promoting access to White Rose research papers

Universities of Leeds, Sheffield and York http://eprints.whiterose.ac.uk/

This is an author produced version of a paper published in **Journal of Hydrology**

White Rose Research Online URL for this paper:

http://eprints.whiterose.ac.uk/id/eprint/77450

Paper:

Ballard, CE, McIntyre, N, Wheater, HS, Holden, J and Wallage, ZE (2011) *Hydrological modelling of drained blanket peatland.* Journal of Hydrology, 407 (1-4). 81 - 93. ISSN 0022-1694

http://dx.doi.org/10.1016/j.jhydrol.2011.07.005

White Rose Research Online eprints@whiterose.ac.uk

1 Hydrological modelling of drained blanket peatland

¹Ballard, C., ¹McIntyre, N., ¹Wheater, H., ²Holden, J. and ³Wallage, Z.E.

¹Department of Civil and Environmental Engineering, Imperial College London, SW7 2AZ, UK

²School of Geography, University of Leeds, Leeds, LS2 9JT, UK

5 ³Low Carbon Innovation Centre, University of East Anglia, Norwich, NR4 ZTJ

6 Abstract

7 Open ditch drainage is a commonly implemented land management practice in upland blanket peatlands, 8 particularly in the UK, where policy decisions between the 1940s and 1970s lead to widespread drainage 9 of the uplands. The change in the hydrological regime associated with the drainage of blanket peat is 10 poorly understood, yet has perceived importance for flooding, low flows and water quality. We propose a 11 new simplified physics-based model that allows the exploration of the associated hydrological processes 12 and flow responses. The model couples four one-dimensional models to represent a three-dimensional 13 hillslope, allowing for the exploration of flow and water table response throughout the model domain for 14 a range of drainage configurations and peat properties. The model is tested against a data set collected 15 from Oughtershaw Beck, UK, with results showing good model performance for wet periods although 16 less compatibility with borehole observations during rewetting periods. A wider exploration of the model 17 behaviour indicates that the model is consistent with the drained blanket peat hydrological response reported in the literature for a number of sites, and therefore has potential to provide guidance to decision 18 19 makers concerning the effects of management practices. Through a global sensitivity analysis, we 20 conclude that further field investigations to assist in the surface and drain roughness parameterisation 21 would help reduce the uncertainty in the model predictions.

22

23 Keywords: peatlands, runoff, water table, ditches, drainage, modelling

24 1. Introduction

Peatlands are located across the globe, from the tropics to the high latitudes, covering approximately 3%
of the Earth's surface. These environments are of particular nature conservation value due to their unique
and diverse biodiversity. Moreover, they store soil carbon and water; it is estimated that 10% of the
world's freshwater resources and up to one-third of global soil carbon are stored in peatlands (Rubec,
2005).

30

31 In the UK, 87 % of peat covered areas take the form of blanket peat. The UK uplands include 32 approximately 2.9 M ha of blanket peatland (Holden et al., 2004), constituting approximately 15% of the 33 global amount of blanket peatland (Milne and Brown, 1997). These regions have traditionally been 34 heavily managed for low density farming, energy, forestry and game rearing. In recent times, in 35 recognition of the significant ecosystem services provided by peatlands (including biodiversity, carbon 36 sequestration, water supply, and recreation (Bonn et al., 2009)), many areas of upland blanket peatland 37 have been designated as 'Sites of Special Scientific Interest', 'Areas of Outstanding Natural Beauty', 38 'Special Protection Areas', 'Environmentally Sensitive Areas', 'Special Areas of Conservation' and 39 National Nature Reserves (Condliffe, 2009). Peatlands also generate a large proportion of the UK water 40 supply; therefore water quality and colour are also significant considerations (Armstrong et al., 2010). 41 The management of these areas is thus of interest to a range of stakeholders, including physical and 42 social scientists, and land owners and managers. Given the inherent significance of the upper areas of 43 catchments for downstream flooding, with their higher rainfall rates and generally flashier response 44 (Wheater et al., 2008), the management of upland blanket peatland also has the potential to affect flood 45 risk.

46

In the UK, approximately 50% of upland blanket peatland has been drained (Milne and Brown, 1997),
which in England alone amounts to 75,000 ha. Drainage of peats is typically via a series of open ditches,
with the aim of improving vegetation and therefore the production of livestock and game (Stewart and
Lance, 1983). The rationale is that drainage will remove excess surface runoff and lower the water table,

51 thereby creating more conducive environments for plant species suitable for stock grazing. However,
52 these predicted benefits have rarely been realised since blanket peat cannot sustain anything above very
53 small sheep populations without undergoing severe degradation (Stewart and Lance, 1983); and peatland
54 drainage is also generally considered to have adverse effects on the natural environment.

55

56 The implementation of an open ditch drainage scheme causes two key processes to occur: (1) water is 57 drained from the soil matrix directly into the open drains, lowering water tables and creating more soil 58 storage capacity, and (2) surface runoff and direct rainfall are captured in the drains and transmitted to 59 the catchment outlet more rapidly (Holden, 2009b). How peatland drainage affects flooding in the 60 catchment depends on the interaction of these two counteracting processes, where process (1) tends to 61 reduce storm peaks and increase base flows, while process (2) tends to increase the flashiness of the 62 response and increase peak flows. The dominance of each process is likely to depend on a number of 63 factors including: drainage density and geometry, hydraulic conductivity, drain and peat surface 64 roughnesses, topography, event size, and antecedent conditions.

65

66 Observations have shown that drained peatlands typically have a shorter time to peak, higher peak flow 67 and a quicker recession than undrained areas, and are associated with increased water table fluctuations 68 (Ahti, 1980; Conway and Millar, 1960; Holden et al., 2006; Robinson, 1986; Stewart and Lance, 1991). 69 The zone of influence of the water table drawdown (i.e. process (1) above) due to the drains is quite 70 limited in blanket peats, due to very low hydraulic conductivities, particularly in the deeper layers 71 (Robinson, 1986; Stewart and Lance, 1983), therefore the spacing of the drains plays a significant role in 72 both the short and long term effects of drainage. The effect is also not uniform in space, particularly in 73 blanket peat on sloping terrains, since the reduction in upslope contributing area is most significant 74 immediately downslope of a drain (Coulson et al., 1990; Holden et al., 2006). In a minority of field 75 studies, drainage of peatlands has been observed to decrease flood peaks (e.g. Burke, 1967; Coulson et 76 al., 1990; Newson and Robinson, 1983). However, in all of these cases some aspects of the site 77 conditions are at the extreme of the range of conditions that are typically encountered in drained 78 peatlands. For example, Burke (1967) studied a site with especially dense (3.5m) drain spacing and

drains running along contours, thus minimising drain flow velocity; Newson and Robinson (1983)
examined a peaty soil with a hydraulic conductivity higher than typical blanket peats; and Coulson
(1990) studied a site with lower altitude and lower annual rainfall than typical for UK peatlands.

83 Given the uncertainty about best management practices for peatlands, due largely to the complexity of 84 process interactions, there is a need for suitable process-based models to aid understanding of impacts of 85 management interventions. Due to the difficulties in observing and quantifying land management effects 86 at the catchment scale, the simplest case to consider is the response at field or hillslope scales. Some 87 modelling has been performed to examine drainage in the uplands, notably hillslope simulations using 88 SHETRAN (Dunn and Mackay, 1996) and a modified TOPMODEL (Lane, 2002; Lane et al., 2004; Lane 89 et al., 2003). However, while the TOPMODEL simulations can explicitly represent drainage networks, 90 the conceptual nature of the model does not provide detail about the subsurface behaviour, particularly at 91 the sub-drain spacing scale. The conceptual stores in the model that represent saturated subsurface 92 storage are independent of each other, hence, although the topographic index concept partly 93 accommodates the way a cell may be affected by upslope areas, downslope effects, such as the presence 94 of drains and the level of water in them, cannot be simulated. The studies have also not been compared 95 against any observed flow or water table time series. The SHETRAN simulations of Dunn and Mackay 96 (1996) are physically based, but the drainage configurations were limited to alignments with the grid 97 boundaries (due to their representation as 'channel elements'), thereby providing a limited range of 98 potential drain configurations. Also, the inter-drain regions were represented by a single grid cell, not 99 allowing examination of the local changes in water table heights. Hence, although both approaches had 100 some success at the large scale, in order to explore and examine the hydrological processes associated 101 with the management of drained peatlands there is a need for a physics-based model that provides 102 flexibility in the representation of drainage configurations and can provide information about the spatial 103 variability of the internal model states.

104

In this paper, a new fine resolution simplified physics-based model is proposed to test hypotheses about
hydrological processes and to investigate the effects of peatland land management. The new model aims

107 to allow the impacts of management scenarios to be explored, as an extension to the limited experimental 108 data currently available, and as a complement to any future extensive experimental programmes. The 109 model is tested against flow and water table data from a drained peatland site in the UK. The results from 110 the analysis are used to explore the model performance and to identify processes that require refinement 111 and the data that would reduce the uncertainties in the model predictions. Finally, the wider applicability 112 of the model is assessed.

113 2. Model description

The modelling approach used in this study was to identify the key hydrological processes for intact and drained peatlands from the literature and include them in a model that has an appropriate level of complexity relative to the level of information available on the system hydrological processes. To avoid over-parameterisation, minor processes have been excluded or treated in a simplified manner. In particular, the development has focused primarily on ombrotrophic (rain water fed) blanket peatlands in the UK, where deep groundwater flows are expected to be negligible, and on representing processes known to influence flood generation.

121 2.1. Conceptual model

Blanket peat deposits are typically found draped over gently rolling terrain in areas with a cool climate,
high rainfall and impeded substrate drainage. These conditions allow peat formation, which occurs when
organic material decomposes slowly due to anaerobic conditions associated with waterlogging (Allaby,
2008). Typically, peats exhibit two major zones: the upper layer (acrotelm), which is composed of live
and decaying plant material and can range from 5 to 50 cm thick, and a lower zone (catotelm), which is
denser, usually saturated and anoxic (Evans et al., 1999; Holden and Burt, 2003b; Ingram 1978, 1983).

128

Water tables in blanket peat catchments are generally observed to fluctuate between the top of the
catotelm and the ground surface and are highly responsive to changes in the soil water balance (Evans et
al., 1999). Due to these typically high water tables, soil water storage does not contribute significantly to
the attenuation of winter floods and surface runoff in peat catchments is generally observed to be due to

saturation excess (Holden and Burt, 2002a). These local scale responses lead to very flashy responses at
the catchment scale (Bragg, 2002; Evans et al., 1999; Holden and Burt, 2003c; Holden et al., 2001) and
generally low base flows.

136

Although soil storage may not be a major factor in attenuating flows, micro-relief elements (Kellner and
Halldin, 2002) and land cover (Weiss, 1998) both significantly affect runoff as they can provide local
storage and increase the effective roughness of the surface. Additionally, pipes are also often observed in
blanket peats and can couple the shallow acrotelm with the deeper catotelm, contributing between 1030% of the total flow (Holden and Burt, 2002b), although their relative contribution to runoff is lower
under saturated conditions, due to the dominance of overland flow processes (Holden, 2005).

143

144 The saturated hydraulic conductivity (K_s) of peat soil is observed to reduce with depth (Clymo, 2004; 145 Holden et al., 2001; Surridge et al., 2005; Van Seters and Price, 2002), with decreases of as much as five 146 orders of magnitude by a depth of 0.4 to 0.8m (Bradley, 1996). In the catotelm, high compaction and 147 greater humification of the material leads to a greater bulk density (Holden and Burt, 2002a) and a 148 reduction of the voids in the substrate, thereby reducing the saturated hydraulic conductivity. In contrast, 149 macropores due to voids created from the decaying plant material are particularly important in the 150 acrotelm and contribute significantly to the higher hydraulic conductivity of this layer (Holden, 2009a). 151 Shallow throughflow along the boundary of the acrotelm and catotelm is a significant flow mechanism 152 due to the discontinuity of hydraulic conductivities between the two layers (Holden and Burt, 2003a).

153
154 Based on literature, a simplified conceptualisation of the hydrological functioning of drained blanket
155 peatlands has been developed (Figure 1), consisting of three main hydrological components: soil blocks,
156 drains between soil blocks, and a collector drain. This is used as the basis of a mathematical model to
157 represent a three-dimensional drained blanket peat hillslope. The parameters in Figure 1, as well as
158 others that are introduced in the following sections, are defined in the Appendix.

159 2.2. Mathematical model

Given that the water table in undrained blanket peats is always observed to be close to the surface, and the high degree of uncertainty in the parameterisation of a full Richards' equation-based model with limited or no unsaturated data, a physics-based unsaturated zone representation has been excluded from the model. This has the added benefit of significantly reducing computational time (Pancioni et al, 2003). By removing the unsaturated zone, it is assumed that exchanges between the subsurface and the surface (i.e. evaporation and infiltration) occur instantaneously; and it is assumed that subsurface lateral fluxes can be described using Darcy's law:

167
$$V = -\overline{K}_{s}(h_{s})\frac{\partial h_{T}}{\partial x}$$
(1)

168 where *V* is velocity in the downslope direction (LT^{-1}) , \overline{K}_{s} (LT^{-1}) is the depth averaged saturated 169 hydraulic conductivity, h_{s} is the depth of the water table above the impermeable bed (L), h_{T} is the total 170 hydraulic head (L) and *x* is the downslope subsurface ordinate (L). The continuity equation is defined as:

171
$$\overline{\varepsilon}(h_s)\frac{\partial h_T}{\partial t} = -\frac{\partial q_s}{\partial x} + i - ET_p$$
(2)

where $\overline{\epsilon}$ (L³L⁻³) is the depth averaged effective porosity, q_s is the unit width subsurface flux (L²T⁻¹) and *i* and ET_p (LT⁻¹) are exchange terms representing the fluxes across the peat surface due to infiltration and evaporation respectively. Decomposing the total hydraulic head (h_T) into a fixed component related to the slope and a variable component, h_s , and making the Dupuit-Forcheimer approximation that the flow lines are always parallel to the slope, then:

177
$$\frac{\partial h_T}{\partial x} = \frac{\partial h_S}{\partial x} - \tan \theta_S$$
(3)

178
$$q_{s}(x,t,x_{d}) = -\overline{K}_{s}(h_{s})h_{s}\left(\frac{\partial h_{s}}{\partial x} - \tan \theta_{s}\right)$$
(4)

179 where θ_s is the site slope. Substituting equation 4 into equation 2 gives the Boussinesq equation:

180
$$\overline{\varepsilon}(h_s)\frac{\partial h_s}{\partial t} = \frac{\partial}{\partial x} \left(\overline{K}_s(h_s)h_s\frac{\partial h_s}{\partial x}\right) - \tan\theta_s\frac{\partial(\overline{K}_s(h_s)h_s)}{\partial x} + i - ET_p \tag{5}$$

181 The more commonly used version of the Boussinesq equation (e.g. Beven, 1981; Childs, 1971; 182 Henderson and Wooding, 1964; Verhoest et al., 2002) can be derived from equation (5) by assuming 183 constant K_s and using a transformation of $h_s'=h_s/cos(\theta_s)$ and $x'=x/cos(\theta_s)$ (where x' and h_s' are the 184 rotated distance and water table height measures). The gravitational frame of reference was chosen here 185 to assist in the coupling between the subsurface, overland and drain flows and also allows the drain walls 186 to remain vertical. Importantly, the Boussinesq equation still retains dependence on the downslope 187 boundary condition, which will be significant once the model is adapted to represent blocked drains. In 188 their comparison study of the performance of the Boussinesq equations compared with a full Richards' 189 equation representation, Pancioni et al. (2003) concluded that the Boussinesq equation was able to 190 successfully capture the shapes of the storage and outflow profiles, particularly for low air-entry pressure 191 soils under draining conditions. Given the typically low air entry pressure of the acrotelm (Letts et al, 192 2000), the benefits of reduced parameterisation for the Boussinesq equation are likely to outweigh the 193 performance benefits of a Richards' equation representation.

194

195 The acrotelm-catotelm layering is represented in the model through depth-averaged saturated hydraulic 196 conductivity \overline{K}_s and depth-averaged porosity $\overline{\mathcal{E}}$ defined by

197
$$\overline{K}_{s}(h_{s}) = \frac{\int_{z=0}^{z=h_{s}} K_{s}(z)}{h_{s}} dz$$
(6)

198 and

199
$$\overline{\varepsilon}(h_s) = \frac{\int_{z=0}^{z=h_s} \varepsilon(z)}{h_s} dz$$
(7)

This depth-averaging provides an approximation of the dual layer system for application in the onedimensional Boussinesq equation. As the model solution is sensitive to discontinuities in the hydraulic
conductivity a smoothing function is used to describe the variation of hydraulic conductivity with depth:

203
$$K_{s}(z) = K_{sc} + (K_{sa} - K_{sc})(1 + \tanh[(z - d_{c})100])/2$$
(8)

where *z* is the coordinate measured vertically from the impermeable lower boundary, K_{Sc} is the saturated hydraulic conductivity of the catotelm, K_{Sa} is the saturated hydraulic conductivity of the acrotelm, and d_c is the thickness of the catotelm. A step function is used to describe the variation of effective porositywith depth:

208
$$\frac{\varepsilon(z(z \le d_c)) = \varepsilon_c}{\varepsilon(z(z > d_c)) = \varepsilon_a}$$
(9)

209 where ε_c is the effective porosity of the catotelm and ε_a is the effective porosity of the acrotelm. 210 Examples of these relationships are shown in Figure 2.

211

212 Natural soil pipes have not been explicitly represented in the model, as the data required to parameterise 213 a pipe model are unlikely to be available for typical model applications; pipe flow contributions are 214 assumed to be accounted for in the acrotelm hydraulic conductivity. As hydraulic conductivities are 215 known to be very low at depth (Letts et al., 2000), a zero-flux boundary is imposed at the depth of the 216 drains. Fluxes into the peat, represented by *i* in Equation 5, are firstly from any surface water 217 (reinfiltration at a maximum rate equal to the saturated hydraulic conductivity), and then directly from 218 rainfall (snow is not explicitly represented). The rainfall infiltration rate is set at the smaller of the 219 rainfall rate or the saturated hydraulic conductivity of the upper layer. When the soil is saturated no 220 infiltration is allowed, due to the no-flux condition at the lower boundary. Infiltration and saturation 221 excesses are added to the overland flow. For the peat blocks, water is firstly evaporated at the potential 222 rate from any surface water (ET_{OF}) , and then from the acrotelm (ET_p) . Soil evaporation is assumed to 223 cease when the water table is below the acrotelm. Evaporation from the drains and collector drain (ET_d) 224 and ET_c) occurs at the potential rate while water is present.

225

Overland and channel flows are represented by the kinematic wave equation, an approximation of the Saint Venant equations of gradually varied unsteady flow commonly used for representing surface flow dynamics (Singh, 1996). The approximation neglects the acceleration and pressure terms in the full equations, replacing the momentum equation with a steady state depth-discharge relationship. The general form of the kinematic wave equation is:

231
$$\frac{\partial H}{\partial t} = -\frac{\partial Q}{\partial y} - Sink$$
(10)

where H is the flow depth (L), Q is the unit width flux (L^2T^{-1}) , Sink represents sink and source terms for 232 233 the channel (LT^{-1}) and y is a distance ordinate (L). When applied to the drain, collector drain and 234 overland flow, the following three equations are generated:

235 Drain:

236
$$\frac{\partial h_d}{\partial t} = -\frac{\partial q_d}{\partial x_d} + (Rain - ET_d) + \frac{\partial}{\partial x_d} \left((q_s(end, t, x_d) - q_s(1, t, x_d) + q_{OF}(end, t, x_d)) \frac{\Delta x_d}{W_d} \cos \beta_d \right) (11a)$$

237 Collector drain:

238
$$\frac{\partial h_c}{\partial t} = -\frac{\partial q_c}{\partial x_c} + \left(Rain - ET_d\right) + \frac{\partial (q_d(end, t))}{\partial x_c}$$
(11b)

239 Overland flow:

240
$$\frac{\partial h_{OF}}{\partial t} = -\frac{\partial q_{OF}}{\partial x} + \left(Rain - ET_{OF} - i\right)$$
(11c)

241 where h_d is the drain flow depth (L), h_c is the collector drain flow depth (L), h_{OF} is the overland flow depth (L), *Rain* is the unit area rainfall (LT⁻¹), q_{OF} is the unit width overland flow (L²T⁻¹), q_d is the unit 242 width drain flow (L²T⁻¹), W_d is the width of the drain (L), x_d is the drain ordinate (L) and x_c is the 243 244 collector drain ordinate (L).

245

246 The depth-discharge relationship for the drains was represented by the Manning equation, as friction 247 factors quoted in the literature are more commonly Manning's roughness coefficient values. The depth-248 discharge relationship for the drains is:

249
$$q_d(x_d,t) = \frac{h_d \left(\frac{W_d h_d}{(W_d + 2h_d)}\right)^{2/3} \sqrt{\tan(\theta_d)}}{n}$$
 (12)

- 250 where *n* is the Manning's roughness coefficient and θ_d is the slope of the drain, where
- $\theta_d = \sin^{-1}(\sin \theta_s \sin \beta_d)$. For the collector drain: 251

252
$$q_c(x_c,t) = \frac{h_c \left(\frac{W_d h_c}{(W_d + 2h_c)}\right)^{\frac{2}{3}} \sqrt{\tan(\theta_s)}}{n}$$
(13)

253

In order to utilise data in Holden et al. (2008) for depth varying overland flow friction factors, theoverland flow depth-discharge relationship is calculated using a Darcy-Weisbach equation, given by:

256
$$q_{OF}(x,t,x_d) = h_{OF} \sqrt{\frac{8g \tan(\theta)h_{OF}}{f}}$$
(14)

where g is the acceleration due to gravity (9.81 ms^{-2}) and f is the Darcy-Weisbach friction factor. Holden 257 258 et al. (2008) investigated values of f for four different land cover types, which in order of increasing 259 roughness were: bare (Ba), Eriophorum (E), Eriophorum/Sphagnum mix (E/S) and Sphagnum and 260 Juncus (S/J). f was also found to vary with overland flow depth. The mathematical relationship between f 261 and depth proposed by Holden et al. (2008) has a discontinuity in the relationship at approximately 1cm 262 and f tends to infinity as the overland flow depth tends towards zero. Both of these properties cause 263 numerical difficulties when introduced into the continuous simulations. Therefore a continuous 264 polynomial that passes though the origin was identified for each land cover type with the general form 265 $f(h_{OF}) = ah_{OF} + bh_{OF}^{2}$, where parameters a and b were optimised to closely recreate the original data. 266 Parameter b could be described as a function of a; the final relationship used is $f(h_{OF}) = ah_{OF} - ah_{OF} -$ (2.21a+3.82) h_{OF}^2 , with values of a: (Ba) 20.79, (E) 5.05, (E/S) 3.48 and (S/J) 1.90. Parameter a was used 267 268 as a proxy for *f* for the purpose of model calibration and sensitivity analysis.

269

270 The resulting model couples four one-dimensional models that represent respectively subsurface, 271 overland flow, drain flow and collector drain flow (Figure 1). The one-dimensional models are run 272 simultaneously with feedbacks between the subsurface and surface through the infiltration and 273 evaporation terms, and between the subsurface and the drains through the drain depth and seepage face 274 water level. By limiting the model to four one-dimensional models rather than a fully integrated three-275 dimensional model, some of the computational demands of the modelling procedure are reduced 276 (assuming that fewer nodes and fewer equations will lead to reduced computational time) and the 277 parameterisation of the model can be limited to those parameters for which information can be taken 278 from the literature (such as the saturated hydraulic conductivity and surface roughness). The model uses 279 inputs of rainfall and potential evaporation, and outputs flow and water depths throughout the model 280 domain.

281

282 The model space is discretised into a number of soil blocks (Figure 1), which are bounded upstream and 283 downstream by drains. The block lengths tested ranged from 5m (close drain spacing) to 500m (to 284 simulate intact peatland). The model space domain may include a large number of blocks, depending on 285 the application. Although the drains may be at any angle relative to the contours, the soil blocks are 286 always aligned downslope, meaning that surface and subsurface flow in the block are always 287 perpendicular to the contours and parallel to the edge of the block. In this way, flow paths on and in the 288 soil block may be represented by the single dimension and there is no exchange flow between the soil 289 blocks. This representation neglects any cross-slope flow paths that may be present.

290

291 The partial differential equations to describe the variation of flow depths with time for each of the one-292 dimensional models were discretised in space using finite differences. The resulting ordinary differential 293 equations were then integrated in time using Matlab's ODE15s solver (Shampine and Reichelt, 1997; 294 Shampine et al., 1999). The solver uses an adaptive time grid, which limits the numerical error associated 295 with each time step to within a user defined tolerance. For the soil block and overland flow calculations, 296 nodes in the x-direction are in a \log_{10} space, allowing nodes to be more closely spaced toward the 297 boundaries. By using a varying x-spacing, computational efficiency can be increased, by focusing nodes 298 in the regions of rapidly varying flows.

- 299

3.

Model calibration and testing

300 3.1. **Case study application**

301 Oughtershaw Beck, a tributary of the River Wharfe, is a catchment of approximately 13.8 km² (Lane et 302 al., 2004) located at 54°13'54" N, 2°15'09"W, in the Yorkshire Dales, Northern England (Figure 3). The 303 average annual rainfall is 1850mm (Wallage et al., 2006). The catchment ranges in elevation from 353m 304 at the outlet to 640m, and is primarily blanket peat with an average thickness of 2m. The catchment is

underlain by carboniferous limestone and millstone grit that is covered with a glacial boulder clay
deposit (Wallage et al., 2006). Open cut drainage was installed over a large portion of the catchment in
the 1960s. There was no maintenance of the drains in the intervening period, but Holden et al. (2007)
surveyed the drains in the area, finding that most had either remained the same dimensions as when cut
or had eroded; there were very few that had naturally infilled or become vegetated.

310

311 A monitoring programme ran from December 2002 until August 2004, consisting of 6 boreholes in a 312 transect across a drained peatland site within the catchment (Figure 4a), with water table depths below 313 the surface recorded at approximately 10 minute intervals. The boreholes were monitored continuously over a 419 day period starting on 17th February 2003. A 25° V-notch weir was located in a drain 314 315 approximately 32 m downstream of the borehole transect (see Figure 4); the notch was 28cm above the 316 base of the drain and water level measurements were taken at approximately 5 minute intervals. The weir equation, calibrated in-situ, is $Q_W = 0.21 h_W^{2.3}$, where $Q_W (m^3 s^{-1})$ is weir flow and $h_W (m)$ is water level 317 318 over the crest. 304 days of reliable observations are available during the 21 month period. Because the 319 field experiment was not originally designed to support a physics-based model, a detailed survey of the 320 site was not completed prior to the removal of field equipment; therefore information regarding exact 321 ground surface heights is unknown. A transect survey across the site in the approximate location of the 322 boreholes indicates that the ground surface level fluctuates by up to 10cm around the average slope of the 323 site. The schematic map of the site, shown in Figure 4a, is based on information from aerial photographs 324 and topographic maps. A rain gauge was located approximately 300m from the site, with measurements 325 made at 15 minute resolution. As evaporation data were not available for the location, an approximate 326 time series of daily potential evaporation was synthesised using the EARWIG weather generator (Kilsby 327 et al., 2007). The dataset is unique in its simultaneous high resolution measurements of rainfall, drain 328 flow and water table in blanket peat and therefore provides an important opportunity to calibrate and test 329 the model performance.

330

331 The model boundaries were defined by the drains at the top and bottom of the transect, the weir at the332 outlet and the upstream end of the central drain (Figure 4b). 10 soil blocks were used in the simulation (5)

333 upslope and 5 downslope from the central drain), each with 20 nodes, with spacing of these nodes 334 ranging from 40cm near the drain to 3.5m in the centre of the soil block. Borehole locations were 335 explicitly added as nodes, to avoid interpolation errors when comparing the model output against 336 observations. The original model configuration was altered slightly in order to incorporate the routing 337 effect of the weir: the drain upstream of the weir was modelled as a reservoir with outflows set by the 338 weir equation measured in the field. This assumes that the residence time in this drain is dominated by 339 the storage effect of the weir, and that travel time of the wave is negligible compared to the simulation 340 output time step, which is considered reasonable because of the short drain length.

341

342 The model was calibrated by performing a Monte Carlo analysis. 2000 random samples were taken from 343 the *a priori* parameter ranges shown in Table 1. The calibrated model parameters were: the acrotelm and 344 catotelm hydraulic conductivities, the thickness of the acrotelm, the angle of the drain, the surface slope 345 and the type of land cover. Some of the *a priori* ranges were more easily constrained (i.e. the slope and 346 drain angle) as there was some knowledge about these parameters from information such as maps and 347 aerial photographs. However, we chose not to fix these parameters, in order to investigate the parameter 348 sensitivity and also to reflect the uncertainty in this information. The drain length was fixed at 46m based 349 on the results of a long term mass balance, and the acrotelm and catotelm porosities were set as functions 350 of their respective hydraulic conductivities following the relationship presented by Letts et al. (2000). 351 Simulations were then performed for each of the *a priori* parameter sets for a 50 day calibration period 352 from 24 September 2003 with a preceding 50 day model warm up period (not used for comparison 353 against the observations) to allow sufficient time for the model behaviour to become independent of the 354 user-defined initial conditions. The simulations took 6-10s per simulation day using an Intel Core 2 Duo 355 Processor (E6850, 3.00 GHz).

356

357 The observed data points were interpolated to the same time samples as the model output (10 minutes).

358 The model performance was determined for each parameter set using the Root Mean Square Error

359 (RMSE) for observed discharges (over all the parameter sets RMSE ranges from 0.049 to 0.095 l/s), and

360 for water table depths for all six boreholes (RMSE ranges from 0.021 to 0.161 m). None of the sampled

361 parameter sets could simultaneously optimise the RMSE for all seven sets of observations. In order to 362 accommodate the multi-objective nature of the problem and also recognising the uncertainty in the data 363 and the model, rather than performing verification and predictions with a single "optimal" parameter set, 364 the parameter sets considered most consistent with the observed hydrology of the site are selected. These 365 are referred to here as the "behavioural" parameter sets (B). The behavioural parameter sets are selected 366 by firstly taking only the best 5% for the weir flow simulations (100 parameter sets), then further 367 reducing this set by keeping only the 50 parameter sets that had the best average RMSE for all six 368 boreholes. Less emphasis is placed on the borehole observations in this combined criteria because our 369 primary interest is to replicate peak flow hydrographs, and as there is inevitable uncertainty in the 370 borehole simulations associated with heterogeneity as well as the uncertainty related to the inexact 371 datums from which the borehole measurements were made. The selection of the criteria was arbitrary; 372 however it achieved the purpose of constraining the model towards the observed behaviour within an 373 uncertainty analysis framework.

374

375 Figure 5 shows the confidence limits of the predictions obtained using the a priori parameter sets and 376 those obtained using the *behavioural* parameter sets, plotted with observed weir and borehole data for the 377 largest event during the calibration period. This shows that the behavioural parameter sets give good 378 performance during the main flow peak and demonstrates that non-behavioural parameter sets were 379 typically rejected as they produced soil conditions that were too dry preceding the onset of the rainfall 380 event and therefore tended to underestimate the first peak. Following the flood peak, all simulations 381 reflect saturated conditions with the water table at the ground surface; the observations reflect a similar 382 water table level, fluctuating between -2cm and the surface.

383

To test the model outside the calibration period, simulations using only the *behavioural* parameter sets were performed for the entire observation period (Figure 6). Regions of missing data in Figure 6 are periods when observations were not made, and periods with missing simulations are periods where rainfall data were not recorded. Figure 7 illustrates a period of relatively poor performance and high uncertainty in the transition from a dry to wet period. In this period, the observed rewetting (the time it

took for the water table to increase by approximately 10cm) took approximately 3 hours according to the observations, whereas in the simulation it took approximately 1 day (although the simulations did react earlier). For the second flow peak, the upper bound reflects the observations; however, the lower bound indicates no flow. Once the soil became saturated, the third peak shows that the simulation improved significantly, although the lower bound prediction is only approximately 40% of the observed flow and is also delayed by approximately 45 minutes.

395

Figure 8 shows good flow performance and reduced uncertainty in a consistently wet period. During this period the water table was always very close to the surface (<5cm) in both the observations and the model outputs. Figure 6 demonstrates that ground water levels are generally well predicted in the winter time, when evaporation is low and the water table is very close to the surface. However, during summer periods, the magnitude of the drawdown tends to be under-predicted and the time for rewetting tends to be over-predicted. Predictions for the borehole located 10cm upstream from the drain were consistently worse than those in the centre of the upslope soil block.

403

404 The *behavioural* parameter sets can also be used to examine the sensitivity of the model to each of the 405 parameters, by making comparisons between the frequency distributions of the *behavioural* parameters 406 $F(\theta_x|B)$ and the frequency distributions of the *a priori* parameter $F(\theta_x)$ (following the approach of Spear 407 and Hornberger, 1980). Figure 9 shows the cumulative distribution functions (cdfs) of the *a priori* and 408 behavioural distributions for each parameter; the greater the deviations of the behavioural cdfs from the 409 *a priori* cdfs, the more sensitive the model prediction is to the parameter. The significance and magnitude 410 of the difference between these distributions (and therefore the sensitivities) is quantified using the 411 Kolmogrov-Smirnov (KS) test (see McIntyre et al. 2003). All behavioural parameter distributions were 412 significantly different from the *a priori* parameter distributions at the 95% confidence interval. For the 413 parameter ranges tested in this example, the parameters ordered from most sensitive to least sensitive, 414 based on their KS test statistic values, are: acrotelm saturated hydraulic conductivity (K_{Sa}), acrotelm 415 thickness (d_a) , drain angle (β_d) , catotelm saturated hydraulic conductivity (K_{Sc}) , land cover (a) and site 416 slope (θ_d) . The model sensitivity to the evapotranspiration was also tested by running 10 parameter sets,

417 randomly selected from the original 2000 parameter sets, each for five different EARWIG stochastic 418 realisations for a 150 day period. The mean difference in RMSE between the best performing and worst 419 performing simulations for each parameter set was 0.0023 l/s for the flow simulations and 0.0036 m for 420 the water table simulations. This variation was considered to have little significance on the selection of 421 behavioural parameter sets.

422 **3.2.** Generalised parameter space response

423 The model performance in the case study application suggests that the model captures the key processes 424 in drained blanket peatlands under wet conditions. For sites that may be modelled with the same structure 425 but different parameter values, the model was used to explore aspects of hydrological response 426 throughout the potential parameter space. In these simulations, the original model structure shown in 427 Figure 1 was used, rather than the version adapted to accommodate the weir. It is assumed that all 428 possible surface roughnesses for peatland sites can be represented by values of a between the smoothest 429 (Ba) and roughest (S/J) land cover types. The parameter ranges for this broader exploration are shown in 430 Table 1. This allows a qualitative validation of the model results relative to responses reported in the 431 literature for a range of sites as well as providing a more general picture of the sensitivity of the flow 432 peaks to the model parameters.

433

434 The model parameter space was quantised and simulations performed for all the possible parameter 435 combinations. The model domain was fixed to a 500m x 500m area, and tested with seven design storms 436 taken from the Flood Estimation Handbook (Robson and Reed, 1999), assuming a winter profile. The 437 seven events were: 10 year return period with 1 hour duration, 10 year 2 hour, 10 year 6 hour, 10 year 12 438 hour, 10 year 18 hour, 2 year 12 hour and 50 year 12 hour. As only large design storms were examined, 439 evaporation was not included in the model. Initial water table levels were set as the steady state solution for infinite duration rainfall of 0.1 md⁻¹ and drains were assumed to be empty. The peak flows were 440 441 found to be independent of this choice of initial condition. In order to reduce parameterisation, the depth 442 averaged hydraulic conductivity was assumed to be constant within each simulation, therefore removing 443 the acrotelm-catotelm representation. The results from the study are shown in Figure 10. For each

sampled value of a parameter x_i (i=1 to 6 representing the six sampled parameters), the mean of the peak flow values over all rainfall events and sampled values of the other parameters is calculated and plotted against x_i . The x_i values have been scaled to range between 0 and 1; the hydraulic conductivity is shown on a log scale.

448

449 The model behaviour was found to be consistent with observations from the literature. For example, at 450 high hydraulic conductivities, drainage is found to be very effective in reducing peak flows; with low 451 hydraulic conductivities (such as in peatlands), drainage is found to increase model peak flows and 452 decrease times to peak, with the effects generally larger in systems with closer drains and lower 453 hydraulic conductivities (e.g. Holden et al., 2006; Robinson, 1986; Stewart and Lance, 1991). At very 454 close drain spacing, the peak model flows begin to reduce, suggesting that spacing contributes to both 455 increased storage and increased conveyance. Examination of the water table profiles also shows that the 456 spatial variation in water table depth observed in the field (Coulson et al., 1990; Holden et al., 2006) is 457 also replicated in the model.

458 **4. Discussion**

459 A new hydrological model has been presented for drained blanket peats that can explicitly represent 460 varied drainage networks and the water table response between these drains. The simplified physics-461 based model allows for the exploration of the internal model behaviour, whilst still being relatively 462 computationally efficient. High quality data from small scale peatland sites are quite limited, and as 463 model complexity increases, there is less likelihood that suitable observational data are available to 464 constrain the model parameters (Freer et al., 2004). Despite the limited complexity of the new model, and 465 the fact that the dataset used for calibration is unique in the UK for the high level of information that it 466 contains about peatlands, there are still challenges in the calibration, in particular, simultaneously 467 optimising the model performance against individual observation time series. There are many possible 468 causes for inconsistency between model outputs and observations, related to the model conceptualisation 469 as well as the quality or suitability of the observations.

471 Our approach to model calibration in this paper has taken into account responses that it would be 472 reasonable to expect the model to simulate given its relative simplicity. A spatially homogeneous 473 representation of site properties is unlikely to provide consistently accurate representations of multiple 474 point estimates of water table levels. We also note that without a detailed survey of the site, and only the 475 site averaged slope to work from, water table measurements made from a ground surface reference level 476 may have several centimetres of error in them. In the field, it is also difficult to precisely define the 477 surface of a peat, as in reality, the change from peatland vegetation to acrotelm is more of a continuum 478 than a discrete layering. Therefore, the influence of the water table levels was down-weighted in the 479 calibration so that that the simulated response was considered acceptable if it was broadly consistent with 480 the general response of the six boreholes. Despite the reduced weighting of the boreholes in the 481 calibration, they provided important information in the calibration process, particularly in refining the 482 behavioural range of the slope; without the information from the boreholes, the slope would not have 483 been identified as a sensitive parameter.

484

485 Even with these challenges, the longer term behaviour of the water table is generally reliably predicted 486 (see Figure 6), with seasonal variability represented well. However, Figure 6 also highlights the 487 relatively poor prediction of the water table near the drain edge. This is unsurprising as the assumptions 488 made in the Boussinesq equation are no longer valid in regions near the drainage ditches, where 489 streamlines begin to converge and the Dupuit-Forcheimer approximation fails (Bear, 1988). Drain edges 490 are also modelled as vertical, whereas in reality they will have some degree of incline. Whether distances 491 to the boreholes are measured from the drain edge at the top or the bottom of the drain will therefore 492 have an impact on the location of the borehole in the model domain. Near the edges of the peat blocks, 493 where the water table level is rapidly varying, water table predictions are very sensitive to movement of a 494 matter of centimetres upslope or downslope of a given location. Should more accurate simulations of the 495 water table within 1m or less of the drain edge be required, it would be necessary to reassess the 496 suitability of the Boussinesq equation.

498 Despite the inevitable conflict resulting from the desire to accurately represent local scale hydrological 499 processes and the requirement that the model should be computationally efficient, the model performs 500 consistently well during wet periods (e.g. Figure 8). Performance during drying periods and the 501 following recoveries was more poorly represented and had the greatest uncertainty. We assume that the 502 slower recovery of the water table is probably related to the exclusion of an unsaturated zone 503 representation, as in reality water stored in the unsaturated zone would add to the infiltrating water to 504 increase the rate of water table rise. However, we suggest that, in the context of flood response, the loss 505 of precision for these periods is outweighed by the significant gains in computational time (assuming that 506 number of model nodes can be taken as a proxy for computational time, (e.g. Pancioni et al, 2003)), and 507 also note that a poorly constrained complex subsurface representation would be unlikely to provide 508 greater precision in these periods. It is also important to note that our calibration period was during 509 winter; therefore it is possible that if there had been suitable data to use for a calibration period in the 510 summer time, that drying and rewetting of the peat may have been better captured in the behavioural 511 parameter set.

512

513 Based on an examination of the response of the modelled flow across the parameter space under large 514 rainfall events, the model parameter to which the peak flow response is most sensitive is the drain 515 spacing followed by the hydraulic conductivity. However, at low hydraulic conductivities (e.g. typical of 516 UK blanket peats) the peak flow is almost independent of the hydraulic conductivity. In that case, apart 517 from drain spacing, the peak flows are most sensitive to the parameters related to the land surface and 518 drain roughnesses. This is unsurprising given that the simulations were for large rainfall events, where 519 any storage in the subsurface could be rapidly filled. The high sensitivity of flow to the roughness 520 parameters also reflects their high uncertainty. Further field investigations of these parameters (e.g. 521 Holden et al., 2008) would greatly enhance any hydrological modelling efforts for blanket peatlands.

522 5. Conclusions

523 The processes and responses associated with drained peatlands have been captured in a new simplified524 physics-based model. The model has advantages over previous physics-based and lumped conceptual

525 models, as it provides flexibility in the drainage configurations that can be represented and can provide 526 outputs of the spatial variability of model internal states. The results of the generalised parameter space 527 response indicate that peak flows are sensitive to the geometric properties of the hillslope and drainage 528 configurations, therefore models that are spatially lumped or restricted in their model configuration 529 cannot as accurately distinguish those sites that pose the greatest flood hazard. The model therefore has 530 potential in terms of specifically identifying and prioritising areas for flood hazard mitigation measures 531 in terms of potential reduction of downstream flood risk. The model has been tested against a dataset 532 from the UK and has been shown to perform well in terms of capturing peak flow responses under 533 saturated or near-saturated soil moisture conditions. Poorer performance under drier conditions was 534 explained by lack of an accurate unsaturated zone model, which while not of great concern for flood flow 535 applications, could restrict the model's usefulness for the exploration of other peat management impacts 536 on, for example, low flows and water quality. Although the unknown surface levels at the boreholes 537 created challenges with the simultaneous optimisation of all six boreholes, long term behaviour of water 538 table levels was reasonably well predicted, and the general water table behaviour was consistent with 539 observations from other studies. How far the model can be generalised will need to be explored further 540 through testing against more data sets. The effect of spatial heterogeneity of the model parameters should 541 also be investigated. The modelling process has helped identify the overland and channel flow roughness 542 parameters as being particularly important controls on peak flow response. Further field research towards 543 constraining these parameters is expected to enhance the model performance.

544 6. Acknowledgements

This research was funded by the UK Flood Risk Management Research Consortium Phase 2, EPSRC
Grant EP/F020511/1. Time to work on field data used in this paper was gratefully provided by a Philip
Leverhulme Prize awarded to Joseph Holden. Thank you also to two anonymous reviewers, whose
constructive comments helped us to significantly improve the manuscript.

549 Appendix

550 List of parameters:

551	а	Proxy overland flow friction factor		
552	eta_d	Drain angle (Degrees)		
553	\mathcal{E}_a	Effective porosity of acrotelm (-)		
554	\mathcal{E}_c	Effective porosity of catotelm (-)		
555	$ heta_d$	Drain slope (Degrees)		
556	$ heta_s$	Site slope (Degrees)		
557	θ_x	A priori parameter sets		
558	В	Behavioural parameter sets		
559	d_a	Thickness of the catotelm (L)		
560	d_c	Thickness of the catotelm (L)		
561	ET_c	Actual evaporation from collector drain (LT ⁻¹)		
562	ET_d	Actual evaporation from drains (LT ⁻¹)		
563	ET_{OF}	Actual evaporation from overland flow (LT ⁻¹)		
564	ET_p	Actual evaporation from peat soil (LT^{-1})		
565	f	Darcy Weisbach friction factor (-)		
566	g	Acceleration due to gravity (9.81 ms^{-2})		
500	0			
567	H	Generic water depth (L)		
567 568	H h_d	Generic water depth (L) Depth of water in drain (L)		
567 568 569	H h_d h_{OF}	Generic water depth (L) Depth of water in drain (L) Depth of overland flow (L)		
567 568 569 570	H h_d h_{OF} h_T	Generic water depth (L) Depth of water in drain (L) Depth of overland flow (L) Total hydraulic head (L)		
567 568 569 570 571	H h_d h_{OF} h_T h_S	Generic water depth (L)Depth of water in drain (L)Depth of overland flow (L)Total hydraulic head (L)Depth of water table above impermeable bed (L)		
567 568 569 570 571 572	H h_d h_{OF} h_T h_S h_W	Generic water depth (L)Depth of water in drain (L)Depth of overland flow (L)Total hydraulic head (L)Depth of water table above impermeable bed (L)Height of water above weir crest (L)		
567 568 569 570 571 572 573	H h _d h _{OF} h _T h _S h _W i	Generic water depth (L)Depth of water in drain (L)Depth of overland flow (L)Total hydraulic head (L)Depth of water table above impermeable bed (L)Height of water above weir crest (L)Infiltration (LT ⁻¹)		
567 568 569 570 571 572 573 574	H h_d h_{OF} h_T h_S h_W i K_{Sa}	Generic water depth (L)Depth of water in drain (L)Depth of overland flow (L)Total hydraulic head (L)Depth of water table above impermeable bed (L)Height of water above weir crest (L)Infiltration (LT ⁻¹)Saturated hydraulic conductivity of acrotelm (LT ⁻¹)		
567 568 569 570 571 572 573 574 575	H h_d h_{OF} h_T h_S h_W i K_{Sa} K_{Sc}	Generic water depth (L)Depth of water in drain (L)Depth of overland flow (L)Total hydraulic head (L)Depth of water table above impermeable bed (L)Height of water above weir crest (L)Infiltration (LT ⁻¹)Saturated hydraulic conductivity of acrotelm (LT ⁻¹)Saturated hydraulic conductivity of catotelm (LT ⁻¹)		
567 568 569 570 571 572 573 574 575 576	H h_d h_{OF} h_T h_S h_W i K_{Sa} K_{Sc} L_C	Generic water depth (L)Depth of water in drain (L)Depth of overland flow (L)Total hydraulic head (L)Depth of water table above impermeable bed (L)Height of water above weir crest (L)Infiltration (LT ⁻¹)Saturated hydraulic conductivity of acrotelm (LT ⁻¹)Saturated hydraulic conductivity of catotelm (LT ⁻¹)Length of the collector drain and site length (L)		
567 568 569 570 571 572 573 574 575 576 576	H h_d h_{OF} h_T h_S h_W i K_{Sa} K_{Sc} L_C L_d	Generic water depth (L)Depth of water in drain (L)Depth of overland flow (L)Total hydraulic head (L)Depth of water table above impermeable bed (L)Height of water above weir crest (L)Infiltration (LT ⁻¹)Saturated hydraulic conductivity of acrotelm (LT ⁻¹)Saturated hydraulic conductivity of catotelm (LT ⁻¹)Length of the collector drain and site length (L)		

579	Q	Generic unit width flux (L^2T^{-1})			
580	q_c	Collector drain flow (L ² T ⁻¹)			
581	q_{d}	Drain flow (L^2T^{-1})			
582	q_{OF}	Unit flux of overland flow (L^2T^{-1})			
583	q_S	Unit flux of subsurface flow (L^2T^{-1})			
584	Q_W	Weir flow $(L^{3}T^{-1})$			
585	t	Time (T)			
586	V	Generic velocity in downslope direction (LT ⁻¹)			
587	W	Drain spacing (L)			
588	W_d	Drain width (L)			
589	x	Peat block ordinate (L)			
590	x_C	Collector drain ordinate (L)			
591	X_d	Drain ordinate (L)			
592	у	Generic downslope distance ordinate (L)			

593 **References**

Ahti, E., 1980. Ditch spacing experiments in estimating the effects of peatland drainage on summer
runoff, Proceedings of the International Symposium on Influence of Man on Hydrological
Regime. IAHS-AISH Publication 130, Helsinki, pp. 49–53.

597 Allaby, M. (Editor), 2008. Oxford Dictionary of Earth Sciences. Oxford University Press, Oxford.

Armstrong, A. Kay, B., Mcdonald, A. T., Gledhill, S., Foulger, M. and Walker., A., 2010. Peatland drain
blocking reduces dissolved organic carbon loss and discoloration of water; results from a
national survey. J. Hydrol., in press.

601 Bear, J., 1988. Dynamics of Fluids in Porous Media. Dover Publications, Mineoloa, N.Y.

Beven, K., 1981. Kinematic subsurface stormflow. Wat. Resour. Res., 17(5): 1419-1424.

- Bonn, A., Allott, T.E.H., Hubacek, K. and Stewart, J., 2009. Introduction: drivers of change in upland
 environments: concepts, threats and opportunities. In: A. Bonn, T.E.H. Allott, K. Hubacek and J.
 Stewart (Editors), Drivers of change in upland environments. Routledge, Oxon, pp. 1-10.
- Bradley, C., 1996. Transient modelling of water-table variation in a floodplain wetland, Narborough
 Bog, Leicestershire. J. Hydrol., 185(1-4): 87-114.
- Bragg, O.M., 2002. Hydrology of peat-forming wetlands in Scotland. Sci. Total Environ., 294(1): 111129.
- 610 Burke, W., 1967. Principles of drainage with special reference to peat. Ir. For. 24: 1–7.
- 611 Childs, E.C., 1971. Drainage of Groundwater Resting on a Sloping Bed. Wat. Resour. Res., 7: 1256612 1263.
- 613 Clymo, R.S., 2004. Hydraulic conductivity of peat at Ellergower Moss, Scotland. Hydrol. Process.,
 614 18(2): 261-274.
- 615 Condliffe, I., 2009. Policy change in the uplands. In: A. Bonn, T.E.H. Allott, K. Hubacek and J. Stewart
 616 (Editors), Drivers of change in upland environments. Routledge, Oxon, pp. 59-89.
- 617 Conway, V.M. and Millar, A., 1960. The hydrology of some small peat-covered catchments in the
 618 northern Pennines. J. Inst. Water Engin., 14: 415-424.
- 619 Coulson, J.C., Butterfield, J.E.L. and Henderson, E., 1990. The Effect of Open Drainage Ditches on the
 620 Plant and Invertebrate Communities of Moorland and on the Decomposition of Peat. J. Appl.
 621 Ecol., 27(2): 549-561.
- 622 Dunn, S.M. and Mackay, R., 1996. Modelling the hydrological impacts of open ditch drainage. J.
 623 Hydrol., 179(1-4): 37-66.

- Evans, M.G., Burt, T.P., Holden, J. and Adamson, J.K., 1999. Runoff generation and water table
 fluctuations in blanket peat: evidence from UK data spanning the dry summer of 1995. J.
 Hydrol., 221(3): 141-160.
- Freer, J.E., McMillan, H., McDonnell, J.J. and Beven, K.J., 2004. Constraining dynamic TOPMODEL
 responses for imprecise water table information using fuzzy rule based performance measures. J.
 Hydrol., 291(3-4): 254-277.
- Henderson, F.M. and Wooding, R.A., 1964. Overland Flow and Groundwater Flow from a SteadyRainfall of Finite Duration. J. Geophys. Res., 69: 1531-1540.
- Holden, J., 2005. Controls of soil pipe frequency in upland blanket peat. J. Geophys. Res., 110: F01002.
- Holden, J., 2009a. Flow through macropores of different size classes in blanket peat. J. Hydrol., 364(34): 342-348.
- Holden, J., 2009b. Upland Hydrology. In: A. Bonn, T.E.H. Allott, K. Hubacek and J. Stewart (Editors),
 Drivers of change in upland environments. Routledge, Oxon, pp. 113-134.
- Holden, J. and Burt, T.P., 2002a. Laboratory experiments on drought and runoff in blanket peat. Eur. J.
 Soil Sci., 53(4): 675-689.
- Holden, J. and Burt, T.P., 2002b. Piping and pipeflow in a deep peat catchment. Catena, 48(3): 163-199.
- Holden, J. and Burt, T.P., 2003a. Hydraulic conductivity in upland blanket peat: measurement and
 variability. Hydrol. Process., 17(6): 1227-37.
- Holden, J. and Burt, T.P., 2003b. Hydrological studies on blanket peat: the significance of the acrotelmcatotelm model. J. Ecol., 91(1): 86-102.
- Holden, J. and Burt, T.P., 2003c. Runoff production in blanket peat covered catchments. Wat. Resour.
 Res., 39(7): 1191.

646	Holden, J., Burt, T.P. and Cox, N.J., 2001. Macroporosity and infiltration in blanket peat: the
647	implications of tension disc infiltrometer measurements. Hydrol. Process., 15(2): 289-303.

- Holden, J. Chapman, P.J. and Labadz, J.C., 2004. Artificial drainage of peatlands: hydrological and
 hydrochemical process and wetland restoration. Prog. Phys. Geog., 28(1): 95-123.
- Holden, J., Evans, M.G., Burt, T.P. and Horton, M.M., 2006. Impact of land drainage on peatland
 hydrology. J. Environ. Qual., 35(5): 1764-78.
- Holden, J., Gascoign, M. and Bosanko, N.R. 2007. Erosion and natural revegetation associated with
 surface land drains in upland peatlands. Earth Surface Processes and Landforms, 32: 1547-1557.
- Holden, J., Kirkby, J., Lane, S. N., Milledge, D. G., Brookes, C. J., Holden, V. and Mcdonald, A. T.,
 2008. Overland flow velocity and roughness properties in peatlands. Wat. Resour. Res., 44:
 W06415.
- Ingram, H.A.P., 1978. Soil Layers in Mires Function and Terminology. Journal of Soil Science, 29:
 224-227.
- Ingram, H.A.P., 1983. Hydrology. In: Gore, A.J.P. (Ed.). Ecosystems of the World 4A, Mires: Swamp,
 Bog, Fen and Moor, Elsevier, Oxford, pp. 67–158.
- Kellner, E. and Halldin, S., 2002. Water budget and surface-layer water storage in a Sphagnum bog in
 central Sweden. Hydrol. Process., 16(1): 87-103.

Kilsby, C.G., Jones, P. D., Burton, A., Ford, A. C., Fowler, H. J., Harpham, C., James, P., Smith and A.,
Wilby, R. L., 2007. A daily weather generator for use in climate change studies. Environ.
Modell. Softw., 22(12): 1705-1719.

Lane, S. N., 2002. More floods, less rain: changing hydrology in a Yorkshire context. Regional Review,
11: 18-19.

668	Lane, S.N., Brookes. C. J., Hardy, R. J., Holden, J., James, T. D., Kirkby, M. J., Mcdonald, A. T., Tayefi,
669	V. and Yu, D., 2003. Land management, flooding and environmental risk: new approaches to a
670	very old question. In Proceedings of the Annual CIWEM Conference, Harrogate, September
671	2003, 10–12.

Lane, S. N., Brookes, C.J., Kirkby, A.J. and Holden, J., 2004. A network-index based version of
TOPMODEL for use with high-resolution digital topographic data. Hydrol. Process., 18(1): 191201.

675 Letts, M.G., Roulet, N.T., Comer, N.T., Skarupa, M.R. and Verseghy, D.L., 2000. Parametrization of
676 Peatland Hydraulic Properties for the Canadian Land Surface Scheme. Atmos. Ocean, 38(1):
677 141-160.

- McIntyre, N, Wagener, T, Wheater, H, Chapra, S. 2003. Risk-based modelling of surface water quality A case study of the Charles River, Massachusetts. J. Hydrol., 274, 225-247.
- 680 Milne, R. and Brown, T.A., 1997. Carbon in the Vegetation and Soils of Great Britain. J. Environ.
 681 Manage., 49(4): 413-433.
- 682 Newson, M.D. and Robinson, M., 1983. Effects of Agricultural Drainage on Upland Streamflow: Case
 683 Studies in Mid-Wales. J. Environ. Manage., 17(4): 333-348.
- Paniconi, C., Troch, P.A., van Loon, E.E. and Hilberts, A.G.J., 2003. Hillslope-storage Boussinesq
 model for subsurface flow and variable source areas along complex hillslopes: 2.
 Intercomparison with a three-dimensional Richards equation model. Wat. Resour. Res., 39(11):
- **687** 1317.
- Robinson, M., 1986. Changes in catchment runoff following drainage and afforestation. J. Hydrol., 86(12): 71-84.
- Robson, A. and Reed, D., 1999. Flood estimation handbook: statistical procedures for flood frequencyestimation. Institute of Hydrology.

- Rubec, C., 2005. The decade of the bog 1994-2004: Global progress on peatland wise use andconservation. Suo, 56(1): 19-26.
- 694 Shampine, L.F. and Reichelt, M.W., 1997. The MATLAB ODE Suite. SIAM J. Sci. Comput., 18(1): 1695 22.
- 696 Shampine, L.F., Reichelt, M.W. and Kierzenka, J., A., 1999. Solving Index-1 DAEs in MATLAB and
 697 Simulink. SIAM Rev., 41(3): 538-552.
- 698 Singh, V.P., 1996. Kinematic wave modeling in water resources. Surface-water hydrology John Wiley699 and Sons, Inc., Chichester, UK, 1399 pp.
- Spear, R.C. and Hornberger, G.M., 1980. Eutrophication in peel inlet--II. Identification of critical
 uncertainties via generalized sensitivity analysis. Water Res., 14(1): 43-49.
- Stewart, A.J. and Lance, A.N., 1983. Moor-draining: A review of impacts on land use. J. Environ.
 Manage., 17(1): 81-99.
- Stewart, A.J. and Lance, A.N., 1991. Effects of moor-draining on the hydrology and vegetation of
 northern Pennine blanket bog. J. Appl. Ecol., 28(3): 1105-1117.
- Surridge, B.W.J., Baird, A.J. and Heathwaite, A.L., 2005. Evaluating the quality of hydraulic
 conductivity estimates from piezometer slug tests in peat. Hydrol. Process., 19(6): 1227-44.
- Van Seters, T.E. and Price, J.S., 2002. Towards a conceptual model of hydrological change on an
 abandoned cutover bog, Quebec. Hydrol. Process., 16(10): 1965-1981.
- 710 Verhoest, N.E.C., Pauwels, V.R.N., Troch, P.A. and De Troch, F.P., 2002. Analytical Solution for
- 711 Transient Water Table Heights and Outflows from Inclined Ditch-Drained Terrains. J. Irrig.
- 712 Drain. E-ASCE, 128: 358.

713	Wallage, Z.E., Holden, J. and McDonald, A.T., 2006. Drain blocking: An effective treatment for			
714	reducing dissolved organic carbon loss and water discolouration in a drained peatland. Sci. Total			
715	Environ., 367(2-3): 811-821.			
716	Weiss, R., 1998. Modeling moisture retention in peat soils. Soil Sci., 62(2): 305-313.			

- 717 Wheater, H.S., Reynolds, B., Mcintyre, N., Marshall, M., Jackson, B., Frogbrook, Z., Solloway, I.,
- Francis, O. J. and Chell, J., 2008. Impacts of upland land management on flood risk: multi-scale
 modelling methodology and results from the Pontbren experiment, FRMRC Research Report UR
 16, Imperial College & CEH Bangor.

	Ranges for Oughtershaw Beck Monte Carlo Simulations		Ranges for Sensitivity Analysis	
Parameter	Lower value	Upper value	Lower value	Upper value
Acrotelm hydraulic conductivity (m/d)	0.1	4	(Depth Averaged)	(Depth averaged)
Catotelm hydraulic conductivity (m/d)	0.001	0.05	0.001 10	
Acrotelm thickness (m)	0.05	0.2	FIXED	
Drain angle (degrees)	10	20	15	60
Surface slope (degrees)	5	10	2	14
Land cover	Sphagnum & Juncus (roughest)	Eriophorum (smoothest)	Sphagnum & Juncus (roughest)	Bare (smoothest)
Manning's n	n/a	n/a	0.2	1.4
Drain spacing (m)	FIXED		5	500

Table 1: Parameter ranges for Oughtershaw Beck Monte Carlo simulations and general sensitivity analysis

Figures:

Figure 1: conceptual model of drained peatland

Figure 2. Variation of \overline{K}_s and $\overline{\varepsilon}$ with h_s , and variation of K_s and ε with z, given $K_{Sa}=1 \text{ md}^{-1}$, $K_{Sc}=0.01 \text{ md}^{-1}$, $\varepsilon_a = 0.6$, $\varepsilon_c = 0.4$, $d_a = 0.2 \text{m}$ and $d_c = 0.8 \text{m}$

Figure 3: Location map of Oughtershaw Beck; (a) Location within the British Isles (b) Site location within the Yorkshire dales, marked by the star. Major towns in the area are marked with large circles; Oughtershaw is a small hamlet and marked with a small circle.

Figure 4: (a) Field site schematic diagram, (b) Model domain and soil blocks

Figure 5: Four day sample from the calibration period, showing the largest peak and water table (WT) depth at borehole A2. Light grey: 90% confidence interval for all simulations; dark grey: 90% confidence interval for behavioural simulations; black dots: observations

Figure 6: Rainfall, flow and upstream water table depth for the verification period. Grey area: 90% confidence interval of *behavioural* simulations; black line or black dots: observations.

Figure 7: Flow hydrograph and water table (WT) depth for borehole A2 from verification period. Grey area: 90% confidence interval of *behavioural* simulations; black dots: observations.

Figure 8: Flow hydrograph and water table (WT) depth for borehole A2 from verification period. Grey area: 90% confidence interval of *behavioural* simulations; black dots: observations

Figure 9: Cumulative density plots of the *a priori* and behavioural parameter distributions. Black line: *a priori* parameter distribution; grey line: behavioural parameter distribution

Figure 10: Mean flow rates and mean times to peak versus scaled parameter values