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SUMMARY

A new one–way wave equation for three–dimensional anisotropic elastic media and its finite–
difference implementation are described. Backscatteringis neglected, but the method should
provide a sufficiently accurate, efficient (slower than ray theory, faster than full wave equation
finite differences) and robust simulation of the primary wave(s) passing through a region of vari-
able and possibly–strong anisotropy. In particular, frequency–dependentwavetype coupling and
the effects of rapidly–rotating polarization eigenvectors will be included. Example waveforms
are presented for rock elasticities representative of mantle, crustal and basin–scale applications.
These have been computed only for homogeneous regions, which facilitates comparison with
a separation–of–variables reference solution. Nevertheless, seemingly characteristic waveform
effects associated with conical points, or acoustic axes, are observed and these effects should
only be modified in degree rather than style by smooth parameter gradients (e.g. in the upper
mantle). These characteristics include: merging/splitting pulses, sometimes resulting in sim-
ple pulse broadening; wavefront ‘tearing’; gaps/lacunae/polarity–reversals in the ‘anomalous’
component arising from the eigen–polarization rotation; and incipient Hilbert–transform like
first–motion changes due to indentations of the slow shear–wave slowness sheet.

Key words: body waves, anisotropy, one–way wave equation, finite–differences, mode cou-
pling, seismic waveforms.

1 INTRODUCTION

Although the presence in the Earth of significant fine–scale (e.g. crystalline) elastic anisotropy is widely acknowledged, orientation variations
and averaging make its net effect on longer–scale (or wavelength) seismic signals difficult to assess. Statistical isotropy has generally been a
workable hypothesis, though a common extension is to model structures associated with a single axis of alignment, such as parallel cracks, as
hexagonally symmetric or transversely isotropic (TI). Having two orthogonal alignments leads to models based on orthorhombic symmetry.
Extended approximations such as these hold out the promise of invertible relationships between seismic observables, such as the moveout of
exploration–seismic reflections, and the enlarged set of elastic parameters (Bakulin et al., 2000). Sometimes the observables themselves are
few in number, such as the two splitting parameters of teleseismic SKS, but still they provide useful insights into the Earth (e.g. Helffrich et
al., 2002).

Rocks only approximate to the simple symmetries mentioned and on the single–crystal scale anisotropy can be very strongas well as
asymmetric. Direct evidence for the variety of whole–rock elasticities comes from hand–sample measurements (e.g. Mainprice & Silver,
1993; Weiss et al., 1999; Lloyd & Kendall, 2003), although for scales much less than a seismic wavelength. Three–dimensional variations
in degree and type of anisotropy must exist on somewhat larger scales controlled by processes such as convection in the mantle, crustal
shear–zone tectonics or salt migration. One approach informs us about the possible induced seismic properties by combining lattice preferred
orientation (LPO) theory with finite–deformation histories from particular geophysical flow models (e.g. Blackman et al., 1996, for the upper–
mantle scale and Raymer et al., 2000, for the sedimentary–basin scale). Observationally, teleseismic evidence for anisotropic layering in an
Archean craton (Bostock, 1997) may reveal zones of weaknessand high shear indicative of basic craton–formation mechanisms. Variations
in lithospheric anisotropy within a craton can also be observed in teleseismic body–wave data (e.g. Kay et al., 1999, forSKS). Combining
with complementary signals, such as surface waves or controlled–source arrivals, then provides important contraintson tectonic hypotheses
(Kendall et al., 2002). Even on the engineering scale, lithological layering may combine with grain shape as well as crystal orientation to
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Figure 1. The slow quasi–shear or qS2 wave slowness surfaces for the five sets of anisotropic elastic parameters described in the text. Only a representative
portion of each surface is shown. The thin lines embedded in the surfaces indicate the allowed qS2 polarization for a plane wave propagating in the direction
corresponding to each line’s midpoint. The conical point singularities can be discerned by looking for places where thepolarizations form a ‘T’ pattern. For
example, in part (a) Halite such a point lies in the (1,1,1) direction in the natural coordinate system of the figure, whichcoincides with the line of sight for this
3D perspective plot

produce a net anisotropic fabric in rocks which can augment or overwhelm more–commonly discussed aligned–crack signatures in cross–
borehole aquifer imaging (Herwanger et al., 2003; G. Lloyd &S. Valcke, pers. comm.).

These examples indicate the range of complex targets and scales for modern seismic–anisotropy studies. However, the rapid improve-
ments in data quantity and quality due to more complete earthquake networks (e.g. POLARIS in Canada – www.polarisnet.ca) or the bur-
geoning acquisition for reservoir characterization (e.g.Christie et al., 2002) need to be matched by improved waveform modelling tools
based on physically–motivated approximations. Such approximations must relate directly to local material properties and yet describe the
frequency–dependent smoothing that takes place during wave propagation.

Interference between the anisotropic quasi–shear (qS) waves is the most diagnostic wave–propagation effect. Sometimes two distinct
shear waves are apparent (Winterstein & De, 2001; Guest et al., 1993). If they are not apparent one can infer only that the two shear–wave
speeds are close together in the particular propagation direction sampled. There are three types of coalescence, referred to here as ‘ring
intersections’, ‘kiss’ and ‘conical’ points (after Crampin & Yedlin, 1981). The first can occur in perfectly TI media, where the two qS sheets
of the ‘slownes surface’ (Musgrave, 1972) and their associated eigen–polarizations can be thought of as passing smoothly through each other
on a ring around the symmetry axis. Although the two qS sheetsmay appear locally simple and analytically independent, ina gradient these
waves will nevertheless couple strongly near the ring intersection (Chapman & Shearer, 1989). At a kiss singularity thetwo qS sheets meet
tangentially at an isolated point, as can happen on the axis of TI media. At conical points two slowness sheets meet like two cones tip–to–tip.
The point singularities (kiss and conical) define directions in the material which are called ‘acoustic axes’ by analogywith optical axes used
in mineral identification.

The character of polarization–eigenvector rotation is a distinguishing feature for these acoustic axes. Around kiss singularities one qS
polarization is radial from the axis and the other is azimuthal about the axis. As a circuit is completed around this type of axis on a given
slowness sheet the associated eigen–polarization returnsto its original value (Chapman & Shearer, 1989; Figure 12). Conical points are more



Seismic waveform variations 3

Figure 2. Contours of the (rotated) 1–component of the qS2 slowness inthe vicinity of the pure halite acoustic axis. The rotated 1–axis and overall propagation
direction are out of the page at the centre of this plot, corresponding to the (1,1,1) direction in the natural coordinates of Figure 1(a). The ‘free’ polarization
eigenvectors have been given arrowheads to emphasize the line of singularity which arises in any scheme which tries to define polarization continuously as the
acoustic axis is encircled. In this case the singular line falls straight down from the centre. This singular line not withstanding, the three–fold symmetry about
the axis is apparent.

complicated. As a circuit around a conical–point acoustic axis is completed the given eigen–polarization vector reaches the negative of its
original value (Rümpker & Thomson, 1994). In actual fact, conical points may be called the most elemental. This is because adding a triclinic
perturbation to a TI or hexagonal material causes a ring intersection or kiss singularity to degenerate into multiple conical points (A’lshits &
Lothe, 1979) and a slowness–sheet circuit around two conical points will bring the eigen–polarization back to its original value.

Figure 1(a) shows the slow shear wave (qS2) slowness sheet around the (1,1,1) conical–point acoustic axis of cubic halite (elastic param-
eters taken from Raymer et al. (2000)). The three–fold symmetry is clearly revealed by the characteristic rotation of the eigen–polarization
and we see that on opposite sides of the conical point the eigen–polarizations on this sheet are orthogonal (i.e. polarization rotates through
π/2 on travelling half a circuit around the axis). A similar situation exists on the underlying fast quasi–shear (qS1) sheet, except that for
each direction in slowness space the eigen–polarizations on the two sheets are orthogonal to each other. From the perspective of Figure 1(a)
the strength of halite’s anisotropy (i.e. deviation of the slowness surface from a sphere) may not be too apparent, but the singularity of the
polarization is as diagnostic as an optical axis for mineralogy. A section through through the qS2 sheet would show that it is sharply indented
around the axis and that the conical shape points inwards. The outward normals of the slowness–sheet in this neighbourhood therefore cross
each other and this leads to folding of an initially gently–curved wavefront travelling subparallel to the axis, since the normals define the
propagation direction of rays and energy flux (i.e. group velocity).

All conical points are the same in a topological sense and Figure 1(b–e) indicates their ubiquity, beginning with another common
single–crystal example, quartz (elastic parameters takenfrom Lloyd & Kendall, 2003, Table 2). The quartz variations are extreme and in fact
there are three neighbouring conical points in the severelyindented region depicted in Figure 1(b) (this can be seen better in Figure 7 later).
Figure 1(c) is the result of numerical LPO calculations for polycrystalline halite (Raymer et al., 2000, Table 1 for the case shear strain 10).
Figure 1(d) is the result of laboratory (electron–backscattering) measurements of a whole–rock mylonite sample (Lloyd & Kendall, 2003;
for this figure we have used the mylonite sheared–zone–margin elasticity of their Table 3). The last example Figure 1(e) is taken from the
numerical study by Blackman et al. (1996) of mid–ocean ridgeflow–induced texture in mantle rocks (olivine LPO). We have taken the elastic
parameters for their buoyant model at about 30km from the ridge axis and a depth of about 75km (see Figure 4 of Blackman et al., 1996).
The ‘whole rock’ cases (Figure 1(c–e)) are all triclinic.

All these examples are characterized by regions of swirlingpolarization, focussed on the acoustic axes. The shear–wave splitting
(difference between qS1 and qS2 wavespeeds) will be greatest far from the axes, where the polarizations are ‘stable’. Atthe axes the eigen–
polarizations are most rapidly changing and hence are potentially diagnostic, but the splitting is least. We should anticipate, then, that the
sizeable intermediate or transition directions in ‘slowness space’ will be of most practical interest.

However, rapid rotation of eigen–polarizations in slowness space does not necessarily imply that a total wavefield displacement vector in
physical space will show similar rapid variations as a result of small changes in propagation direction (e.g. across a gently–curved wavefront
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propagating along the acoustic axis). Rather, the wave energy will be distributed between the roughly–orthogonal qS1 and qS2 eigen–
polarizations such that the net displacement is more–slowly varying. Since their wavespeeds diverge away from axes, a frequency–dependent
transition between split and degenerate waveforms is expected and its differing characteristics on the various displacement components are
potentially diagnostic, if we can systematize them.

Wave–coupling methods exist for problems such as this. For example, Chapman & Shearer (1989) considered depth–dependent media
using separation of variables and described essential properties of the intersection and kiss coupling parameters andresulting waveforms.
Rümpker & Thomson (1994) studied the effects of conical points on curved wavefronts in depth–dependent media. Their work included
ray tracing, documenting the complete separation of the initial wavefront into two distinct fronts, the folding of the slower front, and very
high–frequency waveforms for which the effects of both qS coupling and wavefront folding were considered (using Runge–Kutta 1–D
finite differencing and 2–D integration over lateral slowness). Vavryčuk (1999) studied kiss singularities and foundthe interesting result
that standard higher–order ray theory terms are of use in describing the coupling. Most recently, Rümpker & Kendall (2002) combined ray
coupling and perturbation theory with the ideas of Maslov slowness integration (or ‘Snell wave’ summation), to give a rapid computation
method valid near folded wavefronts (caustics) without theneed to assume lateral homogeneity. These papers and the book by Kravtsov &
Orlov (1990), for example, give good introductions to the relevant ray and perturbation–theory literature. Of course,full–wave numerical
solutions are also applicable, of which the spectral–element method (Komatitisch & Tromp, 1999) is one which gives mostimpressive results
for the global examples presented by its authors.

An intermediate approach is demonstrated here, one which isin some sense local, is not too computationally intensive and yet is not built
explicitly on rays. The presentation in§2 proceeds from first principles and is meant to be self–contained. The problem consists of finding
a method which can incorporate a limited spectrum of plane waves, the curvature of their underlying envelope and the eigen–polarization
rotations. Readers familiar with the solutions for depth–dependent media (separation of variables and Fourier integration over slowness) will
find the derivation has some conventional features and thoseinterested in an alternative, more detailed, derivation may refer to Thomson
(1999). Global (in fact Cartesian) coordinates are used, asopposed to coordinates based on the rays in the true medium. The method has
the potential to produce finite–frequency waveforms which filter out fine details of the stucture according to the wave equation. In fact, the
method is a new wave equation in itself, and the means used to solve it numerically are somewhat secondary.

The basic theory and its implementation are explained in§§2–4. In§5 we study the waveforms predicted for media characterized by the
slowness surfaces in Figure 1 and attempt to draw some general conclusions from the modelling.

2 NOTATION AND THE BASIC FACTORIZED WAVE EQUATION

Consider at first a single plane wave in a homogeneous anisotropic medium, characterized by its slowness vectorp. The normal to the wave
or phase front defines the direction ofp and the magnitude ofp depends on whether the wave is quasi–compressional (qP) or quasi–shear
(qS1, qS2). For each wavetype there is a corresponding polarization eigenvector and the three eigenvectors corresponding to a single direction
of p are mutually orthogonal. These basic results can be found inMusgrave (1972) ořCervený (2001, Chapter 2).

Let the Cartesian coordinates bex = (x1, x2, x3) and let the waves propagate subparallel to thex1 axis. The lateral or cross coordinates
can then be denotedxα, α = 2, 3. An alternative description of a plane wave begins by specifying the lateral slowness componentspα. Then
the remaining 1–componentP1(pα) depends on the wave type and can be found from the ‘Christoffel’ equation (̌Cervený, 2001). We assume
the direction of propagation is close to the 1–axis and that all three wave types are propagating (i.e. not evanescent), so that thepα are small
and the three allowed values ofP1 are real. The three polarization eigenvectors in this common lateral slowness description are no longer
exactly orthogonal, but they do form a useful basis. Let these eigenvectors form the columns of the(3 × 3) matrix G, which is invertible
since the eigenvectors are not collinear. The corresponding 1–slownesses form the elements of the(3 × 3) diagonal matrixP1.

The frequency–domain plane wavefield may be writtenu(x1, xα, pα, ω), and we suppose that it contains in general all three wave types
with a commonpα. In a homogeneous medium this combined wavefield obeys the one–way wave equation

∂1u − iω u = 0 , (pα) = GP1G
−1 , (2.1)

exactly. The action of the ‘propagator’ matrix can be visualized as follows. FirstG−1 decomposes the total plane–wave displacement
field into qP, qS1 and qS2 amplitudes. Then the diagonal matrix iωP1 imparts the appropriate phase shifts for a propagation stepalongx1.
LastlyG combines the three evolved wave amplitudes into the new total wavefield.

When the initial field is not a sum of single–slowness plane waves we must use 2–D Fourier plane–wave decomposition, givenby the
transforms

u(pα) =

∫

u(xα) exp[−iωpαxα]dxα , u(xα) =
(

ω

2π

)2
∫

u(pα) exp[iωpαxα]dpα . (2.2)

The propagator acts on eachpα or ‘Snell wave’ componentu(pα) of the wavefieldu(xα) and the one–way equation now becomes

∂1u =
(

ω

2π

)2
∫ ∫

iω (xα, pα) exp[iω(xα − yα)pα]u(yα)dyαdpα . (2.3)

Reading from the right, the wavefield data are initially specified on the planex1 = constant, with yα as the lateral–position dummy variable.
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These data are Fourier transformed fromyα to the lateral–slownesspα domain. For eachpα or Snell wave, and at eachxα, the corresponding
total displacementu(pα) is carried forwards by the matrix propagator , which appropriately analyses the three wavetypes as described
above. Finally, inverse Fourier transformation w.r.t.pα combines the Snell waves to yield the total (first derivativeof) u atxα.

This formula seems intuitively reasonable for a homogeneous medium and the one–way wave equation (2.3) is then in a sensean exact
‘factor’ of the full anisotropic elastic wave equation (i.e. for the propagating waves at least). In a smooth inhomogeneous medium, though, it
can only be approximate. Backscattering from gradients is obviously neglected and in fact this equation is then the firstterm in an asymptotic
expansion in powers ofω−1 of the factorized wave equation given by Thomson (1999). Theelements of depend in general onxα as
well aspα, so that lateral variations of the medium come into play at each propagation step via the variations in the local 1-slownesses and
eigen–polarizations withxα. An important and desirable property of the propagator matrix is that its elements are slowly varying even in
the vicinity of an acoustic axis, where the individual qS polarizations are singular.

The derivation of (2.3) makes no explicit assumptions aboutpα being small, apart from the assumption that the forward slownesses in
P1 are real, and hence this equation is valid for a range of ‘wide’ angles. However, in practice the assumption that only positive or ‘forward’
values of the 1–slownessesP1 are important becomes unrealistic at wide angles. This is especially true if there is anisotropy and dimples
on the slowness surface lie close to thexα directions. In that case the plane–wave group velocity corresponding topα may have a positive
x1 component even if the full slowness vector(P1, p2, p3) has a negative 1–component. In practice, therefore, (2.3) is to be used only for a
limited range ofpα and further approximations are possible (§3).

The interpretation of the propagator makes it apparent how to isolate or filter out particular wave types. For example, ifonly qP waves
are wanted it may seem natural to use only the qP eigen–polarizations and 1–slownesses when forming . It is also easy to extract a
reference phase from the propagation step. Lastly, we mention that by a few more steps and approximations (Thomson, 1999, §5.4) the
propagation scheme outlined can be recast as something veryclose to the phase–screen method (Wu, 1994; Le Rousseau & de Hoop, 2001).
This significantly reduces the computational effort in the wide–angle, laterally–varying case. However, we presentlytake a different approach
to simplification.

3 THE REDUCED ONE–WAY WAVE EQUATION

The propagator can be constructed directly without first determining the individual eigen–polarizations and slownesses. Let the elastic
parameters be denoted bycijkl and define the matrix subsetCjk by (Cjk)il = cijkl. Then by considering the Christoffel equation defining
the individual eigenvectors and slownesses it can be observed that the composite quantity(xα, pα) is a solution of the matrix equation
(Thomson 1999,§2.1)

B = ( + A)2 + [A, ] , (3.1)

where

A =
1

2
C

−1

11 (C1α + Cα1)pα , (3.2)

B = A
2
− C

−1

11 Cαβpαpβ + ρC−1

11

=
1

4
C

−1

11 (C1α + Cα1)C
−1

11 (C1β + Cβ1)pαpβ − C
−1

11 Cαβpαpβ + ρC−1

11 (3.3)

and the final ‘commutator’ term in (3.1) is given by[X,Y] = XY − YX. Thexα (and indeedx1) dependence of arises from those of
the elasticitycijkl and densityρ.

For narrow angles, as could be appropriate when the incidentwave is ‘almost plane’, we may seek an expansion aboutpα = 0:

(xα, pα) = P0 + Pαpα + Pαβpαpβ + · · · . (3.4)

The expansion coefficientsP0(xα), etc., are obtained by substituting (3.4) into the defining equation (3.1) and matching powers ofpα. The
first few terms are then found to be given by

P0 =
√

ρC−1

11
, (3.5)

P0Pα + PαP0 = −C
−1

11 (C1α + Cα1)P0, (3.6)

P0Pαβ + PαβP0 = −C
−1

11 Cαβ − C
−1

11 (C1α + Cα1)Pβ −PαPβ . (3.7)

Matrix C11 is real and symmetric. In the isotropic case it is diagonal and its elements relate closely to the inverse wavespeeds (Woodhouse
1974). The eigenvalues and eigenvectors ofC11 must be known to constructP0, which is also symmetric. The higher terms (e.g. (3.6)) all
require the solution of nine simultaneous equations for thenine elements of each coefficient matrix (e.g.Pα) and ostensibly the inversion
of a 9 × 9 matrix constructed fromP0. An alternative scheme is possible, though, sinceP0 is symmetric. Using (3.6) as an example, the
difference between this equation and its transpose leads tothree equations for the three independent elements of the antisymmetric part of
Pα. Then adding (3.6) and its transpose leads to six simultaneous equations for the symmetric part ofPα. The ascending higher terms can
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Figure 3. The nine elements of the exact propagator (solid lines) compared to those of the quadratic approximation (3.4) (dashed lines) in pure halite, with
expansion point given by the centre of the contour plot in Figure 2 (i.e. the acoustic axis). Only the magnitudes are plotted, as indicated by the labels|(1, 1)|,
etc., for each frame. Each horizontal axis gives the magnitude of the lateral slowness 2–vector(p2, p3) or distance from the acoustic axis. Three azimuths
have been selected,−10◦, 50◦ and150◦, measured anticlockwise from thep2–axis. These are signified by the three different lineweights. The two vertical
centrelines depict the slownesses corresponding approximately to propagation at8◦ and15◦ to the 1–direction. At15◦ modest differences between the exact
and approximate forms can be seen.

all be found by these steps with the various right–hand sidesindicated by (3.6) and (3.7). It is systematic and easily coded for a computer, if
somewhat tedious.

When the expansion (3.4) is substituted into (2.3) the multiplications bypα and the inverse Fourier transforms w.r.t.pα introduce
derivatives w.r.t.xα and factors ofiω. Truncation after the quadratic term in (3.4) leads to

∂1u = iωP0u + Pγ∂γu +
1

iω
Pδγ∂δ∂γu (3.8)

in the frequency domain and

∂1∂tu = −P0∂
2

t u + Pγ∂γ∂tu −Pδγ∂δ∂γu. (3.9)

in the time domain. We term equations (3.8) and (3.9) ‘15◦ approximations’ by analogy with Claerbout (1976) for acoustic waves, where this
name implied that accuracy was deemed acceptable for propagation angles up to about15◦ from thex1 direction. Note that the second/middle
term on the rhs does not arise in the acoustic case. In the isotropic elastic case the matricesPγ have some off–diagonal elements which can
be associated with (weak) P to S wave coupling. Perhaps more interestingly, when an anisotropic slowness surface has an asymmetry or ‘dip’
w.r.t. thex1 axis (i.e. when that axis is not in a mirror plane) thePγ matrices will describe its effect on the waves.

Other approximate partial differential equations can be derived from alternative expansions of the propagator (Thomson, 1999),
but here we implement only the15◦ equation. In practice we suspect that for this vector wavefield problem either the15◦ equation will
be satisfactory, or we shall adopt a phase–screen approach rather than a higher–order vector partial differential equation derived using, for
example, a rational approximation to .
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4 FINITE–DIFFERENCE IMPLEMENTATION IN CARTESIAN COORDINA TES

The frequency–domain equation (3.8) has been implemented using simple second–order accurate finite differences, where the wavefields at
the current and one previousx1 steps are used to compute the values at the nextx1 step. First, though, we reduce the oscillatory dependence
of the wavevectoru onx1 by extracting a local dominant–phase term according to

u = exp [iωdiag(P0) (x1 − x′

1)]ū , (4.1)

where diag(P0) is the diagonal part of the matrixP0, x′

1 is taken to be the currentx1 position and the modulation̄u is expected to be
slowly varying about the currentx1. In an isotropic mediumP0 is purely diagonal and in the anisotropic examples to followthe off–diagonal
elements are about two orders of magnitude smaller than the diagonals. The off–diagonals inP0 are, though, generally comparable to the
second (dip) and third (curvature/spreading) terms on the rhs of (3.8).

In effect the local wavefield modulation̄u is stored atx1−∆x1 andx1, and a uniform grid spacing∆xα is used in the lateral directions
(at least in the most straightforward case). The lateral derivatives are then represented by the finite–difference formulas

∂αū = (ū(x1, xα + ∆xα, ω) − ū(x1, xα − ∆xα, ω)) /(2∆xα) + O(∆x2

α) , (4.2)

∂2

αū = (ū(x1, xα + ∆xα, ω) − 2ū(x1, xα, ω) + ū(x1, xα − ∆xα, ω)) /(∆x2

α)

+O(∆x2

α) , (4.3)

∂2∂3ū = (ū(x1, x2 + ∆x2, x3 + ∆x3, ω) − ū(x1, x2 + ∆x2, x3 − ∆x3, ω)

−ū(x1, x2 − ∆x2, x3 + ∆x3, ω) + ū(x1, x2 − ∆x2, x3 − ∆x3, ω)) /(4∆x2∆x3)

+O(∆x2

2, ∆x2

3) , (4.4)

and the explicit extrapolation scheme is

ū(x1 + ∆x1, x2, x3, ω) = ū(x1 − ∆x1, x2, x3, ω) + 2∆x1∂1ū(x1, x2, x3, ω) + O(∆x2

1) . (4.5)

Although this is a straightforward method which is easily implemented on a standard computer (an Intel/Athlon Processor under Linux in
our case), there are some subleties to be considered.

Firstly, one might expect such an explicit finite–difference scheme to be only conditionally stable. In fact, accordingto Tannehill et
al. (1997; p.129 ‘Richardson’s method’) a corresponding three–time–level scheme for the scalar heat equation in one space dimension is
inherently unstable. There exists a wide range of alternative explicit and implicit finite–difference schemes for heatequations which we
could attempt to use here (Tannehill et al. 1997; Chapter 4).However, our numerical results have indicated conditionalstability for this
simplest of schemes, with a minimum value of the lateral–grid spacing being admissible for a givenx1 step. Sensitivity of the results on the
latter has been reduced by the extraction of the local dominant phase and, of course, ours is a (parabolic) wave equation not a heat equation,
and a vector one at that. From numerical experience we have found that a useful guideline is given by∆x1/ω∆xα < ‘constant’, where
‘constant’ depends on the elasticity/wavespeed. This simple rule implies that halving the lateral grid spacing may require halving thex1 step
size or doubling the frequency to maintain stability. Although a von Neumann type stability analysis for this matrix equation does not yield a
simple analytic stability criterion, we have examined numerically the growth of the matrix equations obtained by substituting a plane–wave
ansatz into the finite–difference formulas (D. Angus, Ph.D.thesis), with results that are consistent with the simple rule just quoted.

Accurate finite–difference representation of lateral derivatives, particularly second derivatives, at the perimeter of the lateral grid is
more problematic. One–sided second–order difference stencils have been found too inaccurate. We have examined higher–order one–sided
schemes (using up to five interior points), but this did not improve matters as Fornberg (1996; Chapter 3) indicates for equi–spaced grids.
We also experimented with a variable lateral–grid spacing to refine the mesh near the edges (using the logarithmic methoddescribed by
Tannehill et al. (1997; p.335) and a Chebyshev scheme as recommended by Fornberg (1996)). However, while this can improve the accuracy
of the one–sided finite–difference formulas at the edges, itcould do so only by reducing the lateral–grid spacing there by so much that the
forward–step size had to be excessively reduced to maintainstability in extrapolation.

The solution to this difficulty was found by noticing that accuracy of lateral derivative representations was only an issue when these
were significant, which means when the underlying wavefrontis inclined significantly to thex1 axis. In addition, of course, the higher the
frequency the larger the oscillations with respect toxα and the more difficult it becomes to achieve accuracy. We havecircumvented these
problems by the following method, which was suggested by preliminary results from a curvilinear–coordinate version ofour method (to be
presented at a later date). For interior lateral grid pointswe evaluate the lateral derivatives using the central differences indicated in equations
(4.2)–(4.4) above. These are clearly accurate enough for all the frequencies and wavefront curvatures used so far. Thex1 derivatives they lead
to via (3.8) at the first two interior grid points near each edge (or corner) point are then used to extrapolate out to that edge point. However,
this extrapolation of∂1u is performed only after a lateral–phase term is extracted according to∂1u = ∂1ũ exp[iωp′

α(xα − x′

α)], wherex′

α

is the first interior grid coordinate. This extrapolation tothe edge has a truncation error of second order in the (uniform) lateral–grid spacing
and the only question remaining is how best to choose the local lateral reference slownessp′

α. As a first pass we use the known perimeter
lateral slowness of our incident wave, and once this is removed it is possible to iterate by aligning the remaining slightly–different complex
phases of the first two interior grid∂1u values. When multiple shear waves are present it may not be obvious what the best lateral slowness
should be and this iteration helps. These steps are not overly time consuming.



8 D.A. Angus, C.J. Thomson & R.G. Pratt

Figure 4.Waveforms of the 2–component at the initialx1 plane and the last two planes (199m and 200m), plotted as profiles either along thex2 axis(a) or the
x3 axis(b). The indices above the three columns signify the grid position of the profile in the remaining (third) direction. Since the (x2, x3) grid has49× 49
points, index 25 represents a precise centre line, while 16 and 34 approximately bisect the intervals on either side. Thex1 = 0m frames reveal the curvature
of the initial wavefront in comparison with the pulse width.The lower two frame sets indicate the movement of the wavefield in time after a 1m step alongx1.
The wrap–around of the discrete time Fourier transform is apparent, but not a concern. Note that the total travel time of the waves is approximately 4 times
longer than the plotted time axis (i.e. there is multiple wrap–around and these must be considered reduced–time plots).See text for discussion of the evolved
waveforms. Part(c) shows the weaker 3–component alongx2 profiles.

A perhaps less–expected complication has been an occasional low–frequency inaccuracy caused by division byω in (3.8) in combination
with imperfect accuracy in the second derivatives. This didnot arise for the examples presented here, but we mention it for completeness.
Since the one–way equation (3.8) is a high–frequency approximation one should perhaps regard this occurrence as a potentially–useful
warning against inappropriate application, rather like end–point signals in slowness integrals.

5 NUMERICAL EXAMPLES

We present waveforms for the five different media in Figure 1,taken to be homogeneous even though this is not required by the theory.
Assuming homogeneity facilitates comparison with the reference solution described below, adequately tests the numerical implementation
and is sufficient to demonstrate the anisotropic propagation physics currently of most interest. In each case the coordinates are rotated so
that thex1 propagation direction points more–or–less along an acoustic axis. The actual dimensions used in the modelling will be described,
though by the end a more scale–independent view of the results will emerge. Essentially the objective is to simulate waves that would be
regarded as high frequency for each potential geophysical scenario (upper–mantle turning waves, cross–borehole recording, etc.). This reveals
the waveform characteristics most clearly and space limitations necessitate that the qualitative effects of low–passfiltering must generally be
surmised.

A smoothly–curved incident wavefront is defined over a square region in thexα = (x2, x3) plane. In most cases the size of this region
is 144m×144m and exceptions will be noted as they occur. The wavefront curvature is defined by its normals at the extremes of the 2–
and 3–axes and these normals are inclined at angles tox1 up to about15◦. One can ascertain from the plots below the significance of the
wavefront curvature relative to the incident–waveform duration.

The total initial displacement is slowly varying across theincident wavefront and is arbitrarily chosen to be dominantly along x2.
This is achieved by taking at each point on the planex1 = 0 an appropriate linear combination of the two allowed qS eigen–polarizations
corresponding to the wavefront’s incidence angle at the point in question. As the individual eigen–polarizations are singular at some point in
the plane (because the wavefront directions encompass an acoustic axis), their weights must counter–rotate to form thesmooth result.

The incident wavefront carries a simple smoothed delta–function pulse (see Figure 4, top). This pulse has a typical half–width of about
0.3ms (or a width of 0.64ms at its base). A typical propagation path is 200m in the 1–direction and, taking the 1–componentof slowness
in the pure halite example described first (see Figure 2), this corresponds to roughly (200m)(0.38ms per m)/(0.3ms)≈ 250 spatial pulse
half–widths. The waveform effects are certainly extreme after travelling so far.

The waveforms are computed atnt = 64 time samples with increment∆t = 0.04ms and the smooth incident waveform corresponds
to a delta function convolved four times with a boxcar of width 4∆t. In practice, sufficiently detailed waveforms have been obtained by
extrapolating only the first 17 frequencies (i.e. not all 32 up to the Nyquist). For the longest program runs, the lateral grid of 49 × 49

points has spacing∆xα=3m and propagation step∆x1 = 0.02m. Thus 10,000 steps are used for a 200m path and this takes approximately
22mins using Gnu fortran77 with a 1.8Ghz Athlon processor running under Linux. Anx1 stepsize 2.5 times larger produces waveforms that
are slightly different only at the edges of the domain, wherethe effects of inaccuracy at the highest frequencies is revealed. At the lower
frequencies a larger step size is often permissible and a refinement of the coding would include frequency–variable stepsizes.

‘Exact’ reference waveforms are computed using separationof variables and two–dimensional numerical integration over lateral slow-
nessespα. The solution of the exact one–dimensional wave equation inx1 for each value of the lateral slowness was computed using a
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Figure 5. The two lateral components of the displacement in pure halite after 200m of propagation. These plots serve to emphasize that the 3–component
has grown from zero to a level sometimes comparable with the original 2–component.(a) x2 section,x3 midline (ix3=25): Note there is a ‘gap’ in the 3–
component at the centralx2 values. We can expect to see such gaps in general. A precursory negative swing on the 2–component is clearly displayed in the
central region. Near the edges there is a hint of some ringingin the waveforms, which may indicate the need for a refined finite–difference mesh, but the quality
of the waveforms in the important central region is good.(b) x3 section,x2 midline (ix2=25): There is no 3–component (by symmetry) andthe waveforms
of the 2–component are significantly different at large and small x3. (c) x2 section,x3 index 20: This shows the apparent enlargement of the ‘gap’ inthe
3–component away from the acoustic axis.(d) x3 section,x2 index 34: This shows the significance of the 3–component awayfrom the (anti)symmetry plane
and the transferance of energy from the fast to the slow qS wave in the 2–component.

layer–matrix program (‘Rmatrix’, for a single layer in thiscase) developed by Martin & Thomson (1997), and the numerical slowness in-
tegrations were performed using either a simple trapezium rule or the Filon method (Frazer & Gettrust, 1984). The initial conditions were
chosen to duplicate those used for the one–way equation. End–point (or, rather, perimeter) effects in the slowness integrals mean a compari-
son can only be made in the central regions. No attempt has been made to suppress these perimeter effects, which are indicated below where
they are apparent.

5.1 Pure Halite – a symmetric example

For cubic pure halite we set the propagation directionx1 to be along the (1,1,1) acoustic axis in the natural reference frame of Figure 1(a),
andx3 is set to point towards the natural–frame (0,0,1) axis. The 1–componentP1 of the incident wave qS2 slowness in this rotated frame is
contoured over(p2, p3) in Figure 2, where the singular qS2 polarizations are also shown. The three–fold symmetry about the axis is evident,
as is a line of singularity in these ‘free’ polarization eigenvectors.

The accuracy of the Taylor expansion (3.4) is crucial to the method and Figure 3 shows the exactly–evaluated elements of (2.1)
versus those of its quadratic approximation about the pointpα = 0 (i.e. the first three terms of (3.4)). Visual inspection indicates that the
second–order expansion has reasonable accuracy out to15◦, even though this expansion is effectively about a singularpoint of the slowness
surface. We have experimented by moving the expansion pointaround in the neighbourhood of the acoustic axis, with stable results. When
one recalls that the individual matrix components of are singular, it is gratifying that the Taylor series for the product matrix is indeed so
stable. The true acceptability or otherwise of the apparently–accurate quadratic approximation in Figure 3 can only beascertained by looking
at the resultant waveforms, however.

Figure 4 shows the waveform 2–components along profiles parallel to x2 andx3, at the initial plane and atx1 = 199m, 200m. The
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Figure 6. Comparison between the one–way equation result (dashed) and the ‘exact’ reference solution (solid) for pure halite.(a) x2 section,x3 midline
(ix3 = 25), 2–component;(b) x3 section,ix3 = 30, 2–component. In part (b) the profile/section is far enough from the acoustic axis that the slow qS2 wave
can be seen to have a significant phase error (early).

profiles alongx2 (Figure 4(a)) show an asymmetry on either side of the acoustic axis (left column versus right column). The fast qS wave
evidently contains most of the energy at left whereas the slow wave does so at right. In the middle column the energy is changing from the
fast to the slow wave. These qualitative observations couldbe deduced by considering the qS2 polarization rotation in Figure 2.

In contrast, the sections alongx3 in Figure 4(b) show that the wavefront is ‘torn’ on either side of the acoustic axis (i.e. at large and small
x2, or the left and right columns). The offset between the fast and slow waves shown on either side of Figure 4 is probably unrealistically
large (compared to the pulse width) for seismological data,but qualitatively this ‘wavefront tearing’ is a characteristic effect of an acoustic
axis.

Figure 4(c) shows profiles of the weaker yet now nonzero 3–component, which we may term the ‘anomalous’ component. However,
its importance relative to the larger 2–component is not revealed by this type of plot, and accordingly Figure 5 shows two–component
seismograms along variousx2 andx3 profiles. These show that the 3–component can grow from zero to become comparable with the initial
2–component, with a notable exception in part (a) along the mid–line x2 = 72m (or index ix2=25, which lies in a symmetry plane for the
pure–halite case). In fact, the ‘gap’ (or lacuna) in the 3–component along thex2 section is another characteristic of the axial propagation.
In this highly symmetric example, the 3–component shows waveforms which are perfectly antisymmetric about the centralx2 position,
necessitating the zero central 3–component. However, we can expect to see such gaps more generally as they are associated with the eigen–
polarization rotation (e.g. see also Figure 14(c) below). This zone of reduced 3–component is wider inx2 sections lying just either side of
the one depicted (i.e. away from the acoustic axis). Overall, note as well from Figures 4 and 5 that the waveforms on the main 2–component
are quite distinct along profiles in the two orthogonal lateral (xα) directions.

Evidently there are small ripples in the waveforms at the edges of the domain of propagation. There is the possibility that these are
caused by incipient wavefront folding due to the concavity of the qS2 sheet, especially in directions away from the acoustic axis towards
each of the three natural axes (there are mild ‘ravines’ in the slowness sheet along these directions, as can be seen Figure 1 of Rümpker &
Thomson, 1994, for the qualitatively–similar case of cubicnickel). The waveform ripples may also be due to finite–difference inaccuracy at
the edges, which can certainly arise when the grid spacing ismade larger.

However, the waveforms in the central regions of Figures 4 and 5 can be regarded as accurate, and Figure 6 shows a comparison with the
reference waveforms computed using separation of variables. Note, for example, the small negative swing in the centralfew traces of Figure
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Figure 7. Contours of the 1–component of the qS2 slowness for pure quartz in the vicinity of the indentation shown in Figure 1(b). The rotated 1–axis
and propagation direction are out of the page, at the centre of the plot. The ‘free’ polarization eigenvectors have been given arrowheads to emphasize the
singularities which arise in any scheme which tries to definepolarization continuously in this(p2, p3) tile. There appear to be three conical points (acoustic
axes), where the polarizations form ‘T’ patterns and from which lines of singularity (polarization reversals) emanate.

6(a). Asymptotically, this swing is due to the Hilbert–transform effect of folded wavefronts, which is described somewhat more in the next
section. Also noticeable in these central traces is a long–period variation (almost a negative d.c. shift) in the reference solution, which is due
to the perimeter contributions to the two–dimensional slowness integrals. Taking this into account, the agreement between the one–way and
reference solutions is very good in the central region. As the edges of the profile are approached, though, it is clear thatthe second–arriving
qS wave from the one–way method is somewhat early (Figure 6(b)).

Pure halite is quite an extreme, if rather symmetric, case and yet it confirms the basic ideas of the vector one–way equation method. The
phase errors in Figure 6, which have accumulated after propagating some 250 spatial pulse half–widths, are substantialand raise questions
which can be addressed by considering an even more extreme case.

5.2 Pure Quartz – a pathological example

Pure quartz has even more dramatic slowness variations in the vicinity of the direction shown in Figure 1. There are in fact three closely–
neighbouring acoustic axes (Figure 7). The propagator and its three–term Taylor series approximation are depicted in Figure 8, which
indicates that even for this extreme material the quadraticapproximation apparently does reasonably well. However, an important piece of
the physics is made abundantly clear by this medium. Although the complicated polarization distribution does not in itself present a serious
limitation for the15◦ approximation, the severe indentation of the slowness surface and consequent wavefront folding place a definite limit
on the propagation range over which this wave equation can beused.

In order to appreciate the qS2 wavefront folding which ensues, the Maslov phase is plotted in Figure 9 for a large propagation distance
of 300m. For a receiver at the centre of the lateral grid (the origin), the Maslov phase is the 2–dimensional Legendre transformation w.r.t.xα

of the qS2 wavefront phase function (Kendall & Thomson, 1993). That is to say, it is the well–known functionτ (pα) derived from tangent
planes toT (xα), the ray arrival–time function at the chosen rangex1 and for the given incident wave. Maxima and saddle points in Figure
9 indicate geometrical ray signals. We see that there shouldbe three standard impulse arrivals corresponding to maxima, one somewhat later
and at a largerp3 value. There are also three almost–coincident Hilbert–transformed arrivals corresponding to intervening saddle points.
These will actually be the earliest qS2 signals and will havea negative first motion.

At the initial data plane there is only the single stationarypoint (maximum) corresponding to the incident wave. As the rangex1 increases
from zero the initial single maximum separates into the multiple stationary points, which migrate outwards to larger lateral slownesses. This
outward migration corresponds to increasing importance for the developing wavefield of points on the initial wavefrontwhich are close to
the edges of the finite domain over which it was prescribed. The qS2 rays actually begin to cross immediately, causing wavefront folds to
grow from vanishingly–small patches lying at the intersections of the acoustic axes with the initial–data plane. Eventually, at largex1, the
wavefield near the centre of thexα plane depends on contributions associated with rays that emanate from the edges of the initial–data plane.
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Figure 8. The nine elements of the exact propagator (solid lines) compared to those of the quadratic approximation (3.4) (dashed lines) in pure quartz, with
lateral–slowness expansion point coinciding with the centre of the contour plot in Figure 7. Only the magnitudes are plotted, as indicated by the labels|(1, 1)|,
etc., for each frame. Each horizontal axis gives the magnitude of the lateral slowness 2–vector(p2, p3) or distance from the expansion point. Three azimuths
have been selected,10◦, 100◦ and200◦, measured anticlockwise from thep2–axis. These are signified by the three different lineweights. The two vertical
centrelines depict the slownesses corresponding approximately to propagation at8◦ and15◦ to the 1–direction.

Figure 9. The qS2 Maslov phase corresponding to a receiver on thex1 propagation axis at a range of 300m from the initial plane. See text for definition and
discussion.
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Figure 10.Waveforms of the 2–component in pure quartz at the initialx1 plane and two penultimate planes (100m and 110m), plotted asprofiles along the
x2 axis. The indices above the three columns signify the grid position of the profile in thex3 direction. Since the grid is49× 49 points, index 25 represents a
precise centre line, while positions 16 and 34 approximately bisect the intervals on either side. The first frame set reveals the curvature of the initial wavefront
in comparison with the pulse width. The lower two frame sets indicate the movement of the wavefield in time after a 10m step along x1. The wrap–around
of the discrete time Fourier transform is apparent, but not aconcern and again this must be considered reduce time. See text for discussion of the evolved
waveforms, in particular the precursory depression seen inthe centres of frames of the bottom row.

Thus our truncated initial–value problem and our approximate propagator have limitations to their well–posedness. One could introduce the
idea of a Fresnel zone on the initial–data plane (by considering the widths of stationary points in Figure 9 for example).The radius of such a
zone grows asx1 increases, but it is important to recognize that there are several stationary–point contributions and that it is their combined
effect which matters.

Taking guidance from Figure 9 we show waveforms which have propagated only 90m alongx1 (Figures 10 and 11). Once again only
the central few traces can be considered accurate. Figure 10shows quite clearly the enhanced amplitude and precursory negative swing
(depression) for these central signals and in Figure 11 the reference solution verifies their general correctness. The precursory negative swing
represents the emerging Hilbert–transformed folded qS2 wavefront. The reference–solution perimeter contributionsare apparent in Figure
11, and include a somewhat–localised later–arriving pulse(see caption), which must be due to a perimeter (i.e. 1–dimensional) stationary–
phase point. Towards the edges of thex2 receiver line there are obvious phase errors signifying thelimits of the15◦ approximation (which
predicts arrivals that are too early).

Overall, the one–way equation results are as one might expect and from this very extreme example we conclude that for short paths
(under 30 spatial pulse half–widths in this case) the15◦ approximation may still have some utility. However, a more widely–applicable
method, such as the phase–screen approach, would clearly bebetter. These intuitively–expected conclusions could be supported by math-
ematical analysis of the rays or characteristics of the15◦ equation, in addition to the numerical examples. Interestingly, if this one–way
equation is used over a somewhat longer propagation distance, say 135m, it does appear to create a first–arriving wavefield apparently riding
on a folded wavefront, but the waveforms are not accurate. Caution must therefore be exercised and ray tracing can be usedto define the
domain of applicability, via the Maslov phase, if there is doubt. Space does not permit us to show the exact/reference waveforms for the many
distinct multiple arrivals that exist at longer ranges or higher frequencies, but qualitatively similar signals have been presented by Rümpker
& Thomson (1994) in the very–high frequency range.

These observations apply as well to the previous pure haliteexample, where at 200m an incipient Hilbert–transformed precursor could
be perceived and hence the angular spectrum on the initial plane may have been been only just sufficient for the range considered. There
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Figure 11. Comparison between the one–way equation result (dashed) and the ‘exact’ reference solution (solid) for pure quartz. This is anx2 section at the
x3 midline. Note the weak negative pulse between 1.9 and 2.9ms,which is a perimeter (1–D) stationary–point signal. See text for further discussion.

were also qS2 phase errors (Figure 6) indicating the same basic problem, namely that the15◦ has a definite range limitation when slowness
surface indentations are important.

5.3 Three more–moderate polycrystal examples

In more moderate, and prevalent, cases the applicability ofthe15◦ is far less restricted and the main effect of acoustic axes ongently–curved
wavefronts will be subtle waveform changes as described in the introduction. The three polycrystal examples of Figure 1(c–e) are taken to
be representative and they are grouped together as we wish toemphasize the more–or–less generic effect of conical points on waveforms in
this regime. Differences in initial conditions (ratio of qS1 to qS2) can alter the waveforms significantly, of course, but in cases where they
are comparable results such as Figure 12(a–c) are obtained.In each case we see two roughly–equal qS signals that merge asan acoustic
axis is approached. In the sheared halite (Figure 12(a)) thepulse properties are as above for pure halite and the path length is about 250
pulse half–widths. For the mylonite model (Figure 12(b)) the pulse half–width is about 0.4ms in time and about (0.4ms)/(0.24ms/m)=1.7m
in space. Thus the total path is (200m)/(1.7m)≈ 120 spatial pulse half–widths in this model.

Figure 13 shows a comparison between the15◦ equation results and those of the exact reference solution in the sheared-halite model.
The agreement is very good, especially after propagating somany pulse widths. The results of Figure 13(b) are particularly encouraging,
where the weaker, anomalous 3–component of the waveforms iscompared between the two techniques. We conclude from Figure 13 that
sufficient accuracy can indeed be obtained for practical applications in which, roughly speaking, the waveforms will below–pass filtered
versions of those shown. It is actually gratifying that the numerical computations can be carried out in of order ten minutes even for the more
extreme parameter ranges used here.

The same spatial dimensions have actually been used for the ridge–LPO elasticity results of Figure 12(c), to emphasize the generic
properties. Here the temporal pulse half–width is 0.3ms andthe spatial pulse half–width at the same frequencies is about 1.4m, as the
wavespeed is somewhat higher than, say, for halite. Thus the200m path length is about 70 pulse half–widths. Scaling downto lower
frequencies we can estimate that for a signal of width 0.1s (i.e. circa 10Hz) a path length around 70km would generate similar waveforms.
A pulse ten or more times wider (period> 1s) would be more realistic for a seismic wave used to probe theupper mantle, and applying a
corresponding filter to the waveforms of Figure 12(c) suggests that the signal variations will then indeed be subtle. However, it should be
recalled that the shear–wave splitting is increasing away from the axis and the stronger splitting would certainly be visible for this particular
elasticity at those lower frequencies for a 70km path.

To support this, the example of Figure 14 shows waveforms computed in the ocean–ridge elasticity for spatial dimensionsand frequen-
cies closer to upper–mantle signals. Here the lateral grid size is 240km by 240km, with grid spacing 5km. The propagationpath length is
100km and the pulse half–widths are about 0.25s in time and 1.2km in space. Thus the propagation path is approximately 80 spatial pulse
half–widths. While the dominant frequency of 4Hz is still somewhat higher than would be available in the data, it should again be borne in
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Figure 12.The highly–comparable waveforms of the 2–component alongx2 andx3 sections after propagating tox1 = 200m subparallel to acoustic axes in
the three moderately–anisotropic polycrystal elasticities of(a) sheared halite;(b) quartz–rich mylonite;(c) the olivine LPO mantle texture model. The three
columns indicate different choices for the remaining thirddimension (x3 or x2, by grid index). See text for discussion.

mind that we are modelling a domain of moderate splitting approaching an acoustic axis. Visual inspection of Figure 14(a) suggests quite
clearly that for signals around 2Hz the effects of conical points will be to effectively double (or halve) the apparent pulse widths along some
transects. Similarly, Figure 14(b) shows how the splittingon the anomalous or initially–unexcited component (again the 3–component in this
case) can cause significant signals with a characteristic bipolar waveform.

Lastly, Figure 14(c) shows anx3 section for a slightly different path near the acoustic axis. This example has the previously–seen
gap/polarity–change in the anomalous 3–component that canarise as a result of the polarization rotations. It also shows broadening of
the main 2–component signals at lowerx3 positions, and it is important to note that there is an offsetalongx3 between the gap and the
broadened pulses. This offset is intuitively in keeping with the polarization rotations around the axis and the separation of the slowness sheets
on moving away, and this example serves to remind us that the characteristics of a single anisotropic feature (i.e. the axis) may appear on
distinct seismograms. Thus it is important to study the vector waveform evolution along the entire profile.

While these homogeneous–medium examples adequately demonstrate the possibilites for mantle paths and periods such asthese, in
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Figure 13.Comparison of the displacement waveforms obtained after 200m of propagation using the15◦ one–way equation (dashed) and the ‘exact’ reference
solution (solid) in the sheared–halite model.(a) 2–component,(b) 3–component. Slowness integration perimeter contributions to the reference solution are
most apparent as a roughly d.c. shift in part (a). See text fordiscussion.

complex structures such as that depicted in Figure 4 of Blackman et al. (1996) the effects of wavetype coupling and smoothing by medium
inhomogeneity are expected to be important. This will be thetopic of future papers (Angus & Thomson, in prep.).

6 DISCUSSION

The relationship between waveforms and underlying elasticity soon becomes complicated when wavefronts are curved andthe integrated
effect of a plane–wave spectrum needs to be considered. However, despite the numerous polarization, path–length and frequency scenarios,
an intuitive understanding should be obtainable with the aid of a modest amount of waveform modelling.

We have presented a method for simulating waveforms in anisotropic and inhomogeneous media which balances computational speed
and the necessary physical content. Although the limitations of the theory are evident and the examples presented are deliberately not too
complicated, we believe the method has clear potential. Theparticular form of one–way equation implemented here is part of a hierarchy of
approximations which should encompass a wide range of practical cases.

The method is capable of incorporating the effects of smoothvariations in the medium across the wavefront, since the propagator in
(2.3) and coefficient matrices in (3.8) depend on the lateralcoordinatexα. Such variations may be on the scale of a Fresnel zone or less,so
long as the notion of a primary wave with a dominant propagation direction is still appropriate. The challenge of using this knowledge with
data to constrain Earth structure remains a serious one and it is for this reason that we consider the local nature and computational efficiency
of the method to be important.

The reader may be wondering how density variations appear inthe theory, and in fact the answer is they arise at the next order in 1/ω

in the asymptotic expansion that yields the factorized waveequation. This is in keeping with the way in which density terms arise in the
standard ray method. Although it is not too difficult to incorporate such higher terms, the leading terms emphasize the controlling influence
of the vector polarizations and differential phase speeds,and these terms ought to be sufficient in many cases.

Another fundamental point is that fine–scale features such as conical points can be either smoothed away or made dramatically apparent,
as key parameters vary. Effects such as shear–wavefront tearing, enhanced or diminishing amplitudes, anomalous components, and pulse
broadening may all arise. With high–frequency pulses theseeffects can be seen using a relatively low value of incident wavefront curvature,
or equivalently a single distant source. As frequency–content decreases, though, a wider range or spectrum of incidentwave slowness may be
required, either from a single nearby source or a range of distant source positions. The Cartesian implementation of the15◦ approximation
may not be adequate in the former scenario, so that a curvilinear coordinate version may be required or even a more complete representation
based on equation (2.3) (e.g. a phase–screen limit).

Although the15◦ approximation is the most restrictive, it does indicate howthe elasticity–tensor and slowness–surface local directional
properties influence the waves, namely via the Taylor expansion (3.4). This presumably has implications for interpretation and the ‘auto-
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Figure 14.Comparison of the 2–displacement waveforms obtained after100km of propagation using the one–way equation (dashed) and the reference solution
(solid) in the olivine LPO model, at lower frequencies and with a (49×49 point) lateral–grid spacing of 5km. The initial wavefront again spans an angular range
of ±15◦ over the enlarged 240km×240km area. This plot verifies that the numerical method can be scaled appropriately and that the Cartesian coordinates are
likely to be sufficiently accurate for many cases of interest. (b) The 2– and 3–components compared. The former displays siginificant waveform differences at
large and smallx2, since the acoustic axis is neared somewhere in the middle. The latter is initially zero and has grown by splitting into qS1 and qS2 waves
with opposing polarities (creating a bipolar net waveform). (c) An x3 section near the same axis, showing a gap/lacuna in the ‘anomalous’ 3–component, the
position of which is somewhat offset from the receivers showing pulse–broadened 2–components at lowerx3 positions. See text for further discussion.

mated’ inversion of waveform data. In a pioneering study Haddon & Husebye (1978) analysed apparently–systematic teleseismic amplitude
variations across the NORSAR array using their own one–way propagator. The ‘focussing’ which they sought to explain could now con-
ceivably be augmented by polarization and entire waveform information (including shear–wave splitting). The theoretical details and the
inherent non–uniqueness of such teleseismic waveform inversion have yet to be clarified, but a key step is the ability to model gradual vector
waveform evolution across a dense array of receivers. With such data the prospects are good for enhanced anisotropy studies exploiting the
polarization variations such as those of Figure 1.
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