Gallant, & 

Rogers, 2004) are becoming increasingly common, spurred in part by the availability of this 

approach in the popular SciTegic software system (Hassan, Brown, Varma-O’Brien, & Rogers, 

2006; Rogers, Brown, & Hahn, 2005).  Although substructural analysis was first described over 

three decades ago, neural networks were the first machine-learning approach to be widely applied 

in chemoinformatics, especially for QSAR applications from the early Nineties onwards.  There is a 

continuing literature, but we refer the reader to the book by Zupan and Gasteiger (1999) for a 

detailed account of work in what is by now a well-established area.    

Decision trees have been extensively used in chemoinformatics, the aim being to construct a tree 

that can predict correctly the activity or otherwise of test-set molecules by seeing whether they are 

assigned to a node containing mainly active, or mainly inactive members of the training-set.  An 

early example of the use of decision trees was reported by A-Razzak and Glen (1992), who used 

trees based on physicochemical properties to derive simple rules for the rationalisation of QSAR 

datasets; simple chemical and physicochemical properties have also been used for categorising 

molecules as drug-like or non-drug-like (Ajay, Walters, & Murcko, 1998; Wagener & van 

Geerestein, 2000).  At the heart of any decision-tree procedure is the splitting criterion that is used 

to decide how the tree should be sub-divided at each level in the hierarchy.  Given the importance 

of fragment substructures in chemoinformatics, it is not surprising that chemical fragments have 

been used for tree-construction, most notably in the work of Rusinko and colleagues, who have 

described the use of their SCAM program (Statistical Classification of Activities of Molecules) for 

the analysis of HTS and QSAR data (Chen, Rusinko, & Young, 1998; Hawkins, Young, & 

Rusinko, 1997; Rusinko, Farmen, Lambert, Brown, & Young, 1999).  Over-fitting (Hawkins, 2004) 

can be a problem with decision trees, and there has hence been interest in the use of random forests 

(Breiman, 2001) for chemoinformatics applications, where a robust categorisation of a test-set 

molecule is obtained by matching it against multiple decision trees (e.g., (Cannon, Bender, Palmer, 

& Mitchell, 2006; Svetnik, Liaw, Tong, Culberson, Sheridan, & Feuston, 2003; Tong, Hong, Fang, 

Xie, & Perkins, 2003)). 

Kernel methods figure prominently in the machine-learning literature (Christianini & Shawe-

Taylor, 2000) and are now starting to be used in chemoinformatics.  The methods have traditionally 

used small numbers of non-binary descriptors to characterise objects, but Harper et al. (2001) have 

developed the use of a kernel method, called binary kernel discrimination (or BKD), that scores 

40



test-set molecules by a function based on the ratio of the sums of its weighted Hamming distances 

from the active and from the inactive molecules in the training-set.  Detailed studies of BKD have 

shown its effectiveness for the analysis of both agrochemical and pharmaceutical screening data 

(Chen, Harrison, Pasupa, Wilton, Willett, Wood, et al., 2006; Jorissen & Gilson, 2005; Willett, 

Wilton, Hartzoulakis, Tang, Ford, & Madge, 2007; Wilton, Harrison, Willett, Delaney, Lawson, & 

Mullier, 2006).  However, most attention has focussed on the use of the support vector machine 

(SVM), which seeks to identify a hyperplane that maximally separates the two classes present in the 

training-set.  The first chemoinformatics application appeared in 2001 (Burbridge, Trotter, Buxton, 

& Holden, 2001) and since then there has been a very large number of publications looking at not 

only virtual screening (Jorissen & Gilson, 2005; Saeh, Lyne, Takasaki, & Cosgrove, 2005; 

Warmuth, Liao, Ratsch, Mathieson, Putta, & Lemmen, 2003) but also at other important 

applications such as separation of drugs from non-drugs (Byvatov, Fechner, Sadowski, & 

Schneider, 2003; Muller, Ratsch, Sonnenburg, Mika, Grimm, & Heinrich, 2005), and the prediction 

of aqueous solubility (Lind & Maltseva, 2003) and of mutagenicity (Mahe, Ueda, Akutsu, Perret, & 

Vert, 2005), inter alia.

Further applications of machine learning in chemoinformatics are reviewed by Goldman and 

Walters (2006). 

Docking

The first docking program was reported in the early Eighties (vide supra), with a study of non-

peptidic inhibitors for HIV protease (DesJarlais, Seibel, Kuntz, Furth, Alvarez, de Montellano, et 

al., 1990) being one of the first uses of the approach for virtual screening.  However, it is only 

within the last decade that docking has come to play an important, albeit still computationally 

demanding, role in drug discovery programmes.  Its recent popularity has come about for two main 

reasons: the increasing availability of 3D structural information for many proteins of 

pharmaceutical interest (arising from developments in the technology of X-ray crystallography and 

protein NMR (Congreve, Murray, & Blundell, 2005)); and the incorporation of ligand flexibility in 

docking algorithms, so that screening is not restricted to files of rigid molecules (the further 

incorporation of protein flexibility is still at an early stage (Erickson, Jalaie, Robertson, Lewis, & 

Vieth, 2004)).  

There are now about 30 different docking programs available (Leach, Shoichet, & Peishoff, 2006), 

with important current examples including DOCK (Ewing, Makino, Skillman, & Kuntz, 2001), 

FlexX (Rarey, Kramer, Lengauer, & Klebe, 1996), GLIDE (Friesner, Banks, Murphy, Halgren, 

Klicic, Mainz, et al., 2004) and GOLD (Jones, Willett, Glen, Leach, & Taylor, 1997).  These 
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programs are designed to carry out three principal tasks.  The first is predicting the binding mode of 

a known active molecule, i.e., identifying the conformation that is adopted by a molecule when it 

binds to the active site of a protein.  This information can provide a rationalisation for the observed 

activity and can also be of benefit in identifying related molecules that could make comparable, or 

superior, interactions with the protein.  The second task is virtual screening, the subject of this 

review, something that is now being carried out on a production-line basis in most major 

pharmaceutical companies, typically using large Linux clusters to provide the necessary 

computational resources.  As each molecule is docked into the protein, a score is computed that 

measures the degree of complementarity of that molecule to that binding-site.  The scores can then 

be used to produce a rank ordering of the molecules in the database that is being searched, and 

hence to prioritise molecules for further testing.  These scores could ideally be used for the third 

task, the accurate prediction of bioactivity, but this is generally beyond the capabilities of current 

docking programs. 

The availability of many docking programs has led to comparative studies, in which two or more 

programs are applied to the same data and a comparison is made of the numbers of active molecules 

retrieved.  In a very comprehensive example, Warren et al. (2006) evaluated the use of ten different 

docking programs and 37 different scoring functions with eight different protein structures.  The 

evaluation considered all of the three tasks outlined above, and involved workers from five different 

GlaxoSmithKline sites in three different countries.  Such studies clearly provide useful information 

about the operational characteristics of the various programs, but often involve proprietary datasets, 

which makes it difficult to generalise the results. Thus, just as with TREC and similar IR 

experiments, there is a need for standard datasets (Huang, Shoichet, & Irwin, 2006), evaluation 

measures (Cornell, 2006) and experimental protocols (Cole, Murray, Nissink, Taylor, & Taylor, 

2005).

The reader is referred to a special issue of the Journal of Medicinal Chemistry (Leach, Shoichet, & 

Peishoff, 2006) and a recent book (Alvarez & Shoichet, 2005) for further details of docking-based 

approaches to virtual screening.   

Drug-Likeness and ADMET Prediction 

An important consideration in virtual screening is the need to ensure the drug-likeness or 

drugability of the molecules that are being considered for biological testing.  Two approaches have 

proved to be of value.   
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The first approach seeks to determine whether a new molecule more closely resembles the 

molecules in a file of known drugs or the molecules in a file of (assumed) non-drugs.  This is done 

using the methods of machine learning, with a predictive function being developed from the 

available training data that can subsequently be applied to the processing of previously untested 

molecules.  Three near-contemporary papers reported on the use of decision trees (Ajay, Walters, & 

Murcko, 1998), neural networks (Sadowski & Kubinyi, 1998) and substructural analysis (Gillet, 

Willett, & Bradshaw, 1998) to discriminate between drugs and non-drugs, and there have been 

many subsequent such papers (e.g., (Byvatov, Fechner, Sadowski, & Schneider, 2003; Frimurer, 

Bywater, Naerum, Lauritsen, & Brunak, 2000; Wagener & van Geerestein, 2000; Zernov, Balakin, 

Ivaschenko, Savchuk, & Pletnev, 2003)).  The second approach is based on analyses of files of 

known drugs.  This work has shown that drugs have physical and physicochemical properties that 

are significantly different from those of non-drug molecules.  This difference was first highlighted 

in a much-cited paper by Lipinski et al. (1997).  Here, the authors analysed structures that had 

undergone preliminary clinical trials and noted that many that were orally active satisfied simple 

physicochemical constraints that could be summarised by what has come to be called the “Rule of 

Five”.  For example, most of the molecules that were studied had molecular weights that were less 

than 500 and had no more than five hydrogen-bond donor or ten hydrogen-bond acceptor features.  

Molecules that violated several of these “rules” were hence less likely to be active when tested and 

could thus be removed from further consideration in a screening programme.  This simple idea has 

spawned many enhancements in terms of the physicochemical properties that are considered, the 

precise numeric values for these properties, the differences in properties between marketed drugs 

and lead molecules, and the use of rule-of-five constraints in diversity-selection procedures (Brown, 

Hassan, & Waldman, 2000; Gillet, 2004).   

There is now a very large literature on drug-likeness (e.g., (Egan, Walters, & Murcko, 2002; Hann, 

Leach, & Harper, 2001; Oprea, 2000; Oprea, Davis, Teague, & Leeson, 2001; Proudfoot, 2002; 

Teague, Davis, Leeson, & Oprea, 1999; Veber, Johnson, Cheng, Smith, Ward, & Kopple, 2002)), 

with new reports appearing frequently (e.g., (Monge, Arrault, Marot, & Morin-Allory, 2006; Sirois, 

Hatzakis, Wei, Du, & Chou, 2005; Verheij, 2006; Vieth & Sutherland, 2006)).  Lipinski (2005) 

provides an overview of recent developments, with Leeson and Springthorpe (2007) discussing the 

use of drug-likeness in practical medicinal chemistry. 

Drugability studies can be regarded as a stepping stone to a much more difficult problem: the 

prediction of ADMET properties, where ADMET denotes absorption, distribution, metabolism, 

excretion and toxicity.  Research into QSAR has provided a body of tools that can be used to make 

reasonably accurate predictions, in many cases, of the biological activity of previously untested 

molecules.  Now a molecule cannot possibly be a drug if it does not exhibit the desired activity, 
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initially in vitro and then in vivo: however, many other criteria must be satisfied if a molecule is to 

become first a lead, then a candidate and finally a marketed drug.  In particular, it must exhibit 

satisfactory pharmacokinteic properties and must not be toxic.  Unsatisfactory ADMET 

characteristics are one of the principal causes of failure in drug-discovery programmes and hence 

drug-likeness studies provide a way of probing molecules’ ADMET profiles indirectly.  Methods 

for ADMET prediction tools try to model this behaviour explicitly using techniques such as 

multiple regression or support vector machines (vide supra).  The four most important 

pharmacokinetic properties are absorption, distribution, metabolism and excretion.  These 

correspond, respectively, to how rapidly the molecule gets into the bloodstream, is distributed 

around the body, is converted to other, possibly non-active substances, and is removed from the 

body.  Toxicity relates to the ways in which a drug interacts not just with its chosen biological 

target but also with other substances in the body, such interactions being the cause of many of the 

side-effects that patients may experience when taking drugs.   

The development of computer tools for the prediction of ADMET is one of the most important 

current areas in chemoinformatics, but will not be discussed further here since the methods are 

intimately bound up with details of human biology and thus rather far from the principal focus of 

the review.  Instead, the reader is referred to some of the many excellent discussions that are 

available (Clark, 2005; Clark & Grootenhuis, 2002; Hyland, Jones, & van de Waterbeemd, 2006; 

van de Waterbeemd, 2005; van de Waterbeemd & Gifford, 2003; Yu & Adedoyin, 2003).  

CONCLUSIONS 

Chemoinformatics has evolved steadily since its beginnings in the late Sixties and early Seventies, 

and now plays a key role in the lead-discovery and lead-optimisation stages of pharmaceutical (and 

other types of specialty chemical) research programmes.  In this review, we have focused on the use 

of similarity-based methods for virtual screening, a technique that is now a routine complement to 

experimental screening using HTS. 

The Similar Property Principle, the chemical equivalent of the Cluster Hypothesis in IR, provides a 

firm basis for the use of similarity methods, and underlies not just similarity searching but also 

related applications such as the clustering of chemical databases and the analysis of molecular 

diversity.  Thus far, the most successful similarity methods have been based on 2D representations 

of molecular structure, typically 2D fragment bit-strings, despite the much greater amounts of 

information that can be exploited if a 3D structural representation is available.  One of the key tasks 

facing researchers in chemoinformatics over the next few years is how to exploit this additional 
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source of information, the potential value of which has already been demonstrated by the 

importance of applications such as pharmacophore searching, flexible docking and 3D-QSAR.  

Other developments that we may expect over the next decade include: more effective ways of 

combining the various virtual-screening methods that are now available; chemoinformatics 

applications of new machine-learning algorithms as they are discovered by the data-mining 

community; more robust scoring functions for ligand-protein docking; and, the most challenging 

task, the development of methods for ADMET prediction that are comparable in performance to 

current QSAR methods for the prediction of bioactivity. 
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