UNIVERSITY OF LEEDS

This is a repository copy of Variable source and age of different forms of carbon released from natural peatland pipes.

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/77441/

Version: Published Version

Article:

Billett, MF, Dinsmore, KJ, Smart, RP et al. (6 more authors) (2012) Variable source and age of different forms of carbon released from natural peatland pipes. Journal of Geophysical Research: Biogeosciences, 117 (G2). G02003. 1 - 16. ISSN 2169-8953

https://doi.org/10.1029/2011JG001807

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher's website.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk https://eprints.whiterose.ac.uk/

Variable source and age of different forms of carbon released from natural peatland pipes

M. F. Billett,¹ K. J. Dinsmore,¹ R. P. Smart,² M. H. Garnett,³ J. Holden,² P. Chapman,² A. J. Baird,² R. Grayson,² and A. W. Stott⁴

Received 8 July 2011; revised 4 January 2012; accepted 14 January 2012; published 7 April 2012.

[1] We used the carbon isotope composition (¹⁴C and δ^{13} C) to measure the source and age of DOC, POC, dissolved CO₂ and CH₄ (δ^{13} C only) released from three natural peat pipes and the downstream catchment outlet of a small peatland in northern England. Sampling under different hydrological extremes (high flows associated with storm events and low flows before or after storms) was used to explore variability in C sources as flow paths change over short periods of time. The δ^{13} C composition of organic C differed (δ^{13} C-DOC -28.6‰ to -27.6‰; δ^{13} C-POC -28.1‰ to -26.1‰) from that of the dissolved gases (δ^{13} C-CO₂ -20.5‰ to +1.1‰; δ^{13} C-CH₄ -67.7‰ to -42.0‰) and showed that C leaving the catchment was a mixture of shallow/deep pipe and non-pipe sources. The isotopic composition of the dissolved gases was more variable than DOC and POC, with individual pipes either showing 13 C enrichment or depletion during a storm event. The ¹⁴C age of DOC was consistently modern at all sites; POC varied from modern to 653 years BP and evasion CO₂ from modern to 996 years BP. Differences in the isotopic composition of evasion CO_2 at pipe outlets do not explain the variability in δ^{13} C and 14 C at the catchment outlet and suggest that overland flow is likely to be an important source of CO₂. Our results also show that the sources of CO₂ and CH₄ are significantly more variable and dynamic than DOC and POC and that natural pipes vent old, deep peat CO_2 and POC (but not DOC) to the atmosphere.

Citation: Billett, M. F., K. J. Dinsmore, R. P. Smart, M. H. Garnett, J. Holden, P. Chapman, A. J. Baird, R. Grayson, and A. W. Stott (2012), Variable source and age of different forms of carbon released from natural peatland pipes, *J. Geophys. Res.*, *117*, G02003, doi:10.1029/2011JG001807.

1. Introduction

[2] Soil pipes are significant subsurface structural features of peatlands and are known to occur in northern Europe, North America, Siberia, and the Southern Hemisphere [Norrström and Jacks, 1996; Price, 1992; Rapson et al., 2006; Thorp and Glanville, 2003]. They have been widely recorded in UK blanket peats [e.g., Holden and Burt, 2002; Holden, 2005; Jones et al., 1997], where it has been shown that peat drainage, surface drying and Calluna vulgaris L. (Hull.) encroachment are associated with increased pipe densities. Human action and environmental change can therefore potentially increase the number and size of pipes. Despite their widespread occurrence, there has been almost no research on the role of soil pipes in the release of C from peatlands and their potential to export C stored deep within the peat profile. Hence, it is important to understand and

²School of Geography, University of Leeds, Leeds, UK.

³NERC Radiocarbon Facility (Environment), East Kilbride, UK.

quantify the sources and amounts of different forms of C lost from peatlands via the pipe network and to investigate whether old, pre-bomb C is being released from deep peat sources.

[3] Globally, peatlands are estimated to store between 400 and 500 Gt C and play a significant role in greenhouse gas (GHG) exchange between the land surface and the atmosphere [Gorham, 1991; Roulet, 2000]. Peatland management and mismanagement (degradation) has had a major impact on their CO₂ sink and CH₄ source strength [e.g., Gorham, 1991; Minkkinen et al., 2002]. Much of our understanding of C cycling and GHG fluxes associated with peatlands is based upon a knowledge of relationships between water table position, microbial community, temperature, plant type and management [Billett et al., 2006a; Cole et al., 2002; McNeil and Waddington, 2003; Strack et al., 2008; Worrall et al., 2006]. These factors affect components of the peatland C budget in different ways [e.g., Dinsmore et al., 2010; Koehler et al., 2011]. While pipes are known to be important in the delivery of water to peatland streams [e.g., Holden and Burt, 2002], there has been little work examining the role that water movement through peatlands plays in the retention and release of particulate and dissolved organic carbon (POC, DOC) and of dissolved gaseous carbon (CO₂

¹Centre for Ecology and Hydrology Edinburgh, Penicuik, UK.

⁴NERC Life Sciences Mass Spectrometry Facility, Centre for Ecology and Hydrology, Lancaster Environment Centre, Lancaster, UK.

Copyright 2012 by the American Geophysical Union. 0148-0227/12/2011JG001807

and CH_4). Pipe-mediated C transport is likely to be temporally variable since it is known that the relative contribution of pipeflow to streamflow changes with antecedent conditions [*Holden and Burt*, 2002]. The dynamic hydrology associated with peatland pipes is also manifest in frequent changes in outlet morphology, appearance of new pipes and closure of existing pipes [*Holden et al.*, 2012].

[4] Natural soil pipes, which comprise inter-connecting macropores several centimeters in diameter and up to several hundred meters in length, typically form complex, undulating, branching subsurface networks that are potential pathways for water, dissolved gas, sediment and solute transport [*Holden et al.*, 2009]. Flow within individual pipes is either perennial (continuous) or ephemeral (responds only to storm events and therefore discontinuous). Pipe networks are also known to occur at a variety of depths within the soil profile [*Holden and Burt*, 2002] and have the potential to provide connectivity with both deep and shallow sources of water [*Holden*, 2004]. This has important implications in ombrotrophic peatlands where deep peat has traditionally been assumed to be a stable C store largely disconnected from the stream network.

[5] Radiocarbon (¹⁴C) studies in northern temperate, boreal and subarctic peatlands show that the ¹⁴C age of peats increases with depth down the soil profile [Schiff et al., 1997; Charman et al., 1999; Chasar et al., 2000; Palmer et al., 2001; Raymond and Bauer, 2001a, 2001b; Billett et al., 2007; Clymo and Bryant, 2008]. The upper layers are dominated by peat ¹⁴C ages that are modern (post-bomb) with peat typically several thousand years old in deeper layers [Charman et al., 1999; Chasar et al., 2000; Palmer et al., 2001; Clymo and Bryant, 2008]. Soil solution DOC and gaseous forms of C also increase in age with depth. However, soil gases are generally younger than the peat at the same depth and, in most reported cases, soil solution DOC is younger still. Ages of gases reported in peatlands range from modern to 4330 years BP for CO₂ and modern to 4033 years for CH₄, while ages of DOC range from modern to 6970 years [Charman et al., 1999; Chasar et al., 2000; Clymo and Bryant, 2008; Garnett et al., 2011]. Although there are a number of exceptions, peatland-derived stream water DOC generally produces a radiocarbon signature indicating a modern source. Studies of ¹⁴C and stable carbon isotope (δ^{13} C) suggest that the majority of the DOC is derived from the decomposition of recent soil organic matter [Palmer et al., 2001; Raymond and Bauer, 2001a; Billett et al., 2007; Evans et al., 2007]. Stream water POC, however, is often much older with ages of up to 3710 years reported [Striegl et al., 2007; Billett et al., 2011]. Billett et al. [2007] found that DOC released from the stream system of four UK peatland catchments was young (modern to 202 years BP), while CO₂ being released (evaded or degassed) from the stream water surface was older, (modern to 1449 years BP), suggesting (in association with the δ^{13} C values) that the sources of fluvial DOC and CO2 were in most cases different.

[6] Up to now there has been no study of the radiocarbon age of natural pipe waters in peatlands. In terms of C this is important because it is not only present in a variety of chemical forms in peats (DOC, POC, DIC (dissolved inorganic carbon), CO_2 and CH_4), but the age of C stored is known to increase with depth within the peat profile. It could

be assumed that peatland pipes simply act as "benign" conduits for surface water transfer through the peat mass, although that is unlikely. We know that CO2 and CH4 concentrations in both soil solution and the soil atmosphere of shallow and deep peats are orders of magnitude higher than concentrations in the above-ground atmosphere [Charman et al., 1999; Clymo and Bryant, 2008; Hope et al., 2004; Dinsmore et al., 2009]. Therefore, concentrations in pipe water are likely to be significantly higher than those in stream water. Pipeflow, supersaturated with CO_2 and CH_4 , may degas rapidly once it leaves the pipe system due to lower ambient partial pressures [Dinsmore et al., 2011]. In peatland systems this out-gassing in the drainage network potentially contributes a significant loss of terrestrially derived C to the atmosphere [Hope et al., 2004]. It has been shown that peatland headwater streams are important zones of degassing [Dawson et al., 2002], and concentrations of CO₂ vary over different temporal scales [Dawson et al., 2001; Dinsmore and Billett, 2008]. Specific parts of peatland streams act as hot spots for degassing [Billett and Moore, 2008]; additional degassing (CO₂ and CH₄) hot spots have been identified in peatland gullies [McNamara et al., 2008] and the riparian zone of DOC-rich streams [Dinsmore et al., 2009]. Recent work by Dinsmore et al. [2011] has demonstrated the importance of pipe outgassing and shown that significant loss of greenhouse gases (CO₂, CH₄ and N₂O) occur from the pipe network to the atmosphere.

[7] Here we report isotopic measurements of DOC, POC, $CO_2 (\delta^{13}C \text{ and }^{14}C)$ and $CH_4 (\delta^{13}C \text{ only})$ released from three natural pipes and the downstream catchment outlet of a blanket bog at Moor House, Cumbria, UK. We hypothesize that:

[8] 1. Natural peat pipe waters contain C sourced from different depths/ages within the profile.

[9] 2. Dissolved, particulate and gaseous forms of C exported from peat pipes have different sources/ages.

[10] 3. Natural pipes contain a greater proportion of "old" C compared to the stream network.

[11] We tested these hypotheses by collecting samples of pipe and stream water under a range of hydrological conditions associated with spring, summer and autumn high flow events. Since upland peatland systems in the UK are characterized by a rapid rainfall-runoff response [*Holden and Burt*, 2003a] associated with changes in flow pathways and greater pipe flow, our aim was to target sampling at different parts of the storm hydrograph to see the greatest potential differences in carbon age/source.

2. Methods

2.1. Study Site

[12] Cottage Hill Sike (54°41'N, 2°23'W), located within the Moor House National Nature Reserve (Cumbria, northern England), has a catchment area of 17.4 ha and an altitudinal range of 545 to 580 m (Figure 1). The catchment is covered almost entirely by a thick ombrotrophic blanket peat (typically 3–4 m deep, maximum 8 m) that overlies a Quaternary clay-rich glacial till on Carboniferous Limestone bedrock. Cottage Hill Sike (CHS) is a headwater of the River Tees, which flows eastward and drains into the North Sea. The climate is subarctic oceanic, with a mean annual

Figure 1. Location, site characteristics and sample locations in the Cottage Hill Sike catchment.

temperature of 5.3°C (1931–2006) and rainfall of 2012 mm yr⁻¹ (1951–1980, 1991–2006) [Holden and Rose, 2011]. The catchment contains an ECN (Environmental Change Network) target monitoring site and is one of the CEH (Centre for Ecology and Hydrology) Carbon catchments. As part of the ECN, parameters such as vegetation composition, water table position and soil-water chemistry have been monitored under strict protocols since 1992 [*Sykes and Lane*, 1996]. Vegetation cover in the catchment is predominantly *Calluna vulgaris* and *Eriophorum vaginatum* L. with other species including *Empertrum nigrum* L. and *Sphagnum capillifolium* (Ehrh.) Hedw.

[13] Stream discharge is characterized by a rapid hydrological response to all rainfall or snowmelt events [*Clark et al.*, 2005]. Discharge at the outlet of the catchment is monitored continuously through a rated flume (CHS flume). Trout Beck (the mainstream in the area into which CHS drains) displays mean lag times of 2.8 h between peak rainfall and peak discharge [*Evans et al.*, 1999] and annual runoff coefficients of 70%–80%. Overland flow and shallow throughflow generally dominate runoff response at the site, with little apparent deeper flow through the peat matrix [*Holden and Burt*, 2003a].

[14] Stream water chemistry at Cottage Hill Sike is acidic and organic-rich with a mean (1993–2007) pH of 4.3, mean DOC concentration of 18.8 ± 8.7 (SD) mg L⁻¹ and mean Ca concentration of 1.1 mg L⁻¹ [*Tipping et al.*, 2010]. Soil water DOC concentrations sampled within the catchment by the Environmental Change Network (ECN) at 10 and 50 cm depth were 21.1 ± 4.4 and 16.9 ± 2.2 mg L⁻¹ [*Adamson et al.*, 2001], respectively, with summer maxima of 25– 50 mg L⁻¹ [*Clark et al.*, 2005]. Mean annual DOC flux from the catchment (1992–2007) is high (23.4 g C m⁻² yr⁻¹), with significant year-on-year variation [*Billett et al.*, 2010]. Previous isotopic studies carried out at the site showed that DOC at the catchment outlet was modern (i.e., carbon fixed post-1955 AD), while CO₂ released (evaded) from the stream water surface was older (modern to 530 ± 35 years BP), suggesting that the sources of fluvial DOC and CO₂ were different [*Billett et al.*, 2007]. In addition, *Tipping et al.* [2010] showed that stream water DOM (dissolved organic matter) was young (5 years old) and predominantly associated with surface peat, whereas groundwater DOM was 8,500 years old and likely derived from a source within the underlying glacial clay.

2.2. Sampling and Analysis

[15] We aimed to collect samples for isotopic analysis of DOC, POC, CO₂ and CH₄ over a range of hydrological conditions by sampling pre-storm (base flow), rising limb, high flow and the receding limb of storms at different times of year. We succeeded in sampling pipe water during major high flow events in April and November and a minor rainfall event in August 2009. Samples collected in all three storms were sent for stable isotope $(\delta^{13}C)$ analysis at the NERC Life Sciences Mass Spectrometry Facility (LSMSF-Lancaster, UK); those collected in August and November were also sent to the NERC Radiocarbon Facility (RCF-East Kilbride, UK) for ¹⁴C analysis. A mean of 84 pipe outlets have been mapped in CHS [Holden et al., 2012]. Of these, several have been more intensively studied for their hydrology and hydrochemistry [Dinsmore et al., 2011; Holden et al., 2012; Smart et al., 2012; J. Holden et al., Natural pipes in blanket peatlands: Major point sources for the release of carbon to the aquatic system, submitted to Global Change Biology, 2012]. Of these pipes (24 ephemeral; 60 perennial) we selected three to represent different pipe types and pipe outlet depths below the peat surface (depths ranged from 15 cm to 200 cm below the surface). These were P3 (perennially flowing, pipe outlet 25 cm from the peat surface), P6 (perennially flowing, pipe outlet 100 cm from the peat surface) and P8 (ephemerally flowing, pipe outlet 160 cm from the peat surface). The naming of the three pipes is consistent with that used in other papers from the site; for more information on pipe distribution and morphology, see Holden et al. [2012] and Smart et al. [2012]. Our sampling strategy was therefore based on three continuously monitored pipes plus the catchment outlet (CHS flume). An additional set of water samples from the same sites was collected for the determination of DOC, POC, CO₂ and CH₄ concentration and in situ measurements of pH, conductivity and temperature at the time of sampling.

[16] Between field sampling, sample preparation in the laboratory, and analysis, all water samples were stored at 4°C and in the dark following standard protocols (to minimize biological activity). For the determination of DOC and POC, samples were collected from free flowing water at the pipe outlet in acid-washed, 500 mL polypropylene sample bottles pre-rinsed with sample water. A Thermalox Total Carbon (TC) analyzer was used to measure DOC (precision ± 0.1 mg C L⁻¹, detection limit 1.0 mg C L⁻¹). Samples were acidified and sparged with O₂ to stabilize the sample and remove inorganic carbon. Acidified samples were run in duplicate (or triplicate if the coefficient of variation was >1%). Regular analysis of potassium hydrogen phthalate standards and a certified reference material (VKI QC WW4a) ensured the level of error was kept to a minimum.

Particulate organic carbon was determined indirectly by loss-on-ignition after filtration through 0.7 μ m Whatman GF/F glass micro-fibre filters. The filtrate was dried at 105°C (24 h), ignited at 375°C (16 h); POC was calculated using a regression equation for non-calcareous soils [*Ball*, 1964; *Dawson et al.*, 2002].

[17] For the determination of δ^{13} C-DOC and δ^{13} C-POC, samples were collected in two acid-washed 500 mL polypropylene sample bottles per sample pre-rinsed three times with sample water. Prior to analysis for δ^{13} C of DOC and POC at LSMSF, 1 L samples were filtered through preashed 0.70 μ m GF/F filter papers on an acid-washed suction filtration system into acid-washed 1 L conical flasks. Filter papers were stored in 20 mL acid-washed glass vials at 4°C prior to ¹³C analysis of POC at LSMSF. The pH of each sample filtrate was then determined in 500 mL aliquots, prior to being adjusted to pH 4 by addition of 2 M HCl. Samples were then sparged with CO₂-free N₂ for 20 min before the pH was raised to pH 7 by 0.2 M NaOH. 500 mL aliquots of sample were then placed in 1 L rotary evaporator flasks for evaporation at 40°C under vacuum. Samples were evaporated to near dryness (20-30 mL) before being transferred to a 100 mL rotary evaporator flask and evaporated to dryness. The dried DOC samples were then transferred to labeled 20 mL acid washed glass vials and stored at 4°C prior to δ^{13} C analysis at the LSMSF. Samples for the determination of δ^{13} C-DOC and δ^{13} C-POC were combusted using a Eurovector elemental analyzer. Resultant CO₂ from combustion was analyzed for $\delta^{13}C$ using an Isoprime Ltd "Isoprime" Isotope Ratio Mass Spectrometer (IRMS). Maximum standard deviation of duplicates for δ^{13} C was 0.16‰.

[18] For ¹⁴C-DOC, 1 L of stream or pipe water was collected in acid-washed pre-rinsed glass bottles before storage and analysis at the NERC Radiocarbon Facility (NERC RCF). Because the concentration of POC is generally much lower than DOC, 10 L of sample was collected in an acidwashed 10 L sample aspirator for ¹⁴C-POC analysis. This sample was filtered (using ashed 0.7 μ m GF/F filters) and the filter contents (i.e., the POC) retained and sent to the NERC RCF, where the POC was removed from the filter and dried. Samples of DOC were filtered (through ashed GF/F filters), acidified to pH 4 by addition of 2 M HCl, and sparged by bubbling with CO_2 -free N_2 gas. The samples were returned to pH 7 by addition of KOH solution, rotary evaporated and freeze-dried. For all DOC and POC samples, the total carbon in the dried sample material was cryogenically recovered as CO₂, following combustion inside an evacuated sealed quartz tube by heating with CuO, and stored in glass tubes prior to isotope analysis.

[19] Samples for the determination of dissolved CO_2 and CH_4 in stream or pipe water were collected using the headspace method [*Hope et al.*, 2004; *Billett and Moore*, 2008]. This involves equilibrating 40 mL of water with 20 mL of ambient atmosphere for 1 min underwater in a sealed 60 mL syringe and transferring the equilibrated saturated headspace sample to a gas-tight nylon syringe. Dissolved gas concentrations are calculated from the measured headspace and ambient concentrations using Henry's law, which requires additional measurements of water temperature, atmospheric pressure and elevation [*Hope et al.*, 1995]. On return to the laboratory at CEH Edinburgh headspace samples were analyzed on an HP5890 Series II gas chromatograph equipped

with a FID and attached methanizer (detection limits: CO₂ 199 ppmv, CH₄ 1.26 ppmv). For the determination of δ^{13} C- CO_2 an additional headspace sample was collected in the same way described above, the only difference being that the headspace sample was transferred to an evacuated 20 mL exetainer using a hypodermic needle. To collect sufficient CH₄ for the determination of δ^{13} C we used three \times 100 mL syringes, and in each syringe 60 mL of stream water was equilibrated with 40 mL of ambient air. The headspace from all three syringes was transferred to a dry 100 mL syringe in the field and the composite headspace injected into a sealed 100 mL evacuated glass Wheaton bottle through a selfsealing septum. Samples for the determination of δ^{13} C-CO₂ were directly introduced into the injection port of an Isoprime Ltd (Cheadle, UK) TraceGas pre-concentrator interfaced via an open split to an Isoprime Ltd isotope ratio mass spectrometer. All samples were analyzed to the United Kingdom Accreditation Scheme (UKAS) ISO17025 standard. Methane analysis was performed using the same instrument with the gas selectors set to CH₄ and a furnace tube in line. Methane was converted to CO2 in a Pt/Ni furnace at 1050°C from which δ^{13} C measurements were then determined.

[20] Samples of dissolved CO₂ for C isotope analysis were collected in situ from selected peat depths (25, 30, 50 and 100 cm) in one profile \sim 20 m meters from the outlet to pipe P3 using a passive sampling method [Garnett and Hardie, 2009]. Stainless steel probes were inserted vertically (with minimal disturbance) to the required sampling depth. The end of the probes contained a hydrophobic gas permeable, water-impermeable filter (Accurel PP V8/2 HF, Membrana GmbH, Germany). The upper end of the probe remained above ground, and to this a quartz glass cartridge containing a zeolite molecular sieve [Hardie et al., 2005] was attached. The molecular sieve passively adsorbs CO₂ and therefore sampled the atmosphere inside the probe, thus collecting CO_2 in the vicinity of the gas entry point to the probe. Probes were inserted on 20th August and removed on 11th November 2009. The molecular sieves were then returned to the NERC RCF, the CO₂ cryogenically recovered following heating (500°C) and stored in glass tubes until analysis.

[21] Further supporting age data were provided by radiocarbon analysis of two basal peats (2.4–2.6 m) from a site at the western edge of the CHS catchment (100 m west of pipe P6; see Figure 1) collected on 26 July 2000. Samples were acid-washed (2 M HCl) to remove potentially mobile carbon, dried, and converted to CO_2 in a combustion "bomb" in an atmosphere of high pressure oxygen. The CO_2 was cryogenically recovered then converted to benzene, and the ¹⁴C measured by liquid scintillation counting (on a Quantulus 1220, LKB Wallac, Finland).

[22] Carbon dioxide lost by evasion from the water surface to the atmosphere was sampled from the pipe outlets and the stream for isotopic analysis using a sealed opaque floating chamber connected to a zeolite molecular sieve sampling system [*Hardie et al.*, 2005; *Billett et al.*, 2006b]. Evaded (degassed) CO₂ is trapped by the molecular sieve after purging the original atmospheric CO₂ from the floating headspace. Sampling time is a function of evasion rate which is dependent on gas transfer rate at the water surface (enhanced by turbulence) and the pCO_2 of the water. We aimed to trap 5–15 mL of CO₂ to provide a suitable volume

Figure 2. Storm hydrographs (L s^{-1}) and rainfall rates (mm hr^{-1}) for the three pipes (P3, P6, P8) and the CHS flume during the April, August and November storms. No discharge was produced by P8 during the August storm.

for ¹⁴C analysis by accelerator mass spectrometry (AMS). Sample times in this study varied from 30 min at CHS flume to 19 h at pipe P3. After trapping the evaded CO₂, the molecular sieve cartridges were returned to the NERC RCF and the CO₂ recovered using the same procedures as used for the ¹⁴C analysis of dissolved peat CO₂ [see *Hardie et al.*, 2005; this study].

[23] For all samples analyzed for radiocarbon, an aliquot of the recovered CO₂ was first used to determine δ^{13} C (relative to the Vienna-PDB standard) by isotope IRMS (VG Optima, Micromass, UK). The remaining CO₂ was converted to graphite by Fe-Zn reduction [*Slota et al.*, 1987] and passed to the Scottish Universities Environmental Research Centre (SUERC) for ¹⁴C measurement by AMS. Following conventions, ¹⁴C results were normalized to δ^{13} C –25‰ and expressed as % modern and conventional radiocarbon ages (years BP; where 0 BP = 1950 AD) with $\pm 1 \sigma$ analytical confidence. A correction was made to the evasion isotope values to account for the fact that the CO₂ had degassed into a closed chamber. As described by *Billett and Garnett* [2010], this adjustment is used to calculate the isotopic composition of the evasion CO₂-C if it had been degassing directly into the free atmosphere rather than the chamber. However, for the current samples, the correction made only a small difference to most results. During passive sampling, isotopic fractionation occurs which has been quantified to be ~4‰ [*Garnett and Hardie*, 2009]. The δ^{13} C values for dissolved CO₂ in peat were therefore adjusted to account for this effect (¹⁴C results did not require this correction as following convention they were normalized to a δ^{13} C of -25‰).

[24] Hourly rainfall was recorded in a tipping bucket rain gauge at the ECN weather station approximately one kilometre from the study site. Discharge at the outlets of the three pipes was measured using continuously recording Trafag DL/N type pressure transducers with data loggers, installed in stilling wells located within rated V notch weir boxes which collected discharge from pipe outlets; discharge at the CHS flume was recorded continuously using a logging pressure transducer (In Situ Level Troll 300) situated directly upstream of the flume.

[25] Possible differences in chemical species between sites and between the isotopic signature of different forms of C were evaluated using one-way ANOVA followed by Tukey's multiple comparison test to examine which individual mean values differ significantly from others.

3. Results

3.1. Storm Hydrology

[26] The most intense of the three storms occurred in November when 78.4 mm of rain fell in 44 h. The precipitation profile had two major peaks which resulted in a rapid runoff response as flow at CHS flume increased from 4 to 207 L s^{-1} (Figure 2). The intensity of the November storm was demonstrated by the exceedence value relative to the complete 2009 flow record at CHS flume; peak flow in the November event was only exceeded 0.3% of the time. Similarly the April storm was double-peaked but of lower intensity (24.8 mm of precipitation in 33 h) resulting in a rise in discharge from 4 to 99 L s⁻¹ at CHS flume. The exceedence value of this storm was 2.3%. The August event was of a smaller magnitude (10.8 mm of precipitation in 44 h) and, due to a combination of drier antecedent conditions and low rainfall intensity, we only measured a rise in discharge from 1 to 4 L s⁻¹ at the catchment outlet. The exceedence value of the August event was 34.8%. In all three events the rainfall-runoff response lag time (the time between onset of rainfall and a rise in water level at CHS flume) was approximately 1 h.

[27] Of the two continuously flowing pipes, P6 was the less hydrologically responsive. Discharge increased from 0.02 to 0.25 L s⁻¹ during the November storm and from 0.02 to 0.11 L s⁻¹ during the April storm. In contrast, P3 recorded much higher flows with an increase from 0.03 to a maximum of 3.21 L s^{-1} in November and from 0.04 to 0.55 L s⁻¹ in April. During the August event, discharge at the two continuously flowing perennial pipes remained at 0.02–0.04

	P3 (<i>n</i> = 18)	P6 (<i>n</i> = 18)	$\mathrm{P8}^{\mathrm{a}}\ (n=8)$	Flume $(n = 18)$
DOC (mg L^{-1})	33.29[a] ^b (5.60–124.93)	35.12[a] (7.21–85.05)	60.55[a] (6.38–142.84)	32.82[a] (12.20-51.30)
POC (mg L^{-1})	2.89[a] (0.09-23.60)	2.60[a] (0.72–9.81)	1.20[a] (0.18–2.72)	0.86[a] (0.36–1.73)
CO_2 -C (mg L ⁻¹)	1.42[ab] (0.46–2.91)	2.41[a] (0.58–10.99)	0.78[b] (0.70–0.95)	1.48[ab] (0.44–3.45)
CH_4 - $C (\mu g L^{-1})$	3.71[b] (0.37–11.75)	215.80[a] (13.36-1132.14)	4.79[b] (0.37–6.81)	2.00[b] (0.02-4.53)
pH	4.16[a] (3.99–4.32)	4.22[a] (4.01–4.42)	4.17[a] (4.09–4.24)	4.22[a] (4.12–4.36)
Cond (μ S cm ⁻¹)	37[a] (25–45)	37[a] (25–46)	41[a] (31–50)	37[a] (26–45)
Temp (°C)	7.15[a] (3.52–13.91)	6.55[a] (3.53–12.06)	4.67[a] (3.71–5.52)	7.12[a] (3.49–13.27)

 Table 1. Basic Mean Chemical Characteristics (Minimum and Maximum Values in Parentheses) of P3, P6, P8 and the Outlet Flume

 During the Three Storm Events

^aPipe P8 flowed only during the April and November events.

^bMean values that do not share the same bracketed letter(s) are significantly different (Tukey's multicomparison test).

L s⁻¹; there was no flow from the ephemeral pipe (P8). In the intense November storm P8 exhibited two distinct periods of discharge which were closely related to precipitation intensity; a maximum flow of 1.32 L s⁻¹ was recorded during the second storm peak. In the April storm P8 recorded the highest flows of all the pipes reaching 0.87 L s⁻¹ soon after the second precipitation peak. The storm hydrographs of pipes P3 and P8 were similar in shape to that at CHS flume.

3.2. Spatial Differences in Chemical and Isotopic Concentrations Between Sites

[28] Although mean DOC concentrations at the two continuously flowing pipes (P3 and P6), the ephemeral pipe (P8) and the CHS flume were not statistically different (Table 1), the mean concentration at P8 was almost double those at the other three sites. Likewise POC concentrations were not significantly different at the four sample sites. Highest CO_2 concentrations were observed at P6 and lowest at P8; the differences between these two pipes were statistically significant. Mean CH_4 concentration at P6 was between 45 and 108 times higher and significantly different from the other three sites. No significant differences existed between pH, conductivity and temperature at the four sites when data from all the storm events were pooled.

[29] The mean δ^{13} C value of DOC released from P3 was statistically more ¹³C depleted than the DOC from other sites (Table 2). In contrast DOC at the flume was significantly more ¹³C enriched; P6 and P8 had similar δ^{13} C-DOC values. P3 and P6 had similar δ^{13} C-POC values and were significantly more ¹³C depleted than POC from P8 and CHS flume. The most ¹³C depleted dissolved (and evaded) CO₂ was associated with P6, whereas P3 was significantly depleted in ¹³C compared to the other sites. For CH₄ the most ¹³C depleted mean values were at P6 and P8, while CH₄ measured at CHS flume was the most ¹³C enriched. P3 had a significantly different δ^{13} C-CH₄ value from the other sites. [30] A comparison between the δ^{13} C signature of different forms of C at each of the four sites (Table 2, statistics not shown) demonstrated that the isotopic composition of both DOC and POC associated with each pipe and CHS flume was statistically similar. However, differences between the δ^{13} C composition of CO₂, CH₄ and evasion CO₂ were statistically significant showing that at each site the gaseous forms of C had a unique δ^{13} C signature. [31] Table 3 shows the ¹⁴C enrichment of DOC, POC and

[31] Table 3 shows the ¹⁴C enrichment of DOC, POC and evasion CO₂ for the August and November storm events. The overall (August + November) mean ¹⁴C enrichment of DOC samples collected was significantly higher at P3 (114.22% modern) and P6 (114.30% modern) compared to CHS flume (111.21% modern). For POC pipe P6 was significantly more ¹⁴C depleted (99.61% modern) compared to P3 (107.09% modern) and CHS flume (105.58% modern). Likewise, P6 was associated with the most ¹⁴C depleted evasion CO₂ (mean 94.57% modern), although this was not significantly different from the value at CHS flume (97.74% modern). Evasion CO₂ at P3, however, was significantly more ¹⁴C-enriched than the other two sites.

[32] We compared the ¹⁴C values of DOC, POC and evasion CO₂ at individual sites and found that both at P3 and P6 DOC was significantly ¹⁴C enriched compared to both evasion CO₂ and POC. At CHS flume, however, the mean ¹⁴C enrichment of all three forms of C was significantly different. We collected insufficient carbon for ¹⁴C analysis of the ephemeral pipe (P8) to make the same type of comparison.

^[33] Isotope analysis of dissolved CO₂ passively sampled down the peat profile at P3 showed that between 25 and 100 cm CO₂ became progressively more ¹³C enriched and ¹⁴C depleted (Table 4). The oldest CO₂ was collected at 100 cm and corresponded to a radiocarbon age of 448 \pm 37 years BP. The 2 basal peat samples from the western edge of the catchment sampled in 2000 were dated at

Table 2. Mean δ^{13} C Values (Minimum and Maximum Values in Parentheses) of Various Carbon Species Collected During the Three Storm Events

	P3 (<i>n</i> = 12–18)	P6 (<i>n</i> = 13–18)	P8 $(n = 8)$	Flume $(n = 14 - 18)$
δ^{13} C-DOC	-28.3[c] ^a (-28.6 to -28.1)	-28.2[b] (-28.4 to -27.8)	-28.1[b] (-28.2 to -28.0)	-27.9[a] (-28.1 to -27.6)
δ^{13} C-POC	-27.2[b] (-28.1 to -26.5)	-27.1[b] (-28.0 to -26.6)	-26.4[a] (-27.0 to -26.2)	-26.6[a] (-27.3 to -26.1)
δ^{13} C-CO ₂	-17.4[c] (-20.5 to -12.4)	-4. 9[a] (-13.5 to 1.1)	-14.6[bc] (-16.2 to -13.7)	-14.5[b] (-16.7 to -11.4)
δ^{13} C-CH ₄	-54.1[b] (-60.1 to -47.9)	-64.2[c] (-67.7 to -61.6)	-61.9[c] (-67.3 to -49.1)	-46.7[a] (-53.1 to -42.0)
δ^{13} C-evasion CO ₂	-23.4[b] (-26.7 to -18.1)	-8.8[a] (-16.5 to -1.4)	-19.8 (one value only)	-19.2[b] (-20.7 to -14.9)

^aMean values that do not share the same bracketed letter(s) are significantly different (Tukey's multicomparison test). Seven to eight samples of evasion CO_2 were collected from each of P3, P6 and P8. The statistical comparison shown here is between sites, not between C species.

	•	e e		
	Р3	P6	P8	Flume
		August		
DOC	115.31 (115.00-115.89)	115.54 (113.97–116.71)	ns	111.48 (111.08-112.01)
POC	106.46 (103.31-110.24)	96.54 (93.27-102.67)	ns	103.94 (103.24-104.68)
CO ₂ -C	109.13 (107.41–110.19)	89.21 (88.34–90.17)	ns	98.04 (96.01–99.53)
		November		
DOC	113.41 (112.48–114.20)	113.37 (110.99–115.08)	114.6 (113.37–115.83)	111.1 (109.9–112.0)
POC	107.47 (102.68–109.47)	101.45(92.21-107.75)	111.21 (110.89–111.52)	106.57 (102.64–108.87)
CO ₂ -C	106.54 (104.61–107.38)	98.59 (92.43–104.09)	106.45 ^a	97.77 (95.98–100.42)

Table 3. Mean ¹⁴C Enrichment (% Modern) Values (Minimum and Maximum Values in Parentheses) of DOC, POC and Evasion CO₂ Collected From Three Pipes and the Catchment Outlet During the August and November Storm Events

^aOne sample.

 6396 ± 46 (Publication Code SRR-6613) and 6511 ± 50 years BP (Publication Code SRR-6614).

3.3. Temporal Changes in Chemical and Isotopic Concentrations During Storm Events

[34] During the April storm, DOC concentrations from the three pipes were variable and high and showed no consistent temporal trend over the hydrograph period. Concentrations of DOC in the more intense November storm were much lower and showed a decline in all three pipes over the event period (Figure 3). δ^{13} C-DOC values were variable and inconsistent during both storms.

[35] During the April storm event POC concentrations peaked at the same time on the rising limb of the storm hydrograph at CHS flume and all three pipes (Figure 4). Generally higher POC concentrations were recorded in the more intense November storm with P3 releasing very high POC concentrations during the low-flow period between the two discharge peaks. Like the δ^{13} C values of DOC, there were no consistent temporal trends in δ^{13} C-POC during the two storms.

[36] In the April and November storms the onset of rising stream and pipe discharge was associated with a rapid drop in dissolved CO₂ concentration (Figure 5); thereafter, concentrations recovered slightly (April) or remained consistently low (November). Our data also showed that over the course of both storm events the often distinct pre-storm differences between CO₂ concentrations at all four sampling sites became less clear as flows increased. P6 exhibited significant changes in δ^{13} C-CO₂ during both storms, with pre-storm (base flow) values of -0.1% and -0.9% changing to -13.5‰ and -11.8‰ during the high discharge period indicating progressive ¹³C depletion. The δ^{13} C-CO₂ values of P3, P8 and CHS flume were less variable over the course of both storms (-11.4% to -18.6%) and in the November storm showed a trend of increasing ¹³C enrichment over time.

[37] In all three pipes, CH_4 concentrations dropped at the start of the storms and remained relatively low throughout the storm; these changes were clearer in the November event (Figure 6). While distinct differences existed between individual pipes and CHS flume, only P3 exhibited a consistent trend of increasing ¹³C enrichment over time.

[38] The most complete set of radiocarbon data was collected for the November storm (Figure 7) and showed that at CHS flume and P3, changes in ¹⁴C-DOC and ¹⁴C-POC were similar. During the pre-storm period POC produced from P6 was ¹⁴C depleted; it became rapidly ¹⁴C enriched at the start of the November storm and then more depleted at the end of the storm. Evasion ¹⁴C-CO₂ values changed little at P3 over the course of the storm. However, pre-storm evasion ¹⁴C-CO₂ values were depleted at both P6 and CHS flume. At the onset of the storm, values became more ¹⁴C enriched before declining in the case of CHS flume and enriching further in the case of P6.

[39] We do not show temporal changes in isotopic composition during the August event because changes in discharge were minimal (Figure 2). The δ^{13} C signature of DOC and POC at the three remaining sites (P3, P6 and CHS flume) varied only slightly (0.2–0.6‰) over the sampling period, although at P6 there was a larger change (2.1‰). Evasion and dissolved CO₂ were more variable, particularly at P6 where we recorded the most ¹³C enriched sample (+1.1‰ dissolved CO₂) at summer base flow before the start of the small storm. This changed to -3.9% on the receding limb of the short event. Likewise, dissolved CH₄ values were more variable than DOC or POC, with changes of up to 6.8‰ during the course of the event.

[40] The radiocarbon age of DOC and POC samples collected during the August event was generally modern, although at P6 we measured POC ages of 526 ± 37 and 559 ± 37 years BP at base flow and peak flow, respectively. Evasion CO₂ ages were most ¹⁴C depleted at base flow with ages varying from 996 \pm 38 to 831 \pm 38 years BP at P6 and

Table 4. Isotopic Signature of CO₂ Collected at a Range of Peat Depths (25–100 cm) at Site P3 by Passive Sampling^a

Peat Depth (cm)	14 C Enrichment (% Modern $\pm 1\sigma$)	Conventional Radiocarbon Age	$\delta^{13}C_{(VPDB)}$ (±0.1‰)	Publication Code
25	102.86 +/- 0.45	modern	-22.8 (-18.8)	SUERC-28812
30	101.22 + - 0.47	modern	-15.9(-11.9)	SUERC-28811
50	98.79 +/- 0.43	98 +/- 35	-10.8(-6.8)	SUERC-28810
100	94.58 +/- 0.44	448 +/- 37	-2.3 (+1.7)	SUERC-28809

^aNB: δ^{13} C values outside parentheses are measured values, and those in parentheses are representative of the dissolved CO₂ (having been corrected for 4‰ isotopic fractionation during passive trapping [see *Garnett and Hardie*, 2009]).

Figure 3. Temporal changes in DOC concentration and δ^{13} C-DOC for the three pipes (P3, P6, P8) and the CHS flume during the April and November storm events. Flow (solid line) is presented for CHS flume only.

 327 ± 37 to 38 ± 37 years BP at CHS flume; radiocarbon ages at P3 were all modern.

4. Discussion

[41] The use of carbon isotopic geochemistry in headwater regions is a powerful tool to investigate catchment processes that control the source and age of C in the freshwater environment. In contrast, isotopic measurements in major river systems are often difficult to interpret because of their size and complexity [e.g., *Raymond and Bauer*, 2001a]. Here, δ^{13} C and 14 C measurements of C released at the catchment outlet (CHS flume) and from three pipes can be individually related to specific parts (in the case of pipes, depth-variable, micro-catchments) of the peatland itself.

Figure 4. Temporal changes in POC concentration and δ^{13} C-POC for the three pipes (P3, P6, P8) and the CHS flume during the April and November storm events. Flow (solid line) is presented for CHS flume only.

Figure 5. Temporal changes in CO₂-C concentration and δ^{13} C-CO₂ for the three pipes (P3, P6, P8) and the CHS flume during the April and November storm events. Flow (solid line) is presented for CHS flume only.

We sampled under different hydrological extremes (high and low flows associated with storm events) to explore variability in C sources as flow paths change over short time periods. P3 and P8 were hydrologically more responsive than P6 and, collectively, all three pipes were more responsive to rainfall events than the catchment outlet. While pipe water DOC and POC concentrations were similar across all the sample sites, concentrations were higher than those recorded in the soil solution at the site [*Adamson et al.*, 2001], demonstrating the importance of peatland pipes as conduits for carbon flow. Dissolved gas concentrations were more variable across the sites with P6 in particular enriched in both CO_2 and CH_4 [see also *Dinsmore et al.*, 2011].

Figure 6. Temporal changes in CH₄-C concentration and δ^{13} C-CH₄ for the three pipes (P3, P6, P8) and the CHS flume during the April and November storm events. Flow (solid line) is presented for CHS flume only.

Figure 7. Temporal changes in 14 C enrichment (% modern) of DOC, POC and evasion CO₂ for the two pipes (P3, P6) and the CHS flume during the November storm event. Flow (solid line) is presented for CHS flume only.

4.1. Source and Age of DOC and POC

[42] A small but significant difference in δ^{13} C-DOC and δ^{13} C-POC between the pipes and CHS flume showed that water leaving the catchment was more ¹³C enriched compared to water derived from the two continuously flowing pipes (P3 and P6). Biological processing of organic C in aquatic systems would lead to ¹³C enrichment of both DOC and POC as it is transported from the pipe system through the drainage network to the catchment outlet. However, water transfer times (which are typically likely to be <2 h) from pipe outlet to CHS flume are unlikely to be sufficient for in-stream processing to account for this difference in δ^{13} C-DOC and δ^{13} C-POC between perennial pipe water and stream water.

[43] We found that POC was consistently enriched in ¹³C by 1.0‰–1.5‰ compared to DOC. Likewise, *Guo and MacDonald* [2006] found that the δ^{13} C value of size fractionated organic matter in water from the Yukon River changed from –27.9‰ (low molecular weight DOM) to –26.2‰ (high molecular weight particulate organic matter, >0.45 µm). Our DOC and POC data are consistent with a common source (derivation from C3 plants) followed by further transformation and decomposition of soil organic matter. *Guo and MacDonald* [2006] also recognized that the different δ^{13} C values suggested an age difference between the various size fractions, as CO₂ sequestered by vegetation derived from the modern atmosphere (which includes a

substantial component of CO₂ derived from combustion of fossil fuels) would have a δ^{13} C signature ~1.5‰ depleted relative to CO₂ sequestered by plants in the preindustrial era. This is consistent with our ¹⁴C data for DOC and POC with P6 producing the oldest organic carbon (up to 559 years BP).

[44] The isotopic data therefore showed that, while the sources (implied from δ^{13} C values) of both DOC and POC produced in the CHS catchment were consistent across a range of flow conditions, the age (¹⁴C enrichment) of POC varied significantly (Table 3), both being more or less ¹⁴C enriched compared to the contemporary atmosphere (14C concentration of atmosphere in 2009 estimated to be $\sim 105\%$ modern, based on Levin et al., 2008). Interestingly, all DOC samples were significantly more enriched in ¹⁴C compared to the atmospheric CO_2 in the year of sampling (2009), indicating that a substantial component of the carbon in DOC had been fixed from the atmosphere within the last \sim 50 years. While acknowledging that we cannot completely exclude the possibility that C fixed pre-bomb contributed to DOC, if we make the simplifying assumption that DOC was derived only from carbon fixed after the AD 1963 bomb-¹⁴C peak, then we can estimate "mean" ages for the DOC, based on the recent declining trend in the atmospheric level of ¹⁴C [e.g., Levin et al., 2008]. Thus, mean ¹⁴C concentrations for DOC from P3 and P6 (\sim 114% modern) suggested a mean age of ~ 18 years since carbon fixation, clearly older than a mean age of ~13 years for DOC measured at CHS flume (~111% modern).

4.2. Source and Age of CO₂ and CH₄

[45] The δ^{13} C signature of dissolved CO₂ and CH₄ released from the two continuously flowing pipes was distinctly different from the catchment outlet. P6 was characterized by highly ¹³C enriched CO₂ and highly depleted CH₄, whereas flow from P3 was ¹³C depleted for both gases compared to stream water. A comparison between δ^{13} C-CO₂ (evasion) with δ^{13} C-CO₂ (dissolved) showed a ~4‰ enrichment in the dissolved phase (Figure 8), demonstrating that preferential loss of the lighter isotope of C occurred across the water-air interface during degassing [see also *Zhang et al.*, 1995; *Doctor et al.*, 2008].

[46] During storms we found that the clearest change in δ^{13} C-CO₂ occurred in P6, with a significant shift toward 13 C depletion at higher flows. Isotopic depth profiling in peats generally shows that CO₂ becomes more ¹³C enriched with increasing depth from ca. -20% to ca. +10% [Clymo and Bryant, 2008, Figure 5]; similar ¹³C enrichment trends have also been measured by Aravena et al. [1993] and Charman et al. [1999]. Steinmann et al. [2008] found that δ^{13} C-DIC (a surrogate for CO₂) changed from -21.7% at 50 cm depth to +8.8‰ at 6 m depth in a peat profile. This suggests that CO₂ in pipe water from P6 changed from a deep to a shallow source during storms. However, this pattern was not observed at other sites; in the April storm there was no change in δ^{13} C-CO₂ in P3, P8 and CHS flume, whereas in the November storm there was a gradual ¹³C enrichment of CO2 during the event period at both P3 and CHS flume. Measurements of down profile changes in δ^{13} C-CO₂ made at P3 suggested that CO₂ reaching the pipe outlet $(\delta^{13}C-CO_2 - 20.5\%)$ to -12.4%) was derived from up to \sim 25–30 cm depth. The most ¹³C depleted (shallowest) CO₂ was released from P3 during the summer (August) event.

Figure 8. Relationship between the δ^{13} C value of evasion and dissolved CO₂ of samples collected during the August and November storm events.

During the most intense storm (November) we measured progressive ¹³C enrichment of CO₂ at P3 during the event (a change from -18.6% to -12.4%), suggesting an increasing contribution of CO₂ from deeper within the peat profile. P3 therefore behaved differently from P6, the latter exhibiting progressive ¹³C depletion during the November event consistent with increasing dominance of near-surface CO₂ sources. Waldron et al. [2007], working in a catchment rich in organo-mineral soils and peats, described variations in stream water DIC as a combination of a ¹³C-depleted $(\delta^{13}$ C-DIC ~ -22‰), low-flow end-member and a more ¹³C-enriched (δ^{13} C-DIC ~ -10‰ to -6‰) high-flow endmember, produced primarily from CO₂ derived from the respiration of C3 vegetation (-28%) and anaerobic fermentation of peat (-14%) to +10%). A similar mixing model would explain the changes in the shallow pipe (P3) and the CHS flume, but not the deep pipe (P6).

[47] The range in δ^{13} C-CH₄ values in the CHS catchment is typical of Northern Hemisphere lakes and wetlands (-64% to -58%; Walter et al., 2008) and suggests the dominant source is from acetate fermentation, producing values in the range -65% to -50% [Hornibrook et al., 1997]. Values of δ^{13} C-CO₂ ranging from +8.6‰ to +9.2‰ have been measured at 4 m depth in Scottish peatlands [Clymo and Bryant, 2008; Garnett and Hardie, 2009] and it is known that fermentation processes in deep peats can produce highly ¹³C enriched CO₂. Pathways for methanogenesis (CO₂ reduction or acetate fermentation) in peatlands can be identified by calculating an $\alpha_{\rm C}$ value, where $\alpha_{\rm C}$ = $(\delta^{13}\text{C-CO}_2 + 1000)/(\delta^{13}\text{C-CH}_4 + 1000)$. Values of 1.03–1.07 from the pipes and outlet of the CHS catchment strongly suggest that acetate fermentation (characterized by $\alpha_{\rm C}$ values >0.95) is the most important pathway for CH₄ production [Whiticar et al., 1986] at the study site. While Clymo and Bryant [2008] and Garnett et al. [2011] found relatively little change in $\alpha_{\rm C}$ with depth, Steinmann et al. [2008] and Hornibrook et al. [1997] found that the $\alpha_{\rm C}$ value increased from 1.02 at 5 cm depth to 1.07 at 600 cm depth. We found

that P6 had the highest $\alpha_{\rm C}$ values (1.06–1.07) compared to the other perennial pipe (P3) (1.04–1.05) and the more variable (1.03–1.06) ephemeral pipe (P8). Although we do not know how $\alpha_{\rm C}$ varies with depth in the CHS catchment, these data may suggest that dissolved gases in P6 were derived from a deep source, P3 from a shallow source and P8 from several sources across a range of depths.

[48] The most depleted δ^{13} C-CH₄ value we measured was -67.7% from P6, which is close to the most ¹³C depleted CH₄ value recorded by Clymo and Bryant [2008] in a raised bog in southwest Scotland. The most negative δ^{13} C-CH₄ values were often (but not exclusively) associated with deeper water sources in the pre-storm, low-flow period and support results from CH_4 isotope peat depth profiling at other sites, which showed that $\delta^{13}C-CH_4$ becomes more negative with depth [Hornibrook et al., 1997; Steinmann et al., 2008]. Clymo and Bryant [2008], however, found that CH₄ became more ¹³C enriched at depth. Waldron et al. [1999], Chasar et al. [2000] and Hornibrook et al. [2000] found relatively small or non-existent changes with depth, presumably because of inconsistent and changing hydrological gradients within the profile affecting the reducing environment and the movement of dissolved gases at different depths. This led Steinmann et al. [2008] to conclude that isotopic composition could not be used to separate CH₄ bursts in peat bogs originating from near-surface or deep sources.

[49] Although the δ^{13} C values of DOC and POC showed that they are isotopically similar and, like many other studies [e.g., *Billett et al.*, 2007], are derived from decomposition associated with C3 plants, the sources of dissolved and evaded CO₂ and CH₄ were distinctly different (Table 2). Pipe P6 was consistently highly depleted in ¹³C-CH₄, and had a wide range of ¹³C-CO₂ enriched values relative to the other pipes and CHS flume (Figure 9). Our stormflow sampling showed that the most ¹³C-CO₂ depleted samples at P6 occurred at highest flows as water tables rise within the catchment. At this point the ¹³C-CO₂ signal of P6 became

Figure 9. Relationship between the δ^{13} C isotopic composition of dissolved CO₂ and CH₄ for the three pipes (P3, P6, P8) and the CHS flume during the three storm events.

more like that of the ephemeral pipe (P8) and the CHS flume. The most ¹³C depleted CO₂ measurements were associated with the shallow perennial pipe (P3), whereas the most ¹³C enriched CH₄ samples were at the catchment outlet. The contemporary atmosphere in 2009 (δ^{13} C-CO₂ = ca. -8‰, δ^{13} C-CH₄ = ca. -47‰) was isotopically distinct from the dissolved gas samples (Figure 9).

[50] The isotopic signature of evaded CO₂ ranged from relatively ¹³C enriched/¹⁴C depleted values associated with P6, to ¹³C depleted/¹⁴C enriched values associated with P3 (Figure 10). We also found a significant relationship between ¹⁴C enrichment and δ^{13} C of evasion CO₂ collected at the pipe outlets ($r^2 = 0.92$, p < 0.001). The overall isotopic trend associated with pipe water CO₂ suggested that it was composed of a simple mixture of deep, old groundwater (produced from weathering or anaerobic fermentation) and

shallower, young (plant-derived) CO₂ not dissimilar from pipe DOC, with the relative importance of the different sources changing in response to hydrological conditions (Figure 10). Our long-term (18 month) data set showed that pipe water derived from P6 had a higher mean pH and conductivity than P3 and P8, as well as significantly elevated CO₂, CH₄ and N₂O concentrations [Dinsmore et al., 2011]. Because P6 also produced the oldest CO2 and POC compared to the other two pipes, both the geochemical and isotopic evidence points toward the pipe tapping deep peat carbon even though the pipe is only at 100 cm depth at its outlet in a peat face. The other perennial pipe (P3) and the ephemeral pipe (P8) have all the geochemical and isotopic characteristics of shallow pipes with good connectivity to near surface carbon, even though the latter has the deepest pipe outlet [Holden et al., 2012].

[51] The isotopic values of evasion CO_2 at CHS flume clearly do not lie on the trend line associated with the three pipes (Figure 10), suggesting that an additional (more ^{13}C and/or ¹⁴C depleted) source contributes to evasion CO₂-C at CHS flume. Elevated Ca concentrations can occur under extreme low flow conditions at CHS, but during high flows, a geogenic (carbonate-derived) additional CO₂ source is less likely. Additionally, the fact that mean pH and conductivity at CHS flume was similar or lower than the three pipes, also suggests an additional geogenic CO₂ source is unlikely [Dinsmore et al., 2011]. Isotopic fractionation during CO₂ evasion between the pipe outlets and the CHS flume would lead to preferential loss of ¹²C and ¹³C enrichment, rather than ¹³C depletion (Figure 10). We believe the most likely explanation for the presence of more ¹³C and/or ¹⁴C depleted evasion CO₂ at the CHS flume is a contribution from overland flow/atmospheric CO₂, which might be expected to have an isotopic signature of $\delta^{13}C = ca. -27\%$ and ${}^{14}C = ca.$ 105% modern (if derived from atmospheric CO₂ and/or the decomposition of organic matter on/near the peat surface). The fact that the isotopic composition of evasion CO_2 at

Figure 10. Relationship between ¹⁴C enrichment (% modern) and δ^{13} C of DOC, POC and evaded CO₂-C for the three pipes (P3, P6, P8) and the CHS flume during the August and November storm event. The dashed line shows the relationship for evasion CO₂-C associated with the three pipes.

CHS flume does not vary as much as the pipes, suggests that a relatively small proportion of pipe CO_2 reaches the flume (most is lost by evasion) or is diluted by non-pipe sources, such as overland flow. The isotopic evidence for evasion CO_2 therefore supports the findings of Holden et al. (submitted manuscript, 2012), who made measurements of pipe C fluxes within the study catchment, and estimated that pipe outlets delivered to the surface 22% of the C that leaves the catchment outlet.

5. Conclusions

[52] Isotopic measurements at a peatland site in northern England showed that the age and source of C released from pipes into the drainage network is highly dynamic in space and time. This is particularly true for POC and the dissolved gases (CO₂ and CH₄) and suggests that δ^{13} C and ¹⁴C composition is a sensitive indicator of changes in hydrological pathway in peat systems. We found that individual pipes showed contrasting ¹³C enrichment trends and clearly tap both shallow (near-surface) and deep sources of CO₂ and CH₄ within the catchment. In contrast, pipes did not receive deep DOC suggesting that, while connectivity exists for the gaseous C phase, it does not exist for the dissolved C phase. We also found that C leaving the catchment was a mixture of pipe and non-pipe sources.

[53] The radiocarbon age data showed that, although all DOC and the majority of POC was modern, evasion CO₂ was more age variable The oldest POC (maximum 652 years BP) and CO₂ (maximum 822 years BP) was produced from pipe P6, which showed all the geochemical and isotopic characteristics of tapping deep peat C. Various studies have recorded significant increases in soil C, CO₂ and DOC age with depth [e.g., Clymo and Bryant, 2008]. At the peat surface (pipe outlets) and in the stream we found evidence for old soil C (POC) and CO₂, but not DOC. This finding suggests that the transport pathways in peat that link gaseous, dissolved and particulate C to the surface are different. The observed differences for DOC and POC are less easy to explain, since aged DOC has been routinely measured in deep peats [Clymo and Bryant, 2008; Garnett et al., 2011]. Since the isotopic signature is potentially a mixture of different sources we suggest that the amount of young DOC produced primarily from near-surface decomposing peat is so large that it masks the presence of any older deep peat DOC in the pipe system; this effect is not seen for CO_2 because young gaseous C produced close to the peat surface will be lost directly to the atmosphere. Although we did not seek to measure "old" or "new" water, our findings do support the overall conclusion by Jones [2004] that the proportions of event and pre-event water vary from storm to storm and pipe to pipe within a single catchment.

[54] Natural pipes therefore play a dynamic (short-term) and changing (long-term) role in peatland C loss. The isotopic evidence presented here shows that pipes produce C derived from both shallow and deep sources in ombrotrophic bogs, supporting earlier suggestions [*Holden and Burt*, 2003b] that the traditional acrotelm-catotelm model for ombrotophic bogs [*Ingram*, 1978], whereby fluxes are mainly considered within an upper, shallow, active acrotelm zone, is inappropriate when considering C transfer from peat to the aquatic system.

Appendix A

[55] Table A1 contains a table showing the δ^{13} C values of DOC, POC, CO₂ and CH₄ of samples collected from the

Table A1. δ^{13} C Values of DOC, POC, CO₂ and CH₄ Samples

0:4-	Date and Time	sl3c poc	sl3c poc	s130 co	s ¹³ C CU
Site	(dd/mm/yr)	8-C-DOC	o"C-POC	0 C-CO ₂	0 C-CH ₄
P3	07/04/09 1300	-28.43	-27.86	-18.13	-56.96
P3	08/04/09 0030	-28.15	-26.94	-13.64	-50.96
P3	08/04/09 0300	-28.20	-28.13	-16.58	-49.69
P3	08/04/09 0530	-28.13	-27.02	-18.42	-49.83
P3	08/04/09 1000	-28.36	-27.00	-15.85	ns
P3	09/04/09 0800	-28.40	-27.01	-17.64	-47.9
P6	07/04/09 1345	-27.81	ns ^a	-0.12	-67.71
P6	08/04/09 0030	-28.04	-26.92	-0.45	-66.05
P6	08/04/09 0300	-28.17	-26.63	-9.6	-65.51
P6	08/04/09 0530	-28.18	-26.84	-6.8	-65.65
P6	08/04/09 1000	-28.05	-26.93	-13.47	-65.52
P6	09/04/09 0815	-28.24	-26.83	-8.8	-65.45
P8	08/04/09 0130	-28.05	-26.51	-15.17	-67.25
P8	08/04/09 0300	-28.06	-26.22	-13.74	-63.29
P8	08/04/09 0530	-27.96	-26.26	-14.16	-64
P8	08/04/09 1000	-28.13	-26.23	-13.83	-64.73
CHS	07/04/09 1320	-27.65	-26.89	-13.2	-44.57
CHS	08/04/09 0045	-27.82	-27.01	-15.3	-46.71
CHS	08/04/09 0300	-27.58	-26.36	-15.89	-49.68
CHS	08/04/09 0530	-27.71	-26.40	-16.66	-48.32
CHS	08/04/09 1000	-27.96	-26.11	-12.93	-48.74
CHS	09/04/09 0900	-28.03	-26.82	-13.98	-46.71
P3	19/08/09 1635	ns	ns	-20.35	-49 54
P3	20/08/09 1115	ns	ns	-20.53	-55.25
P3	20/08/09 1330	ns	ns	-20.22	-56.25
P3	20/08/09 1500	-28.34	-27.55	-20.01	-56.33
P3	21/08/09 1030	-28.35	-27.45	-19.74	-54.19
P6	19/08/09 1535	ns	ns	1.12	-65.06
P6	20/08/09 1130	ns	ns	-2.37	-63.00
P6	20/08/09 1340	ns	ns	-3.31	-61.59
P6	20/08/09 1445	-28.27	-27.49	-2.72	-62.54
P6	21/08/09 0945	-28.22	-27.96	-3.90	-62.34
CHS	19/08/09 1610	ns	ns	-14.64	-53.07
CHS	20/08/09 1055	ns	ns	-15.24	-46.50
CHS	20/08/09 1310	ns	ns	-14.88	-46.68
CHS	20/08/09 1450	-27.89	-26.57	-15.12	-46.97
CHS	21/08/09 1045	-28.08	-27.31	-13.93	-48.87
P3	16/11/09 0920	ns	ns	-18 64	-59.82
P3	16/11/09 1150	ns	ns	-17.80	-60.09
P3	16/11/09 1420	-28 29	-2646	-16.32	-56.66
P3	16/11/09 1610	-28.24	-26.53	-16.19	-59.36
P3	17/11/09 1005	-28.28	-27.20	-15.59	-54.01
P3	17/11/09 1550	-28.57	-26.64	-15.15	-54.14
P3	18/11/09 1035	-28.12	ns	-12.39	-48.90
P6	16/11/09 0915	ns	ns	-1.02	-64.75
P6	16/11/09 1130	-28.26	-26.86	-0.91	-63.45
P6	16/11/09 1400	-28.09	-27.20	-8.25	-62.15
P6	16/11/09 1550	-28.36	-27.25	-5.49	-63.15
P6	17/11/09 0955	-27.99	-27.19	-2.09	-64.28
P6	17/11/09 1525	-28.37	-26.92	-8.08	-63.12
P6	18/11/09 1015	-27.99	-27.02	-11.76	-64.15
P8	16/11/09 1420	-28.18	-26.32	-14.45	-62.43
P8	16/11/09 1500	-28.22	-26.52	-14.38	-61.73
P8	16/11/09 1605	-28.22	-26.45	-14.56	-62.45
64	17/11/09 1030	-28.18	-27.01	-16.21	-49.07
CHS	16/11/09 0900	-27.84	-26.66	-15.07	-47.70
CHS	16/11/09 1135	-28.00	-26.70	-14.62	-43.64
CHS	16/11/09 1400	-2/.//	-26.18	-14.40	-43.26
CHS	10/11/09 1000	-27.93	-20.34	-13.43	-44.44
CHS	17/11/09 0943	11S 27.01	-20.07	-14.04	-41.99 12 01
CHS	18/11/09 1015	-27.91 -27.76	-20.54 -26.51	-14.37 -11.38	-49.21
U110	10/11/07 1013	21.10	20.01	11.50	-11.54

^aThe abbreviation "ns" stands for "no sample."

three pipes and the CHS flume and analyzed at the NERC Life Sciences Mass Spectrometry Facility.

Appendix B

[56] Table B1 contains a table showing ¹⁴C enrichment, conventional radiocarbon ages and δ^{13} C values of DOC-C, POC-C and evasion CO₂-C of samples collected from the

three pipes and the CHS flume and analyzed at the NERC Radiocarbon Facility. For evasion CO_2 (1) sample times marked the end of the collection period and (2) have not been corrected for the effect of degassing into the free atmosphere. Samples marked with an asterisk had CO_2 volumes lower than recommended when using molecular sieve cartridges (<4 mL); hence these values should be treated with caution.

Table B1. ¹⁴C Enrichment, Conventional Radiocarbon Ages and δ^{13} C Values of DOC-C, POC-C and Evasion CO₂-C of Samples

Sample Type/Site	Date and Time (dd/mm/yr)	Publication Code	14 C Enrichment % Modern $\pm 1\sigma$	Conventional Age (Years BP $\pm 1\sigma$)	$\delta^{13} C_{VPDB}$ ‰ +/-0.1
Evasion CO ₂ - P3	19/08/09 2000	SUERC-26041*	107.07 (0.49)	modern	-24.3
Evasion CO ₂ - P3	20/08/09 0900	SUERC-26042	109.03 (0.51)	modern	-24.9
Evasion CO ₂ - P3	20/08/09 1500	SUERC-26043	108.77 (0.51)	modern	-25.0
Evasion CO ₂ - P6	19/08/09 1915	SUERC-26044	90.28 (0.43)	822 (38)	-2.1
Evasion CO ₂ - P6	20/08/09 1230	SUERC-26045	90.82 (0.41)	774 (36)	-3.1
Evasion CO ₂ - P6	20/08/09 1455	SUERC-26048*	91.72 (0.43)	694 (38)	-5.0
Evasion CO_2 - CHS	19/08/09 2000	SUERC-26049	96.55 (0.45)	282 (37)	-19.3
Evasion CO_2 - CHS	20/08/09 1300	SUERC-26050	98.79 (0.45)	98 (37)	-18.7
Evasion CO_2 - CHS	20/08/09 1500	SUERC-26051	99.73 (0.43)	21 (35)	-18.7
DOC-P3	19/08/09 1635	SUERC-26425	115.89 (0.53)	modern	-28.5
DOC-P3	20/08/09 1115	SUERC-26426	115.00 (0.53)	modern	-28.7
DOC-P3	20/08/09 1330	SUERC-26427	115.03 (0.53)	modern	-28.6
DOC-P6	19/08/09 1535	SUERC-26428	113.97 (0.50)	modern	-28.7
DOC-P6	20/08/09 1130	SUERC-26429	116.71 (0.54)	modern	-28.4
DOC-P6	20/08/09 1340	SUERC-26430	115.93 (0.51)	modern	-28.7
DOC-CHS	19/08/09 1610	SUERC-26431	112.01 (0.52)	modern	-28.2
DOC-CHS	20/08/09 1055	SUERC-20432	111.08 (0.51)	modern	-28.2
DOC-CHS	20/08/09 1510	SUERC-20435	111.30 (0.51)	modern	-28.0
POC-P3	19/08/09 1035	SUERC-27450	110.24 (0.51)	modern	-27.6
POC-P3	20/08/09 1115	SUERC-27451	103.83 (0.49)	modern	-27.0
POC PG	20/08/09 1550	SUERC-27452	105.51(0.43)	526 (27)	-27.7
POC P6	20/08/09 1333	SUERC-27455 SUERC 27454	93.07 (0.43)	520 (57) modern	-28.5
POC-P6	20/08/09 1130	SUERC-27454	93 27 (0.44)	559 (37)	-20.4
POC-CHS	10/08/09 1540	SUERC-27455	104 68 (0.44)	modern	-27.5
POC-CHS	20/08/09 1010	SUERC-27450	103 91 (0.48)	modern	-27.5 -27.4
POC-CHS	20/08/09 1310	SUERC-27460	103.24 (0.45)	modern	-26.9
	20/00/07 1510	50ERC-27400	105.24 (0.45)	indem	20.9
Evasion $CO_2 - P3$	16/11/09 1700	SUERC-28149*	106.40 (0.50)	modern	-21.3
Evasion $CO_2 - P3$	17/11/09 1030	SUERC-28150	106.67 (0.50)	modern	-18.6
Evasion $CO_2 - P3$	17/11/09 17/00	SUERC-28151*	104.55 (0.47)	modern	-21.3
Evasion $CO_2 - P3$	18/11/09 1200	SUERC-28152	106.44 (0.50)	modern	-16.9
Evasion $CO_2 - P6$	16/11/09 1530	SUERC-28160*	94.08 (0.41)	490 (35)	-6.9
Evasion $CO_2 - P6$	17/11/09 1115	SUERC-28161	101.80(0.44)	205 (27)	-13.8
Evasion $CO_2 - PO$	1 // 11/09 1010	SUERC 20162*	97.48 (0.45)	203 (37)	-14.8
Evasion $CO_2 - P0$	18/11/09 1043	SUERC-20105	104.10 (0.43)	modern	-13.8
Evasion $CO_2 - F8$	16/11/09 1030	SUERC-28100*	96.62 (0.45)	276 (38)	-18.5
Evasion CO_2 - CHS	16/11/09 1200	SUERC-28155	97.62 (0.45)	103 (38)	-19.1
Evasion $CO_2 - CHS$	16/11/09 1400	SUERC-28150 SUERC-28157	100.69(0.40)	modern	-17.9
Evasion CO ₂ - CHS	17/11/09 1700	SUERC-28157	98 25 (0 43)	142 (35)	-17.8
Evasion CO ₂ - CHS	18/11/09 1220	SUERC-28150	97 68 (0.43)	188 (35)	-14.1
DOC-P3	16/11/09 0920	SUERC-30529	113 55 (0.52)	modern	-28.9
DOC-P3	16/11/09 1610	SUERC-30530	114 20 (0.50)	modern	-28.9
DOC-P3	17/11/09 1550	SUERC-30531	112.48 (0.49)	modern	-28.5
DOC-P3	18/11/09 1035	SUERC-30534	113.39 (0.50)	modern	-28.9
DOC-P6	16/11/09 0915	SUERC-30540	115.00 (0.50)	modern	-28.3
DOC-P6	16/11/09 1550	SUERC-30541	115.08 (0.50)	modern	-28.7
DOC-P6	17/11/09 1525	SUERC-30544	112.42 (0.49)	modern	-28.7
DOC-P6	18/11/09 1015	SUERC-30545	110.99 (0.51)	modern	-28.9
DOC-P8	16/11/09 1420	SUERC-30546	113.37 (0.52)	modern	-28.5
DOC-P8	16/11/09 1605	SUERC-30547	115.83 (0.53)	modern	-28.4
DOC-CHS	16/11/09 0900	SUERC-30535	110.56 (0.51)	modern	-28.3
DOC-CHS	16/11/09 1135	SUERC-30536	111.05 (0.48)	modern	-28.1
DOC-CHS	16/11/09 1555	SUERC-30537	112.03 (0.52)	modern	-28.2
DOC-CHS	17/11/09 1530	SUERC-30538	109.85 (0.48)	modern	-28.3
DOC-CHS	18/11/09 1015	-SUERC-30539	111.76 (0.51)	modern	-28.3
POC-P3	16/11/09 0920	SUERC-29750	102.68 (0.45)	modern	-27.1
POC-P3	16/11/09 1150	SUERC-29751	109.47 (0.50)	modern	-27.1

Table B1. (continued)

Sample Type/Site	Date and Time (dd/mm/yr)	Publication Code	14 C Enrichment % Modern $\pm 1\sigma$	Conventional Age (Years BP $\pm 1\sigma$)	$\delta^{13} C_{VPDB} \% +/-0.1$
POC-P3	16/11/09 1610	SUERC-29752	108.66 (0.50)	modern	-26.3
POC-P3	17/11/09 1550	SUERC-29753	107.77 (0.50)	modern	-26.7
POC-P3	18/11/09 1035	SUERC-29754	108.79 (0.50)	modern	-27.3
POC-P6	16/11/09 0915	SUERC-29762	92.21 (0.40)	652 (35)	-27.6
POC-P6	16/11/09 1130	SUERC-29763	104.01 (0.46)	modern	-27.2
POC-P6	16/11/09 1550	SUERC-29764	105.73 (0.49)	modern	-27.1
POC-P6	17/11/09 1525	SUERC-29765	107.75 (0.50)	modern	-27.0
POC-P6	18/11/09 1015	SUERC-29766	97.57 (0.45)	197 (37)	-27.0
POC-P8	16/11/09 1420	SUERC-29767	110.89 (0.51)	modern	-26.7
POC-P8	16/11/09 1605	SUERC-29770	111.52(0.51)	modern	-26.8
POC-CHS	16/11/09 0900	SUERC-29755	105.87 (0.47)	modern	-27.0
POC-CHS	16/11/09 1135	SUERC-29756	102.64 (0.45)	modern	-27.2
POC-CHS	16/11/09 1555	SUERC-29757	108.86 (0.50)	modern	-26.8
POC-CHS	17/11/09 1530	SUERC-29760	106.6 (0.47)	modern	-26.8
POC-CHS	18/11/09 1015	SUERC-29761	108.87 (0.50)	modern	-26.7

[57] Acknowledgments. The research was funded by UK Natural Environment Research Council (NERC) grant NE/E003168/1, with additional support from the NERC Radiocarbon Facility (Allocation 1380.0409) and the NERC Life Sciences Mass Spectrometry Facility (Allocation SIU190). Cottage Hill Sike is a NERC Centre for Ecology and Hydrology Carbon Catchment and is part of the Moor House Environmental Change Network site. We are grateful to ECN for background data from the catchment and to Natural England for granting access.

References

- Adamson, J. K., W. A. Scott, A. P. Rowland, and G. R. Beard (2001), Ionic concentrations in a blanket peat bog in northern England and correlations with deposition and climate variables, *Eur. J. Soil Sci.*, 52, 69–79, doi:10.1046/j.1365-2389.2001.t01-1-00350.x.
- Aravena, R., B. G. Warner, D. J. Charman, L. R. Belyea, S. P. Mathur, and H. Dinel (1993), Carbon isotopic composition of deep carbon gases in an ombrogenous peatland, northwestern Ontario, Canada, *Radiocarbon*, 35, 271–276.
- Ball, D. F. (1964), Loss on ignition as an estimate of organic matter and organic carbon in non-calcareous soils, J. Soil Sci., 15, 84–92, doi:10.1111/j.1365-2389.1964.tb00247.x.
- Billett, M. F., and M. H. Garnett (2010), The isotopic composition of CO₂ lost by evasion from surface water to the atmosphere: A methodological comparison of a direct and indirect approach, *Limnol. Oceanogr. Methods*, 8, 45–53, doi:10.4319/lom.2010.8.0045.
- Billett, M. F., and T. R. Moore (2008), Supersaturation and evasion of CO₂ and CH₄ in surface waters at Mer Bleue peatland, Canada, *Hydrol. Processes*, 22, 2044–2054, doi:10.1002/hyp.6805.
- Billett, M. F., C. M. Deacon, S. M. Palmer, J. J. C. Dawson, and D. Hope (2006a), Connecting organic carbon in stream water and soils in a peatland catchment, J. Geophys. Res., 111, G02010, doi:10.1029/2005JG000065.
- Billett, M. F., M. H. Garnett, and S. M. L. Hardie (2006b), A direct method to measure ¹⁴CO₂ lost by evasion from surface waters, *Radiocarbon*, 48, 61–68.
- Billett, M. F., M. H. Garnett, and F. Harvey (2007), UK peatland streams release old carbon dioxide to the atmosphere and young dissolved organic carbon to rivers, *Geophys. Res. Lett.*, 34, L23401, doi:10.1029/ 2007GL031797.
- Billett, M. F., et al. (2010), Carbon balance of UK peatlands: Current state of knowledge and future research challenges, *Clim. Res.*, 45, 13–29, doi:10.3354/cr00903.
- Billett, M. F., M. H. Garnett, K. J. Dinsmore, K. E. Dyson, F. Harvey, A. M. Thomson, S. Piirainen, and P. Kortelainen (2011), Age and source of different forms of carbon released from boreal peatland streams during spring snowmelt in E. Finland, *Biogeochemistry*, 107, 1–14, doi:10.1007/ s10533-011-9645-4.
- Charman, D. J., R. Aravena, C. L. Bryant, and D. D. Harkness (1999), Carbon isotopes in peat, DOC, CO₂, and CH₄ in a Holocene peatland in Dartmoor, southwest England, *Geology*, 27, 539–542, doi:10.1130/ 0091-7613(1999)027<0539:CIIPDC>2.3.CO;2.
- Chasar, L. S., J. P. Chanton, P. H. Glaser, D. I. Siegel, and J. S. Rivers (2000), Radiocarbon and stable carbon isotopic evidence for transport and transformation of dissolved organic carbon, dissolved inorganic carbon, and CH₄ in a northern Minnesota peatland, *Global Biogeochem. Cycles*, *14*, 1095–1108, doi:10.1029/1999GB001221.

- Clark, J. M., P. J. Chapman, J. K. Adamson, and S. N. Lane (2005), Influence of drought-induced acidification on the mobility of dissolved organic carbon in peat soils, *Global Change Biol.*, 11, 791–809, doi:10.1111/j.1365-2486.2005.00937.x.
- Clymo, R. S., and C. L. Bryant (2008), Diffusion and mass flow of dissolved carbon dioxide, methane, and dissolved organic carbon in a 7-m deep raised peat bog, *Geochim. Cosmochim. Acta*, 72, 2048–2066, doi:10.1016/j.gca.2008.01.032.
- Cole, L., R. D. Bardgett, P. Ineson, and J. K. Adamson (2002), Relationships between enchytraeid worms (Oligochaeta), climate change, and the release of dissolved organic carbon from blanket peat in northern England, *Soil Biol. Biochem.*, 34, 599–607, doi:10.1016/S0038-0717(01)00216-4.
- Dawson, J. J. C., M. F. Billett, and D. Hope (2001), Diurnal variations in the carbon chemistry of two acidic upland streams in northeast Scotland, *Freshwater Biol.*, 46, 1309–1322, doi:10.1046/j.1365-2427.2001.00751.x.
- Dawson, J. J. C., M. F. Billett, C. Neal, and S. Hill (2002), A comparison of particulate, dissolved and gaseous carbon in two contrasting upland streams in the UK, *J. Hydrol.*, 257, 226–246, doi:10.1016/S0022-1694(01)00545-5.
 Dinsmore, K. J., and M. F. Billett (2008), Continuous measurement and
- Dinsmore, K. J., and M. F. Billett (2008), Continuous measurement and modeling of CO₂ losses from a peatland stream during stormflow events, *Water Resour. Res.*, 44, W12417, doi:10.1029/2008WR007284.
 Dinsmore, K. J., U. M. Skiba, M. F. Billett, and R. M. Rees (2009), Spatial
- Dinsmore, K. J., U. M. Skiba, M. F. Billett, and R. M. Rees (2009), Spatial and temporal variability in CH₄ and N₂O fluxes from a Scottish ombrotrophic peatland; implications for modelling and upscaling, *Soil Biol. Biochem.*, 41, 1315–1323, doi:10.1016/j.soilbio.2009.03.022.
- Dinsmore, K. J., M. F. Billett, U. M. Skiba, R. M. Rees, and C. Helfter (2010), Role of the aquatic pathway in the carbon and greenhouse gas budgets of a peatland catchment, *Global Change Biol.*, 16, 2750–2762, doi:10.1111/j.1365-2486.2009.02119.x.
- Dinsmore, K. J., R. P. Smart, M. F. Billett, J. Holden, A. J. Baird, and P. J. Chapman (2011), Greenhouse gas losses from peatland pipes: A major pathway for loss to the atmosphere? *J. Geophys. Res.*, 116, G03041, doi:10.1029/2011JG001646.
- Doctor, D., C. Kendall, S. Sebestyen, J. Shanley, N. Ohte, and E. Boyer (2008), Carbon isotope fractionation of dissolved inorganic carbon (DIC) due to outgassing of carbon dioxide from a headwater stream, *Hydrol. Processes*, 22, 2410–2423, doi:10.1002/hyp.6833.
- Evans, C. D., C. Freeman, L. G. Cork, D. N. Thomas, B. Reynolds, M. F. Billett, M. H. Garnett, and D. Norris (2007), Evidence against recent climate-induced destabilisation of soil carbon from ¹⁴C analysis of riverine dissolved organic matter, *Geophys. Res. Lett.*, 34, L07407, doi:10.1029/2007GL029431.
- Evans, M. G., T. P. Burt, J. Holden, and J. K. Adamson (1999), Runoff generation and water table fluctuations in blanket peat: Evidence from UK data spanning the dry summer of 1995, *J. Hydrol.*, 221, 141–160, doi:10.1016/S0022-1694(99)00085-2.
- Garnett, M. H., and S. M. L. Hardie (2009), Isotope (¹⁴C and ¹³C) analysis of deep peat CO₂ using a passive sampling technique, *Soil Biol. Biochem.*, *41*, 2477–2483, doi:10.1016/j.soilbio.2009.09.004.
- Garnett, M. H., S. M. L. Hardie, and C. Murray (2011), Radiocarbon and stable carbon analysis of dissolved methane and carbon dioxide from the profile of a raised peat bog, *Radiocarbon*, *53*, 71–83.
- Gorham, E. (1991), Northern peatlands: Role in the carbon cycle and probable responses to climatic warming, *Ecol. Appl.*, *1*, 182–195, doi:10.2307/1941811.
- Guo, L., and R. W. MacDonald (2006), Source and transport of terrigenous organic matter in the upper Yukon River: Evidence from isotope (d¹³C,

D¹⁴C, and d¹⁵N) composition of dissolved, colloidal, and particulate phases, *Global Biogeochem. Cycles*, *20*, GB2011, doi:10.1029/2005GB002593.

- Hardie, S. M. L., M. H. Garnett, A. E. Fallick, A. P. Rowland, and N. J. Ostle (2005), Carbon dioxide capture using a zeolite molecular sieve sampling system for isotopic studies (¹³C and ¹⁴C) of respiration, *Radiocarbon*, 47, 441–451.
- Holden, J. (2004), Hydrological connectivity of soil pipes determined by ground penetrating radar tracer detection, *Earth Surf. Processes Landforms*, 29, 437–442, doi:10.1002/esp.1039.
- Holden, J. (2005), Controls of soil pipe frequency in upland blanket peat, *J. Geophys. Res.*, *110*, F01002, doi:10.1029/2004JF000143.
- Holden, J., and T. P. Burt (2002), Piping and pipeflow in a deep peat catchment, *Catena*, 48, 163–199, doi:10.1016/S0341-8162(01)00189-8.
- Holden, J., and T. P. Burt (2003a), Runoff production in blanket peat covered catchments, *Water Resour. Res.*, 39(7), 1191, doi:10.1029/2002WR001956.
- Holden, J., and T. P. Burt (2003b), Hydrological studies on blanket peat: The significance of the acrotelm-catotelm model, *J. Ecol.*, 91, 86–102, doi:10.1046/j.1365-2745.2003.00748.x.
- Holden, J., and R. Rose (2011), Temperature and surface lapse rate change: A study of the UK's longest upland instrumental record, *Int. J. Climatol.*, *31*, 907–919, doi:10.1002/joc.2136.
- Holden, J., R. Smart, P. J. Chapman, A. J. Baird, and M. F. Billett (2009), The role of natural soil pipes in water and carbon transfer in and from peatlands, in *Carbon Cycling in Northern Peatlands*, *AGU Mongraph Ser.*, vol. 184, edited by A. J. Baird et al., pp. 251–264, AGU, Washington, D. C., doi:10.1029/2008GM000804.
- Holden, J., R. P. Smart, K. J. Dinsmore, A. J. Baird, M. F. Billett, and P. J. Chapman (2012), Morphological change of natural pipe outlets in blanket peat, *Earth Surf. Processes Landforms*, 37(1), 109–118, doi:10.1002/esp.2239.
- Hope, D., J. J. C. Dawson, M. S. Cresser, and M. F. Billett (1995), A method for measuring free-CO₂ in upland streamwater using headspace analysis, J. Hydrol., 166, 1–14, doi:10.1016/0022-1694(94)02628-O.
- Hope, D., S. M. Palmer, M. F. Billett, and J. J. C. Dawson (2004), Variations in dissolved CO₂ and CH₄ in a first-order stream and catchment: An investigation of soil-stream linkages, *Hydrol. Processes*, 18, 3255–3275, doi:10.1002/hyp.5657.
- Hornibrook, E. R. C., F. J. Longstaffe, and W. S. Fyfe (1997), Spatial distribution of microbial methane production pathways in temperate zone wetland soils: Stable carbon and hydrogen isotope evidence, *Geochim. Cosmochim. Acta*, 61, 745–753, doi:10.1016/S0016-7037(96)00368-7.
- Hornibrook, E. R. C., F. J. Longstaffe, and W. S. Fyfe (2000), Évolution of stable carbon isotope compositions for methane and carbon dioxide in freshwater wetlands and other anaerobic environments, *Geochim. Cosmochim. Acta*, 64, 1013–1027, doi:10.1016/S0016-7037(99)00321-X.
- Ingram, H. A. P. (1978), Soil layers in mires: Function and terminology, J. Soil Sci., 29, 224–227, doi:10.1111/j.1365-2389.1978.tb02053.x.
- Jones, J. A. A. (2004), Implications of natural soil piping for basin management in upland Britain, *Land Degrad. Dev.*, 15, 325–349, doi:10.1002/ldr.618.
- Jones, J. A. A., J. M. Richardson, and H. J. Jacob (1997), Factors controlling the distribution of piping in Britain: A reconnaissance, *Geomorphology*, 20, 289–306, doi:10.1016/S0169-555X(97)00030-5.
- Koehler, A., M. Sottocornola, and G. Kiely (2011), How strong is the current carbon sequestration of an Atlantic blanket bog? *Global Change Biol.*, 17, 309–319, doi:10.1111/j.1365-2486.2010.02180.x.
- Levin, I., S. Hammer, B. Kromer, and F. Meinhardt (2008), Radiocarbon observations in atmospheric CO₂: Determining fossil fuel CO₂ over Europe using Jungfraujoch observations as background, *Sci. Total Environ.*, 391, 211–216, doi:10.1016/j.scitotenv.2007.10.019.
- McNamara, N. P., T. Plant, S. Oakley, S. Ward, C. Wood, and N. J. Ostle (2008), Gully hotspot contribution to landscape methane (CH₄) and carbon dioxide (CO₂) fluxes in a northern peatland, *Sci. Total Environ.*, *404*, 354–360, doi:10.1016/j.scitotenv.2008.03.015.
- McNeil, P., and J. M. Waddington (2003), Moisture controls on Sphagnum growth and CO₂ exchange on a cutover bog, *J. Appl. Ecol.*, 40, 354–367, doi:10.1046/j.1365-2664.2003.00790.x.
- Minkkinen, K., R. Korhonen, I. Savolainen, and J. Laine (2002), Carbon balance and radiative forcing of Finnish peatlands 1900–2100: The impact of forestry drainage, *Global Change Biol.*, 8, 785–799, doi:10.1046/ j.1365-2486.2002.00504.x.
- Norrström, A. C., and G. Jacks (1996), Water pathways and chemistry at the groundwater surface water interface to Lake Skjervatjern, Norway, *Water Resour. Res.*, *32*(7), 2221–2229, doi:10.1029/96WR00802.
- Palmer, S. M., D. Hope, M. F. Billett, J. J. C. Dawson, and C. L. Bryant (2001), Sources of organic and inorganic carbon in a headwater stream: Evidence from carbon isotope studies, *Biogeochemistry*, 52, 321–338, doi:10.1023/A:1006447706565.
- Price, J. S. (1992), Blanket bog in Newfoundland 2. Hydrological processes, J. Hydrol., 135, 103–119, doi:10.1016/0022-1694(92)90083-8.

- Rapson, G. L., M. T. Sykes, W. G. Lee, A. E. Hewitt, A. D. Q. Agnew, and J. B. Wilson (2006), Subalpine gully head ribbon fens of the Lammerlaw and Lammermoor Ranges, Otago, New Zealand, *N.Z. J. Bot.*, 44, 351–375, doi:10.1080/0028825X.2006.9513028.
 Raymond, P. A., and J. E. Bauer (2001a), Use of ¹⁴C and ¹³C natural
- Raymond, P. A., and J. E. Bauer (2001a), Use of ¹⁴C and ¹³C natural abundances for evaluating riverine, estuarine, and coastal DOC and POC sources and cycling: A review and synthesis, *Org. Geochem.*, *32*, 469–485, doi:10.1016/S0146-6380(00)00190-X.
- Raymond, P. A., and J. E. Bauer (2001b), Riverine export of aged terrestrial organic matter to the North Atlantic Ocean, *Nature*, 409, 497–500, doi:10.1038/35054034.
- Roulet, N. T. (2000), Peatlands, carbon storage, greenhouse gases, and the Kyoto Protocol: Prospects and significance for Canada, *Wetlands*, 20, 605–615, doi:10.1672/0277-5212(2000)020[0605:PCSGGA]2.0.CO;2.
 Schiff, S. L., L. R. Aravena, S. E. Trumbore, M. J. Hinton, R. Elgood, 10.0002/00020[0605:PCSGGA]2.0.CO;2.
- Schiff, S. L., L. R. Aravena, S. E. Trumbore, M. J. Hinton, R. Elgood, and P. J. Dillon (1997), Export of DOC from forested catchments on the Precambrian Shield of central Ontario: Clues from ¹³C and ¹⁴C, *Biogeochemistry*, *36*, 43–65, doi:10.1023/A:1005744131385.
- Slota, P., A. J. T. Jull, T. Linick, and L. J. Toolin (1987), Preparation of small samples for ¹⁴C accelerator targets by catalytic reduction of CO, *Radiocarbon*, 29, 303–306.
- Smart, R. P., J. Holden, K. G. Dinsmore, A. J. Baird, M. F. Billett, P. J. Chapman, and R. Grayson (2012), The dynamics of natural pipe hydrological behaviour in blanket peat, *Hydrol. Processes*, doi:10.1002/ hyp.9242, in press.
- Steinmann, P., B. Eilrich, M. Leuenberger, and S. J. Burns (2008), Stable carbon isotope composition and concentrations of CO₂ and CH₄ in the deep catotelm of a peat bog, *Geochim. Cosmochim. Acta*, 72, 6015–6026, doi:10.1016/j.gca.2008.09.024.
- Strack, M., J. M. Waddington, R. A. Bourbonniere, E. L. Buckton, K. Shaw, P. Whittington, and J. S. Price (2008), Effect of water table drawdown on peatland dissolved organic carbon export and dynamics, *Hydrol. Processes*, 22, 3373–3385, doi:10.1002/hyp.6931.
- Striegl, R. G., M. M. Dornblaser, G. R. Aiken, K. P. Wickland, and P. A. Raymond (2007), Carbon export and cycling by the Yukon, Tanana, and Porcupine rivers, Alaska, 2001–2005, *Water Resour. Res.*, 43, W02411, doi:10.1029/2006WR005201.
- Sykes, J. M., and A. M. J. Lane (1996), *The United Kingdom Environmen*tal Change Network: Protocols for Standard Measurements of Terrestrial Sites, 220 pp., Nat. Environ. Res. Council, London.
- Thorp, M., and P. Glanville (2003), Mid-Holocene sub-blanket peat alluvia and sediment sources in the upper Liffet Valley, Co. Wicklow, Ireland, *Earth Surf. Processes Landforms*, 28, 1013–1024, doi:10.1002/esp.517.
- Tipping, E., M. F. Billett, C. L. Bryant, S. Buckingham, and S. A. Thacker (2010), Sources and ages of dissolved organic matter in peatland streams: Evidence from chemistry mixture modelling and radiocarbon data, *Biogeochemistry*, 100, 121–137, doi:10.1007/s10533-010-9409-6.
- Waldron, S., A. Hall, and A. Fallick (1999), Enigmatic stable isotope dynamics of deep peat methane, *Global Biogeochem. Cycles*, 13, 93–100, doi:10.1029/1998GB900002.
- Waldron, S. E., E. M. Scott, and C. Soulsby (2007), Stable isotope analysis reveals lower-order river dissolved inorganic carbon pools are highly dynamic, *Environ. Sci. Technol.*, 41, 6156–6162, doi:10.1021/es0706089.
- Walter, K. M., J. P. Chanton, F. S. Chapin, E. A. G. Schuur, and S. A. Zimov (2008), Methane production and bubble emissions from arctic lakes: Isotopic implications for source pathways and ages, *J. Geophys. Res.*, 113, G00A08, doi:10.1029/2007JG000569.
- Whiticar, M. J., E. Faber, and M. Schoell (1986), Biogenic methane formation in marine and fresh-water environments–CO₂ reduction vs acetate fermentation isotope evidence, *Geochim. Cosmochim. Acta*, 50, 693–709, doi:10.1016/0016-7037(86)90346-7.
- Worrall, F., T. P. Burt, and J. Adamson (2006), The rate of and controls upon DOC loss in a peat catchment, *J. Hydrol.*, 321, 311–325, doi:10.1016/j.jhydrol.2005.08.019.
- Zhang, J., P. D. Quay, and D. Wilbur (1995), Carbon isotope fractionation during gas-water exchange and dissolution of CO₂, *Geochim. Cosmochim. Acta*, 59, 107–114, doi:10.1016/0016-7037(95)91550-D.

A. J. Baird, P. Chapman, R. Grayson, J. Holden, and R. P. Smart, School of Geography, University of Leeds, Leeds LS2 9JT, UK.

M. F. Billett and K. J. Dinsmore, Centre for Ecology and Hydrology Edinburgh, Bush Estate, Penicuik, Midlothian, EH26 0QB, UK. (mbill@ceh.ac.uk)

M. H. Garnett, NERC Radiocarbon Facility (Environment), Rankine Avenue, Scottish Enterprise Technology Park, East Kilbride G75 0QF, UK.

A. W. Stott, NERC Life Sciences Mass Spectrometry Facility, Centre for Ecology and Hydrology, Lancaster Environment Centre, Lancaster LA1 AP, UK.