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SUMMARY

A new one—way wave equation for three—dimensional aniparelastic media and its finite—
difference implementation are described. Backscattasngglected, but the method should
provide a sufficiently accurate, efficient (slower than tagary, faster than full wave equation
finite differences) and robust simulation of the primary @y passing through a region of vari-
able and possibly—strong anisotropy. In particular, fesgpy—dependent wavetype coupling and
the effects of rapidly—rotating polarization eigenvestwill be included. Example waveforms
are presented for rock elasticities representative of lmamustal and basin—scale applications.
These have been computed only for homogeneous regionsh Watititates comparison with
a separation—of—variables reference solution. Nevertiseseemingly characteristic waveform
effects associated with conical points, or acoustic axesphserved and these effects should
only be modified in degree rather than style by smooth pammgeadients (e.g. in the upper
mantle). These characteristics include: merging/spgtfulses, sometimes resulting in sim-
ple pulse broadening; wavefront ‘tearing’; gaps/lacupakafrity—reversals in the ‘anomalous’
component arising from the eigen—polarization rotatiard ancipient Hilbert—transform like
first-motion changes due to indentations of the slow sheareslowness sheet.

Key words: body waves, anisotropy, one—way wave equation, finiteeidifices, mode cou-
pling, seismic waveforms.

1 INTRODUCTION

Although the presence in the Earth of significant fine—sa@lg €rystalline) elastic anisotropy is widely acknowledgorientation variations
and averaging make its net effect on longer—scale (or wagti¢ seismic signals difficult to assess. Statisticatggmt has generally been a
workable hypothesis, though a common extension is to madeditares associated with a single axis of alignment, sagyasallel cracks, as
hexagonally symmetric or transversely isotropic (T1). kawtwo orthogonal alignments leads to models based on idrtiebic symmetry.
Extended approximations such as these hold out the prorisesstible relationships between seismic observablesh ss the moveout of
exploration—seismic reflections, and the enlarged setastielparameters (Bakulin et al., 2000). Sometimes therahisies themselves are
few in number, such as the two splitting parameters of tedase SKS, but still they provide useful insights into thertige.g. Helffrich et
al., 2002).

Rocks only approximate to the simple symmetries mentiometom the single—crystal scale anisotropy can be very stasngell as
asymmetric. Direct evidence for the variety of whole—rot&ks#cities comes from hand—sample measurements (e.qpieg & Silver,
1993; Weiss et al., 1999; Lloyd & Kendall, 2003), although $oales much less than a seismic wavelength. Three—diomethsiariations
in degree and type of anisotropy must exist on somewhatragges controlled by processes such as convection in thdenarustal
shear—zone tectonics or salt migration. One approachm¥ais about the possible induced seismic properties by comgdattice preferred
orientation (LPO) theory with finite—deformation histarieom particular geophysical flow models (e.g. Blackman.e1896, for the upper—
mantle scale and Raymer et al., 2000, for the sedimentasjr-saale). Observationally, teleseismic evidence fos@ndpic layering in an
Archean craton (Bostock, 1997) may reveal zones of wealara$sigh shear indicative of basic craton—formation meisinas Variations
in lithospheric anisotropy within a craton can also be obsgiin teleseismic body—wave data (e.g. Kay et al., 1999S#8). Combining
with complementary signals, such as surface waves or d@tr@ource arrivals, then provides important contraimsectonic hypotheses
(Kendall et al., 2002). Even on the engineering scale, liitical layering may combine with grain shape as well astaty@rientation to
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Figure 1. The slow quasi—shear or qS2 wave slowness surfaces for thedts of anisotropic elastic parameters described in xteQaly a representative
portion of each surface is shown. The thin lines embeddekdrstirfaces indicate the allowed qS2 polarization for aglaave propagating in the direction
corresponding to each line’s midpoint. The conical poingsiarities can be discerned by looking for places wheretiarizations form a ‘T’ pattern. For
example, in part (a) Halite such a point lies in the (1,1,1¢clion in the natural coordinate system of the figure, whimincides with the line of sight for this
3D perspective plot

produce a net anisotropic fabric in rocks which can augmetverwhelm more—commonly discussed aligned—crack sigestin cross—
borehole aquifer imaging (Herwanger et al., 2003; G. Lloy& &/alcke, pers. comm.).

These examples indicate the range of complex targets atesfoa modern seismic—anisotropy studies. However, thil ianprove-
ments in data quantity and quality due to more complete gaatke networks (e.g. POLARIS in Canada — www.polarisngbcghe bur-
geoning acquisition for reservoir characterization (€pristie et al., 2002) need to be matched by improved wamefmodelling tools
based on physically—-motivated approximations. Such aiations must relate directly to local material propestssd yet describe the
frequency—dependent smoothing that takes place during papagation.

Interference between the anisotropic quasi—shear (qSgsviavhe most diagnostic wave—propagation effect. Sorestimo distinct
shear waves are apparent (Winterstein & De, 2001; Guest, €i%813). If they are not apparent one can infer only that Wweshear—wave
speeds are close together in the particular propagati@ttitin sampled. There are three types of coalescencera@éfar here as ‘ring
intersections’, ‘kiss’ and ‘conical’ points (after Cramp Yedlin, 1981). The first can occur in perfectly Tl media,evha the two gS sheets
of the ‘slownes surface’ (Musgrave, 1972) and their assediaigen—polarizations can be thought of as passing styabtbugh each other
on a ring around the symmetry axis. Although the two qS sheatsappear locally simple and analytically independeng, gnadient these
waves will nevertheless couple strongly near the ring sgtetion (Chapman & Shearer, 1989). At a kiss singularitytteeqS sheets meet
tangentially at an isolated point, as can happen on the &Xisroedia. At conical points two slowness sheets meet like tanes tip—to-—tip.
The point singularities (kiss and conical) define direcionthe material which are called ‘acoustic axes’ by analegk optical axes used
in mineral identification.

The character of polarization—eigenvector rotation isstifjuishing feature for these acoustic axes. Around kiggutarities one S
polarization is radial from the axis and the other is azirmu#ibout the axis. As a circuit is completed around this tyjpaxts on a given
slowness sheet the associated eigen—polarization retuitssoriginal value (Chapman & Shearer, 1989; Figure 12hi€al points are more
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Figure 2. Contours of the (rotated) 1-component of the qS2 slowneb®iwicinity of the pure halite acoustic axis. The rotatedxis-and overall propagation
direction are out of the page at the centre of this plot, apweading to the (1,1,1) direction in the natural coordisaiEFigure 1(a). The ‘free’ polarization
eigenvectors have been given arrowheads to emphasize¢haf Isingularity which arises in any scheme which tries fiinégoolarization continuously as the
acoustic axis is encircled. In this case the singular litie fraight down from the centre. This singular line nothstanding, the three—fold symmetry about
the axis is apparent.

complicated. As a circuit around a conical—point acoustis & completed the given eigen—polarization vector readhe negative of its
original value (Rumpker & Thomson, 1994). In actual fachical points may be called the most elemental. This is ksradding a triclinic
perturbation to a Tl or hexagonal material causes a ringgatgion or kiss singularity to degenerate into multiplaical points (Alshits &
Lothe, 1979) and a slowness—sheet circuit around two cbpaiats will bring the eigen—polarization back to its origi value.

Figure 1(a) shows the slow shear wave (qS2) slowness stoegtcathe (1,1,1) conical—point acoustic axis of cubic bgkfastic param-
eters taken from Raymer et al. (2000)). The three—fold sytmynie clearly revealed by the characteristic rotation & &igen—polarization
and we see that on opposite sides of the conical point the-gigdarizations on this sheet are orthogonal (i.e. pation rotates through
/2 on travelling half a circuit around the axis). A similar sition exists on the underlying fast quasi—shear (qS1) skeeépt that for
each direction in slowness space the eigen—polarizatioriseotwo sheets are orthogonal to each other. From the mekspef Figure 1(a)
the strength of halite’s anisotropy (i.e. deviation of tt@smhess surface from a sphere) may not be too apparent, dsirigularity of the
polarization is as diagnostic as an optical axis for miraggl A section through through the qS2 sheet would show tigsharply indented
around the axis and that the conical shape points inwardsotitward normals of the slowness—sheet in this neighbodrtieerefore cross
each other and this leads to folding of an initially gentiyrned wavefront travelling subparallel to the axis, sinte normals define the
propagation direction of rays and energy flux (i.e. groupeity).

All conical points are the same in a topological sense andrEid.(b—e) indicates their ubiquity, beginning with anotbemmon
single—crystal example, quartz (elastic parameters takemLloyd & Kendall, 2003, Table 2). The quartz variations axtreme and in fact
there are three neighbouring conical points in the sevéndignted region depicted in Figure 1(b) (this can be sedptietFigure 7 later).
Figure 1(c) is the result of numerical LPO calculations folyprystalline halite (Raymer et al., 2000, Table 1 for thse shear strain 10).
Figure 1(d) is the result of laboratory (electron—backscatg) measurements of a whole—rock mylonite sample @i&yKendall, 2003;
for this figure we have used the mylonite sheared—zone—matgsticity of their Table 3). The last example Figure 1éehaken from the
numerical study by Blackman et al. (1996) of mid—ocean rittyge—induced texture in mantle rocks (olivine LPO). We haaleh the elastic
parameters for their buoyant model at about 30km from thgerikis and a depth of about 75km (see Figure 4 of Blackman, €t986).
The ‘whole rock’ cases (Figure 1(c—e)) are all triclinic.

All these examples are characterized by regions of swirtinfarization, focussed on the acoustic axes. The sheae-gftitting
(difference between qS1 and qS2 wavespeeds) will be gtdatdsom the axes, where the polarizations are ‘stableth&taxes the eigen—
polarizations are most rapidly changing and hence are fiallgrdiagnostic, but the splitting is least. We shouldieipiate, then, that the
sizeable intermediate or transition directions in ‘sloasepace’ will be of most practical interest.

However, rapid rotation of eigen—polarizations in slovaxgsace does not necessarily imply that a total wavefieldeaispent vector in
physical space will show similar rapid variations as a restusmall changes in propagation direction (e.g. acrosstygeurved wavefront
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propagating along the acoustic axis). Rather, the waveggnsill be distributed between the roughly—orthogonal q®tl §S2 eigen—
polarizations such that the net displacement is more—glearlying. Since their wavespeeds diverge away from axesgaiéncy—dependent
transition between split and degenerate waveforms is ¢éggemnd its differing characteristics on the various displaent components are
potentially diagnostic, if we can systematize them.

Wave—coupling methods exist for problems such as this. ¥amele, Chapman & Shearer (1989) considered depth—depemdslia
using separation of variables and described essentiakpiep of the intersection and kiss coupling parametersresudting waveforms.
Rimpker & Thomson (1994) studied the effects of conicahfgobn curved wavefronts in depth—dependent media. Theaik waluded
ray tracing, documenting the complete separation of th@iniavefront into two distinct fronts, the folding of théower front, and very
high—frequency waveforms for which the effects of both q8ptimng and wavefront folding were considered (using Rutggta 1-D
finite differencing and 2-D integration over lateral slows)e VavryCuk (1999) studied kiss singularities and fotimel interesting result
that standard higher—order ray theory terms are of use icride®y the coupling. Most recently, Rumpker & Kendall ) combined ray
coupling and perturbation theory with the ideas of Maslansless integration (or ‘Snell wave’ summation), to give pidecomputation
method valid near folded wavefronts (caustics) withoutrtbed to assume lateral homogeneity. These papers and thédpdavisov &
Orlov (1990), for example, give good introductions to thkevant ray and perturbation—theory literature. Of coufsk-wave numerical
solutions are also applicable, of which the spectral—etemmethod (Komatitisch & Tromp, 1999) is one which gives nmogiressive results
for the global examples presented by its authors.

Anintermediate approach is demonstrated here, one whials@ne sense local, is not too computationally intensivkya is not built
explicitly on rays. The presentation §2 proceeds from first principles and is meant to be self-@oada The problem consists of finding
a method which can incorporate a limited spectrum of planeesiathe curvature of their underlying envelope and thereigelarization
rotations. Readers familiar with the solutions for deptpehdent media (separation of variables and Fourier itiegrover slowness) will
find the derivation has some conventional features and tinbseested in an alternative, more detailed, derivatioly nefer to Thomson
(1999). Global (in fact Cartesian) coordinates are usedpassed to coordinates based on the rays in the true medisenmgthod has
the potential to produce finite—frequency waveforms whittbrfout fine details of the stucture according to the waveatqo. In fact, the
method is a new wave equation in itself, and the means usedvi| it numerically are somewhat secondary.

The basic theory and its implementation are explainegi$2+-4. In§5 we study the waveforms predicted for media characterigettido
slowness surfaces in Figure 1 and attempt to draw some deoacusions from the modelling.

2 NOTATION AND THE BASIC FACTORIZED WAVE EQUATION

Consider at first a single plane wave in a homogeneous am@otmedium, characterized by its slowness vegtofhe normal to the wave
or phase front defines the directionpfand the magnitude qb depends on whether the wave is quasi—compressional (qR)si-ghear
(9S1, gS2). For each wavetype there is a correspondingizatian eigenvector and the three eigenvectors correspgmal a single direction
of p are mutually orthogonal. These basic results can be foumisyrave (1972) o€erveny (2001, Chapter 2).

Let the Cartesian coordinateske= (z1, 2, z3) and let the waves propagate subparallel tathexis. The lateral or cross coordinates
can then be denoted,, o = 2, 3. An alternative description of a plane wave begins by speujfthe lateral slowness componepts Then
the remaining 1-componeft; (p.) depends on the wave type and can be found from the ‘Chri$teffeation (:erveny, 2001). We assume
the direction of propagation is close to the 1—-axis and th#tee wave types are propagating (i.e. not evanescemthat thep, are small
and the three allowed values &f are real. The three polarization eigenvectors in this comtateral slowness description are no longer
exactly orthogonal, but they do form a useful basis. Leteteigenvectors form the columns of tfe x 3) matrix G, which is invertible
since the eigenvectors are not collinear. The correspgridisiownesses form the elements of {Bex 3) diagonal matrixP;.

The frequency—domain plane wavefield may be writién: , z., po,w), and we suppose that it contains in general all three waestyp
with a commorp,. In a homogeneous medium this combined wavefield obeys theway wave equation

Oiu—iw u=0, (pa) = GP,G™!, (2.1)

exactly. The action of the ‘propagator’ matrix ~ can be visualized @kivs. FirstG~' decomposes the total plane—wave displacement
field into gP, qS1 and gS2 amplitudes. Then the diagonal riai#?; imparts the appropriate phase shifts for a propagationatemx; .
Lastly G combines the three evolved wave amplitudes into the newwateefield.

When the initial field is not a sum of single—slowness planeesave must use 2-D Fourier plane—wave decomposition, diyehe
transforms

2
u(pa) = /u(xa)exp[—iwpaxa]d:ra, u(za) = (;) /u(pa)exp[iwpaxa]dpa. (2.2)
s
The propagator  acts on eagh or ‘Snell wave’ component(p., ) of the wavefieldu(z. ) and the one—way equation now becomes

2
Ora = (%) / / W (Ta,pa) expliw(Ta — Ya)PalU(Ya)dyadpa - (2.3)

Reading from the right, the wavefield data are initially sfied on the plane; = constant, with i, as the lateral—-position dummy variable.
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These data are Fourier transformed frgiito the lateral-slownegs, domain. For each,, or Snell wave, and at eaah,, the corresponding
total displacementi(p.,) is carried forwards by the matrix propagator , which appeiply analyses the three wavetypes as described
above. Finally, inverse Fourier transformation wgt.combines the Snell waves to yield the total (first derivatifeu at z.,.

This formula seems intuitively reasonable for a homogesenedium and the one—way wave equation (2.3) is then in a senskact
‘factor’ of the full anisotropic elastic wave equation (ifer the propagating waves at least). In a smooth inhomagenmedium, though, it
can only be approximate. Backscattering from gradientbwsonisly neglected and in fact this equation is then theti@grsh in an asymptotic
expansion in powers ab~! of the factorized wave equation given by Thomson (1999). @leenents of  depend in general op as
well asp., so that lateral variations of the medium come into play ahgaopagation step via the variations in the local 1-sl@sae and
eigen—polarizations with,,. An important and desirable property of the propagator imatris that its elements are slowly varying even in
the vicinity of an acoustic axis, where the individual gSgvidations are singular.

The derivation of (2.3) makes no explicit assumptions alpgubeing small, apart from the assumption that the forward s&sses in
P, are real, and hence this equation is valid for a range of ‘Wddgles. However, in practice the assumption that onlytp@sor ‘forward’
values of the 1-slownesséy are important becomes unrealistic at wide angles. Thisgeaally true if there is anisotropy and dimples
on the slowness surface lie close to thedirections. In that case the plane—wave group velocityesponding t@, may have a positive
x1 component even if the full slowness vec{d?, p2, p3) has a negative 1-component. In practice, therefore, (218) e used only for a
limited range ofp, and further approximations are possiki&)(

The interpretation of the propagator makes it apparent lnasdiate or filter out particular wave types. For examplenly qP waves
are wanted it may seem natural to use only the gP eigen—pafimms and 1-slownesses when forming . It is also easy taaha
reference phase from the propagation step. Lastly, we orettiat by a few more steps and approximations (Thomson,, #9) the
propagation scheme outlined can be recast as somethinglesey/to the phase—screen method (Wu, 1994; Le Rousseau &aje B0O01).
This significantly reduces the computational effort in thidevangle, laterally—varying case. However, we preseaky a different approach
to simplification.

3 THE REDUCED ONE-WAY WAVE EQUATION

The propagator  can be constructed directly without firsemeining the individual eigen—polarizations and slowesss et the elastic
parameters be denoted by; and define the matrix subs€Y;, by (C;x):s = cijx. Then by considering the Christoffel equation defining
the individual eigenvectors and slownesses it can be obdahat the composite quantity(z«,p.) is @ solution of the matrix equation
(Thomson 1999%2.1)

B=( +A°+[A, ], (3.1)
where
1 .
A = 5C1/(Cia + Cat)pa, 32
B = A’ Cfllcaﬁptxpﬁ + pcfll
1 . _ _ _
= Zcul (Cla + Cal)cul(clﬁ + Cﬁl)papﬁ - C11lcaﬁpapﬁ + /’Cu1 (3.3

and the final ‘commutator’ term in (3.1) is given BX, Y] = XY — YX. Thez, (and indeedr:) dependence of  arises from those of
the elasticityc;jx; and densityp.
For narrow angles, as could be appropriate when the incidawe is ‘almost plane’, we may seek an expansion apgut 0:

(:zaypa) = PO + Papa + Paﬁpapﬁ + - (34)

The expansion coefficienB(z.), etc., are obtained by substituting (3.4) into the definiqgation (3.1) and matching powersf. The
first few terms are then found to be given by

Py = +/pCi, (3.5)
PoP, +P,Py = —C;;'(Cia+ Ca1)Po, (3.6)
PoPos+PusPo = —C'Cup— C1'(Cia + Ca1)Ps — PoPp. (3.7)

Matrix C1; is real and symmetric. In the isotropic case it is diagondlitmelements relate closely to the inverse wavespeedsdiduse
1974). The eigenvalues and eigenvector€ef must be known to constru®,, which is also symmetric. The higher terms (e.g. (3.6)) all
require the solution of nine simultaneous equations fomihe elements of each coefficient matrix (eRy.) and ostensibly the inversion
of a9 x 9 matrix constructed fronP,. An alternative scheme is possible, though, siReeis symmetric. Using (3.6) as an example, the
difference between this equation and its transpose leatiisee equations for the three independent elements of tigyammetric part of
P.. Then adding (3.6) and its transpose leads to six simultaequations for the symmetric partBf,. The ascending higher terms can
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Figure 3. The nine elements of the exact propagator  (solid lines) ewatpto those of the quadratic approximation (3.4) (dasineg) in pure halite, with
expansion point given by the centre of the contour plot iruFég (i.e. the acoustic axis). Only the magnitudes arequptis indicated by the labdidl, 1)],
etc., for each frame. Each horizontal axis gives the madeitf the lateral slowness 2—vectgr., p3) or distance from the acoustic axis. Three azimuths
have been selected;10°, 50° and150°, measured anticlockwise from thg—axis. These are signified by the three different linewsigiihe two vertical
centrelines depict the slownesses corresponding appatedynto propagation a&t° and15° to the 1-direction. At.5° modest differences between the exact
and approximate forms can be seen.

all be found by these steps with the various right—hand sidtisated by (3.6) and (3.7). It is systematic and easilyecbir a computer, if
somewhat tedious.

When the expansion (3.4) is substituted into (2.3) the mlidations byp, and the inverse Fourier transforms w.pt. introduce
derivatives w.r.tz,, and factors ofw. Truncation after the quadratic term in (3.4) leads to

oiu = iwPou+P,0,u+ %P(;ﬂ,agawu (3.8)
in the frequency domain and
010;u = —Podju + P,d,0,u — Ps,d;0,u. (3.9)

in the time domain. We term equations (3.8) and (319} ‘approximations’ by analogy with Claerbout (1976) for ac@usaves, where this
name implied that accuracy was deemed acceptable for prpagngles up to abowt° from thez direction. Note that the second/middle
term on the rhs does not arise in the acoustic case. In thejsoklastic case the matric®s, have some off-diagonal elements which can
be associated with (weak) P to S wave coupling. Perhaps mi@mestingly, when an anisotropic slowness surface hasyanraetry or ‘dip’
w.r.t. thex; axis (i.e. when that axis is not in a mirror plane) ae matrices will describe its effect on the waves.

Other approximate partial differential equations can bevdd from alternative expansions of the propagator  (Them4999),
but here we implement only thE5° equation. In practice we suspect that for this vector walktefieoblem either the 5° equation will
be satisfactory, or we shall adopt a phase—screen appratiwr than a higher—order vector partial differential eiqumaderived using, for
example, a rational approximation to
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4 FINITE-DIFFERENCE IMPLEMENTATION IN CARTESIAN COORDINA TES

The frequency—domain equation (3.8) has been implemersied simple second—order accurate finite differences, evther wavefields at
the current and one previous steps are used to compute the values at themestep. First, though, we reduce the oscillatory dependence
of the wavevecton on z; by extracting a local dominant—phase term according to

u = exp [iwdiag(Po) (z1 — z1)]1, (4.1)

where diagPy) is the diagonal part of the matriR,, =} is taken to be the current; position and the modulation is expected to be
slowly varying about the current; . In an isotropic mediuni, is purely diagonal and in the anisotropic examples to follogvoff—diagonal
elements are about two orders of magnitude smaller thanidigekls. The off-diagonals B, are, though, generally comparable to the
second (dip) and third (curvature/spreading) terms onhbhef (3.8).

In effect the local wavefield modulatiamis stored atr; — Az andz, and a uniform grid spacing.z., is used in the lateral directions
(at least in the most straightforward case). The laterabatres are then represented by the finite—difference diteim

ot = (U(1,Ta + AZe,w) — G(21, Ta — ALa,w)) /(20z4) + O(Az2), (4.2)
o2u = (a(x1, 20+ AZa,w) — 20(T1, Ta,w) + W(21, Ta — ALa,w)) /(Az2)
+0(Az?), (4.3)
020501 = (u(x1,z2 + Az, 3 + Azz,w) — u(z1, z2 + Az2, 23 — Az, w)
—u(z1,x2 — A2, x3 + Azxz,w) + u(z1, r2 — Aze, 23 — Azs,w)) /(4Az2Axs)
+0(Az3, Az3), (4.4)

and the explicit extrapolation scheme is
a(z1 + Az, x2,x3,w) = u(z1 — Az1, 22, 23,w) + 2Az1010(x1, T2, T3, W) + O(Am%) . (4.5)

Although this is a straightforward method which is easilyplemented on a standard computer (an Intel/Athlon Processter Linux in
our case), there are some subleties to be considered.

Firstly, one might expect such an explicit finite—differeracheme to be only conditionally stable. In fact, accordmdannehill et
al. (1997; p.129 ‘Richardson’s method’) a correspondimgehtime—level scheme for the scalar heat equation in oneesgimension is
inherently unstable. There exists a wide range of altaraakplicit and implicit finite—difference schemes for heguations which we
could attempt to use here (Tannehill et al. 1997; ChapteHdyvever, our numerical results have indicated conditiatability for this
simplest of schemes, with a minimum value of the laterat-gpacing being admissible for a given step. Sensitivity of the results on the
latter has been reduced by the extraction of the local damhjplaase and, of course, ours is a (parabolic) wave equabioa meat equation,
and a vector one at that. From numerical experience we hawelfthat a useful guideline is given lyz, /wAz. < ‘constant’, where
‘constant’ depends on the elasticity/wavespeed. Thislgsimybe implies that halving the lateral grid spacing mayuieg halving ther; step
size or doubling the frequency to maintain stability. Aligh a von Neumann type stability analysis for this matrixagun does not yield a
simple analytic stability criterion, we have examined nuoaly the growth of the matrix equations obtained by sitbshg a plane—wave
ansatz into the finite—difference formulas (D. Angus, PlihBsis), with results that are consistent with the simplie just quoted.

Accurate finite—difference representation of lateral\dgives, particularly second derivatives, at the perimefethe lateral grid is
more problematic. One—sided second—order differenceiftdrave been found too inaccurate. We have examined highder one—sided
schemes (using up to five interior points), but this did ngpriove matters as Fornberg (1996; Chapter 3) indicates farspaced grids.
We also experimented with a variable lateral—grid spacingefine the mesh near the edges (using the logarithmic metésdribed by
Tannehill et al. (1997; p.335) and a Chebyshev scheme asyreeaded by Fornberg (1996)). However, while this can impitre accuracy
of the one—sided finite—difference formulas at the edgeutd do so only by reducing the lateral-grid spacing thgredmuch that the
forward—step size had to be excessively reduced to maistability in extrapolation.

The solution to this difficulty was found by noticing that acacy of lateral derivative representations was only aneisghen these
were significant, which means when the underlying wavefiiclined significantly to ther; axis. In addition, of course, the higher the
frequency the larger the oscillations with respecttoand the more difficult it becomes to achieve accuracy. We hawamvented these
problems by the following method, which was suggested bijrpigary results from a curvilinear—coordinate versioroof method (to be
presented at a later date). For interior lateral grid poirgsvaluate the lateral derivatives using the central diffees indicated in equations
(4.2)—(4.4) above. These are clearly accurate enoughlfitredrequencies and wavefront curvatures used so farzTloerivatives they lead
to via (3.8) at the first two interior grid points near eachegr corner) point are then used to extrapolate out to thge dint. However,
this extrapolation 0b; u is performed only after a lateral-phase term is extractedraing tod,u = 91t expliwp, (za — x4)], Wherez,,
is the first interior grid coordinate. This extrapolatiorthhe edge has a truncation error of second order in the (un)ftateral—grid spacing
and the only question remaining is how best to choose the laieaal reference slownegs,. As a first pass we use the known perimeter
lateral slowness of our incident wave, and once this is reddlis possible to iterate by aligning the remaining slighdifferent complex
phases of the first two interior grigh u values. When multiple shear waves are present it may notwiewbwhat the best lateral slowness
should be and this iteration helps. These steps are notydugi consuming.
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Figure 4. Waveforms of the 2—component at the initial plane and the last two planes (199m and 200m), plotted asgwrefther along thes axis(a) or the
z3 axis(b). The indices above the three columns signify the grid pmsitif the profile in the remaining (third) direction. Since t2, z3) grid has49 x 49
points, index 25 represents a precise centre line, whilentii3d approximately bisect the intervals on either side. ihe= 0m frames reveal the curvature
of the initial wavefront in comparison with the pulse widithe lower two frame sets indicate the movement of the waxkiiiefime after a 1m step along; .
The wrap—around of the discrete time Fourier transform fgegnt, but not a concern. Note that the total travel timédefwaves is approximately 4 times
longer than the plotted time axis (i.e. there is multiple pwaround and these must be considered reduced-time [@ets}ext for discussion of the evolved
waveforms. Parfc) shows the weaker 3—component alangprofiles.

A perhaps less—expected complication has been an occHsirErequency inaccuracy caused by divisiondin (3.8) in combination
with imperfect accuracy in the second derivatives. Thisrditlarise for the examples presented here, but we mention doimpleteness.
Since the one—-way equation (3.8) is a high—frequency appaion one should perhaps regard this occurrence as atjgdteruseful
warning against inappropriate application, rather likd-gwint signals in slowness integrals.

5 NUMERICAL EXAMPLES

We present waveforms for the five different media in Figuréaken to be homogeneous even though this is not requiredebshdory.
Assuming homogeneity facilitates comparison with thenefee solution described below, adequately tests the ricah@nplementation
and is sufficient to demonstrate the anisotropic propagaifoysics currently of most interest. In each case the coatéls are rotated so
that thexz, propagation direction points more—or—less along an aimasis. The actual dimensions used in the modelling will bsadibed,
though by the end a more scale-independent view of the sesilltemerge. Essentially the objective is to simulate veatreat would be
regarded as high frequency for each potential geophysieaksio (upper—-mantle turning waves, cross—boreholedagy etc.). This reveals
the waveform characteristics most clearly and space liioita necessitate that the qualitative effects of low—fiitesing must generally be
surmised.

A smoothly—curved incident wavefront is defined over a sgueagion in ther, = (z2, z3) plane. In most cases the size of this region
is 144mx 144m and exceptions will be noted as they occur. The wavefrarvature is defined by its normals at the extremes of the 2—
and 3-axes and these normals are inclined at angles tp to aboutl5°. One can ascertain from the plots below the significance ®f th
wavefront curvature relative to the incident—waveformadiaon.

The total initial displacement is slowly varying across theident wavefront and is arbitrarily chosen to be domihaatong x-.
This is achieved by taking at each point on the plane= 0 an appropriate linear combination of the two allowed gS rigelarizations
corresponding to the wavefront's incidence angle at thatpniquestion. As the individual eigen—polarizations dngslar at some point in
the plane (because the wavefront directions encompassoastacaxis), their weights must counter—rotate to formstmeoth result.

The incident wavefront carries a simple smoothed deltastfan pulse (see Figure 4, top). This pulse has a typicaHnédith of about
0.3ms (or a width of 0.64ms at its base). A typical propagapath is 200m in the 1—direction and, taking the 1-componéstowness
in the pure halite example described first (see Figure 23, abiresponds to roughly (200m)(0.38ms per m)/(0.3mL50 spatial pulse
half-widths. The waveform effects are certainly extremerafavelling so far.

The waveforms are computedrat = 64 time samples with incrememnk¢ = 0.04ms and the smooth incident waveform corresponds
to a delta function convolved four times with a boxcar of widtA¢. In practice, sufficiently detailed waveforms have beeraivigtd by
extrapolating only the first 17 frequencies (i.e. not all 32ta the Nyquist). For the longest program runs, the lateral gf 49 x 49
points has spacinf\z,=3m and propagation stepx; = 0.02m. Thus 10,000 steps are used for a 200m path and this takesxapately
22mins using Gnu fortran77 with a 1.8Ghz Athlon processaoning under Linux. Ane; stepsize 2.5 times larger produces waveforms that
are slightly different only at the edges of the domain, wheeeeffects of inaccuracy at the highest frequencies isatede At the lower
frequencies a larger step size is often permissible andreeraént of the coding would include frequency—variable stegs.

‘Exact’ reference waveforms are computed using separafieariables and two—dimensional numerical integratioardateral slow-
nesse®.. The solution of the exact one—dimensional wave equatiar ifor each value of the lateral slowness was computed using a
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Figure 5. The two lateral components of the displacement in pureehafiter 200m of propagation. These plots serve to emphasatete 3—component
has grown from zero to a level sometimes comparable with tiggnal 2—component(a) z» section,z3 midline (ix3=25): Note there is a ‘gap’ in the 3—
component at the centrak values. We can expect to see such gaps in general. A pregursgative swing on the 2—component is clearly displayedhén t
central region. Near the edges there is a hint of some ririgittee waveforms, which may indicate the need for a refinetefiiifference mesh, but the quality
of the waveforms in the important central region is god.z3 section,z2 midline (ix2=25): There is no 3—component (by symmetry) #relwaveforms
of the 2—component are significantly different at large ama@lsxs. (C) z2 section,zs index 20: This shows the apparent enlargement of the ‘gatiien
3-component away from the acoustic ax@).z3 section,zo index 34: This shows the significance of the 3—component dmay the (anti)symmetry plane
and the transferance of energy from the fast to the slow q® ethe 2—component.

layer—matrix program (‘Rmatrix’, for a single layer in thiase) developed by Martin & Thomson (1997), and the numesloaness in-

tegrations were performed using either a simple trapezulmar the Filon method (Frazer & Gettrust, 1984). The ihitianditions were

chosen to duplicate those used for the one—-way equation-@irt (or, rather, perimeter) effects in the slownessgretks mean a compari-
son can only be made in the central regions. No attempt hasrhade to suppress these perimeter effects, which are tadibalow where

they are apparent.

5.1 Pure Halite — a symmetric example

For cubic pure halite we set the propagation directigrio be along the (1,1,1) acoustic axis in the natural referdéramme of Figure 1(a),
andzs is set to point towards the natural-frame (0,0,1) axis. Ftnponent?; of the incident wave qS2 slowness in this rotated frame is
contoured ove(p2, ps) in Figure 2, where the singular gS2 polarizations are alswshThe three—fold symmetry about the axis is evident,
as is a line of singularity in these ‘free’ polarization aigectors.

The accuracy of the Taylor expansion (3.4) is crucial to tlethmd and Figure 3 shows the exactly—evaluated elements @.1) (
versus those of its quadratic approximation about the point 0 (i.e. the first three terms of (3.4)). Visual inspection gales that the
second-order expansion has reasonable accuracy kit teven though this expansion is effectively about a sinqubémt of the slowness
surface. We have experimented by moving the expansion podnind in the neighbourhood of the acoustic axis, with stagdults. When
one recalls that the individual matrix components of  arguiar, it is gratifying that the Taylor series for the prototatrix is indeed so
stable. The true acceptability or otherwise of the appireatcurate quadratic approximation in Figure 3 can onlgsgertained by looking
at the resultant waveforms, however.

Figure 4 shows the waveform 2—components along profiledlgbra x> andzs, at the initial plane and at; = 199m, 200m. The
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Figure 6. Comparison between the one—-way equation result (dashedhartexact’ reference solution (solid) for pure halifg) x> section,z3 midline
(zz3 = 25), 2—-component(b) 3 section,iz3 = 30, 2-component. In part (b) the profile/section is far enoughfthe acoustic axis that the slow qS2 wave
can be seen to have a significant phase error (early).

profiles alongr2 (Figure 4(a)) show an asymmetry on either side of the aaoagis (left column versus right column). The fast S wave
evidently contains most of the energy at left whereas the slave does so at right. In the middle column the energy is gingnfrom the
fast to the slow wave. These qualitative observations cbeldeduced by considering the qS2 polarization rotationgare 2.

In contrast, the sections along in Figure 4(b) show that the wavefront is ‘torn’ on eitheresaf the acoustic axis (i.e. at large and small
x2, or the left and right columns). The offset between the fast slow waves shown on either side of Figure 4 is probablyalistically
large (compared to the pulse width) for seismological dawaqualitatively this ‘wavefront tearing’ is a characttit effect of an acoustic
axis.

Figure 4(c) shows profiles of the weaker yet now nonzero 3poomant, which we may term the ‘anomalous’ component. Howeve
its importance relative to the larger 2—component is noead by this type of plot, and accordingly Figure 5 shows—wemponent
seismograms along various andzs profiles. These show that the 3—component can grow from pdsedome comparable with the initial
2—-component, with a notable exception in part (a) along thie-lme 2 = 72m (or index ix2=25, which lies in a symmetry plane for the
pure—halite case). In fact, the ‘gap’ (or lacuna) in the 3aponent along the- section is another characteristic of the axial propagation
In this highly symmetric example, the 3—component showsefams which are perfectly antisymmetric about the centsaposition,
necessitating the zero central 3—component. However, wexgect to see such gaps more generally as they are asdomititehe eigen—
polarization rotation (e.g. see also Figure 14(c) beloviisZone of reduced 3—component is widercinsections lying just either side of
the one depicted (i.e. away from the acoustic axis). Ovearate as well from Figures 4 and 5 that the waveforms on the 2&xaiomponent
are quite distinct along profiles in the two orthogonal latér.,) directions.

Evidently there are small ripples in the waveforms at theesdgf the domain of propagation. There is the possibility thase are
caused by incipient wavefront folding due to the concavityhe qS2 sheet, especially in directions away from the d@oasis towards
each of the three natural axes (there are mild ‘ravines’ énstbwness sheet along these directions, as can be seee EigiRiumpker &
Thomson, 1994, for the qualitatively—similar case of cubiakel). The waveform ripples may also be due to finite—défee inaccuracy at
the edges, which can certainly arise when the grid spacinmde larger.

However, the waveforms in the central regions of Figuresd#5acan be regarded as accurate, and Figure 6 shows a compaitisohe
reference waveforms computed using separation of vasablete, for example, the small negative swing in the ceféraltraces of Figure
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Figure 7. Contours of the 1-component of the gS2 slowness for puretzjirathe vicinity of the indentation shown in Figure 1(b).€elfotated 1-axis
and propagation direction are out of the page, at the ceffitiieecplot. The ‘free’ polarization eigenvectors have beermy arrowheads to emphasize the
singularities which arise in any scheme which tries to dgfiolarization continuously in thigps, p3) tile. There appear to be three conical points (acoustic
axes), where the polarizations form ‘T’ patterns and fronicivlines of singularity (polarization reversals) emanate

6(a). Asymptotically, this swing is due to the Hilbert—tsémrm effect of folded wavefronts, which is described somma&tamore in the next
section. Also noticeable in these central traces is a loageg variation (almost a negative d.c. shift) in the refieeesolution, which is due
to the perimeter contributions to the two—dimensional sless integrals. Taking this into account, the agreementdget the one—way and
reference solutions is very good in the central region. Asdtiges of the profile are approached, though, it is cleathbatecond-arriving
gS wave from the one-way method is somewhat early (Figurg.6(b
Pure halite is quite an extreme, if rather symmetric, caseyahit confirms the basic ideas of the vector one-way equatiethod. The

phase errors in Figure 6, which have accumulated after pedjyey some 250 spatial pulse half—widths, are substeaanidlraise questions
which can be addressed by considering an even more extresee ca

5.2 Pure Quartz — a pathological example

Pure quartz has even more dramatic slowness variationg imi¢ity of the direction shown in Figure 1. There are intfduee closely—
neighbouring acoustic axes (Figure 7). The propagator enthiee—term Taylor series approximation are depictedigare 8, which
indicates that even for this extreme material the quadegtfiroximation apparently does reasonably well. Howeveitrgortant piece of
the physics is made abundantly clear by this medium. Althdhg complicated polarization distribution does not ielftpresent a serious
limitation for the15° approximation, the severe indentation of the slownessiserénd consequent wavefront folding place a definite limit
on the propagation range over which this wave equation carsée.

In order to appreciate the gS2 wavefront folding which esstlee Maslov phase is plotted in Figure 9 for a large propagalistance
of 300m. For a receiver at the centre of the lateral grid (figirg, the Maslov phase is the 2—dimensional Legendresfoamation w.r.tz,,
of the qS2 wavefront phase function (Kendall & Thomson, )998at is to say, it is the well-known functiar(p.) derived from tangent
planes tdl'(z. ), the ray arrival-time function at the chosen rangeand for the given incident wave. Maxima and saddle pointsguie
9 indicate geometrical ray signals. We see that there stmmittree standard impulse arrivals corresponding to madmasomewhat later
and at a largeps value. There are also three almost—coincident Hilbemsfiamed arrivals corresponding to intervening saddletgoi
These will actually be the earliest qS2 signals and will hewegative first motion.

At the initial data plane there is only the single statioramint (maximum) corresponding to the incident wave. As ez increases
from zero the initial single maximum separates into the ipl@tstationary points, which migrate outwards to largégial slownesses. This
outward migration corresponds to increasing importancehfe developing wavefield of points on the initial wavefravitich are close to
the edges of the finite domain over which it was prescribeé& @82 rays actually begin to cross immediately, causing fr@vefolds to
grow from vanishingly—small patches lying at the intergmt of the acoustic axes with the initial-data plane. Evalhy, at largez:, the
wavefield near the centre of the, plane depends on contributions associated with rays thatata from the edges of the initial-data plane.
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Figure 8

ropagator  (solid lines) ewatpto those of the quadratic approximation (3.4) (dasheg)lin pure quartz, with
lateral-slowness expansion point coinciding with the ieeaf the contour plot in Figure 7. Only the magnitudes aré@th as indicated by the labdid, 1)],
etc., for each frame. Each horizontal axis gives the madaitf the lateral slowness 2—vecigr., p3) or distance from the expansion point. Three azimuths
have been selected(°, 100° and200°, measured anticlockwise from the—axis. These are signified by the three different linewsigiihe two vertical
centrelines depict the slownesses corresponding appabeiynto propagation &t° and15° to the 1-direction.
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Figure 9. The gS2 Maslov phase corresponding to a receiver on thgropagation axis at a range of 300m from the initial plane &t for definition and

discussion.
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ix3=34

Figure 10

Figure 10. Waveforms of the 2—component in pure quartz at the initiaplane and two penultimate planes (100m and 110m), plottguiaddes along the
x2 axis. The indices above the three columns signify the gr&itjpm of the profile in thexs direction. Since the grid i49 x 49 points, index 25 represents a
precise centre line, while positions 16 and 34 approximgdigect the intervals on either side. The first frame setalevine curvature of the initial wavefront
in comparison with the pulse width. The lower two frame setidate the movement of the wavefield in time after a 10m si@pgar;. The wrap—around
of the discrete time Fourier transform is apparent, but noorecern and again this must be considered reduce time. Seferteliscussion of the evolved
waveforms, in particular the precursory depression seémeicentres of frames of the bottom row.

Thus our truncated initial-value problem and our approxénpopagator have limitations to their well-posednes® @muld introduce the
idea of a Fresnel zone on the initial—data plane (by conisigéhe widths of stationary points in Figure 9 for exampl)e radius of such a
zone grows ag; increases, but it is important to recognize that there areraéstationary—point contributions and that it is theimbined
effect which matters.

Taking guidance from Figure 9 we show waveforms which haepagated only 90m along; (Figures 10 and 11). Once again only
the central few traces can be considered accurate. Figushds quite clearly the enhanced amplitude and precursmggtive swing
(depression) for these central signals and in Figure 1letieeance solution verifies their general correctness. Tésupsory negative swing
represents the emerging Hilbert—transformed folded gS&frant. The reference—solution perimeter contributiares apparent in Figure
11, and include a somewhat-localised later—arriving p{dee caption), which must be due to a perimeter (i.e. 1-diioeal) stationary—
phase point. Towards the edges of thereceiver line there are obvious phase errors signifyindithiés of the 15° approximation (which
predicts arrivals that are too early).

Overall, the one—way equation results are as one might exmecfrom this very extreme example we conclude that fortgbaths
(under 30 spatial pulse half-widths in this case) & approximation may still have some utility. However, a moneely—applicable
method, such as the phase—screen approach, would cleablstiee. These intuitively—expected conclusions coulduppsrted by math-
ematical analysis of the rays or characteristics of the equation, in addition to the numerical examples. Intengsfj if this one-way
equation is used over a somewhat longer propagation distaag 135m, it does appear to create a first—arriving wasefigbarently riding
on a folded wavefront, but the waveforms are not accuratati@@must therefore be exercised and ray tracing can be toséeffine the
domain of applicability, via the Maslov phase, if there isidb Space does not permit us to show the exact/referencefovans for the many
distinct multiple arrivals that exist at longer ranges ahar frequencies, but qualitatively similar signals hagerbpresented by Rimpker
& Thomson (1994) in the very—high frequency range.

These observations apply as well to the previous pure hataienple, where at 200m an incipient Hilbert—-transformetprsor could
be perceived and hence the angular spectrum on the initiaepinay have been been only just sufficient for the range deresl. There
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Figure 11. Comparison between the one-way equation result (dashddhariexact’ reference solution (solid) for pure quartzislis anz2 section at the
x3 midline. Note the weak negative pulse between 1.9 and 2 ®hish is a perimeter (1-D) stationary—point signal. Seéftxfurther discussion.

were also qS2 phase errors (Figure 6) indicating the sanie fmadblem, namely that the5° has a definite range limitation when slowness
surface indentations are important.

5.3 Three more—moderate polycrystal examples

In more moderate, and prevalent, cases the applicabilityeof5° is far less restricted and the main effect of acoustic axegeotly—curved
wavefronts will be subtle waveform changes as describelanrtroduction. The three polycrystal examples of Figuie-¢) are taken to
be representative and they are grouped together as we wéshpbasize the more—or—less generic effect of conical poimtwvaveforms in
this regime. Differences in initial conditions (ratio of §& gS2) can alter the waveforms significantly, of course,itbeases where they
are comparable results such as Figure 12(a—c) are obtdinedch case we see two roughly—equal gS signals that mergie asoustic
axis is approached. In the sheared halite (Figure 12(a)ptlse properties are as above for pure halite and the pagjthlés about 250
pulse half-widths. For the mylonite model (Figure 12(bp pulse half-width is about 0.4ms in time and about (0.4@@24Mms/m)=1.7m
in space. Thus the total path is (200m)/(1. 7120 spatial pulse half—widths in this model.

Figure 13 shows a comparison between 16& equation results and those of the exact reference solutitimei sheared-halite model.
The agreement is very good, especially after propagatingawy pulse widths. The results of Figure 13(b) are partibukencouraging,
where the weaker, anomalous 3—component of the waveforoanpared between the two techniques. We conclude from € it@Bithat
sufficient accuracy can indeed be obtained for practicali@tons in which, roughly speaking, the waveforms will loev—pass filtered
versions of those shown. It is actually gratifying that tleenerical computations can be carried out in of order ten tegaven for the more
extreme parameter ranges used here.

The same spatial dimensions have actually been used foidipe—+.PO elasticity results of Figure 12(c), to emphasiee deneric
properties. Here the temporal pulse half-width is 0.3ms thedspatial pulse half-width at the same frequencies istabdun, as the
wavespeed is somewhat higher than, say, for halite. Thu2@8en path length is about 70 pulse half-widths. Scaling dtwtower
frequencies we can estimate that for a signal of width 0.&s ¢irca 10Hz) a path length around 70km would generatdagimaveforms.
A pulse ten or more times wider (periogl 1s) would be more realistic for a seismic wave used to probeigper mantle, and applying a
corresponding filter to the waveforms of Figure 12(c) sutg#sat the signal variations will then indeed be subtle. e\, it should be
recalled that the shear—wave splitting is increasing away the axis and the stronger splitting would certainly kshle for this particular
elasticity at those lower frequencies for a 70km path.

To support this, the example of Figure 14 shows waveformspeed in the ocean-ridge elasticity for spatial dimensems frequen-
cies closer to upper—mantle signals. Here the lateral gz&lis 240km by 240km, with grid spacing 5km. The propagapath length is
100km and the pulse half—widths are about 0.25s in time a2khilin space. Thus the propagation path is approximatelyp86@as pulse
half-widths. While the dominant frequency of 4Hz is stilhsawhat higher than would be available in the data, it shogiirabe borne in
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Figure 12. The highly—comparable waveforms of the 2—component alongndz3 sections after propagating ia = 200m subparallel to acoustic axes in
the three moderately—anisotropic polycrystal elaséisitbf(a) sheared halite{b) quartz—rich mylonite(c) the olivine LPO mantle texture model. The three
columns indicate different choices for the remaining ttidiehension £3 or 2, by grid index). See text for discussion.

mind that we are modelling a domain of moderate splittingragphing an acoustic axis. Visual inspection of Figure 14(mgests quite
clearly that for signals around 2Hz the effects of conicahtsowill be to effectively double (or halve) the apparentsguwidths along some
transects. Similarly, Figure 14(b) shows how the splitbnghe anomalous or initially—unexcited component (agaén¥-component in this
case) can cause significant signals with a characterigtadyi waveform.

Lastly, Figure 14(c) shows ans section for a slightly different path near the acoustic aXisis example has the previously—seen
gap/polarity—change in the anomalous 3—component thatidaa as a result of the polarization rotations. It also shbwadening of
the main 2—component signals at lowey positions, and it is important to note that there is an oftdehgxs between the gap and the
broadened pulses. This offset is intuitively in keepingwtite polarization rotations around the axis and the seiparat the slowness sheets
on moving away, and this example serves to remind us thathitheacteristics of a single anisotropic feature (i.e. the)axay appear on
distinct seismograms. Thus it is important to study theaestaveform evolution along the entire profile.

While these homogeneous—medium examples adequately daatenthe possibilites for mantle paths and periods suthes®, in
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Figure 13.Comparison of the displacement waveforms obtained aftem2df propagation using thi5° one—way equation (dashed) and the ‘exact’ reference
solution (solid) in the sheared—halite modgl) 2-component(b) 3—component. Slowness integration perimeter contribstio the reference solution are
most apparent as a roughly d.c. shiftin part (a). See texdifmussion.

complex structures such as that depicted in Figure 4 of Biacket al. (1996) the effects of wavetype coupling and sniogthy medium
inhomogeneity are expected to be important. This will bet¢ipéc of future papers (Angus & Thomson, in prep.).

6 DISCUSSION

The relationship between waveforms and underlying elfgtioon becomes complicated when wavefronts are curvedtanihtegrated
effect of a plane—wave spectrum needs to be considered. owdespite the numerous polarization, path—length aaglifncy scenarios,
an intuitive understanding should be obtainable with tldeohia modest amount of waveform modelling.

We have presented a method for simulating waveforms in &inggiec and inhomogeneous media which balances compusatipeed
and the necessary physical content. Although the limitatiof the theory are evident and the examples presented l#verdeely not too
complicated, we believe the method has clear potential pEingcular form of one—way equation implemented here it glaa hierarchy of
approximations which should encompass a wide range ofipahcases.

The method is capable of incorporating the effects of smeatfations in the medium across the wavefront, since thpgmator in
(2.3) and coefficient matrices in (3.8) depend on the lawatdinater,. Such variations may be on the scale of a Fresnel zone orsless,
long as the notion of a primary wave with a dominant propageatiirection is still appropriate. The challenge of usinig tmowledge with
data to constrain Earth structure remains a serious one &nfbi this reason that we consider the local nature and coatipnal efficiency
of the method to be important.

The reader may be wondering how density variations appetheitheory, and in fact the answer is they arise at the nexrond. /w
in the asymptotic expansion that yields the factorized weyaation. This is in keeping with the way in which densitynerarise in the
standard ray method. Although it is not too difficult to ingorate such higher terms, the leading terms emphasize titelimg influence
of the vector polarizations and differential phase speaad these terms ought to be sufficient in many cases.

Another fundamental point is that fine—scale features ssadoical points can be either smoothed away or made dratigtpparent,
as key parameters vary. Effects such as shear—waveframgeanhanced or diminishing amplitudes, anomalous carepts, and pulse
broadening may all arise. With high—frequency pulses tleffeets can be seen using a relatively low value of incidemtefront curvature,
or equivalently a single distant source. As frequency-aundecreases, though, a wider range or spectrum of incickarg slowness may be
required, either from a single nearby source or a range tdmtisource positions. The Cartesian implementation of #ieapproximation
may not be adequate in the former scenario, so that a cieailicoordinate version may be required or even a more coanm@ptesentation
based on equation (2.3) (e.g. a phase—screen limit).

Although thel5° approximation is the most restrictive, it does indicate liogvelasticity—tensor and slowness—surface local dorati
properties influence the waves, namely via the Taylor expan8.4). This presumably has implications for interptieta and the ‘auto-
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Figure 14.Comparison of the 2—displacement waveforms obtained B@km of propagation using the one—way equation (dashettharreference solution
(solid) in the olivine LPO model, at lower frequencies anthvei @9 x 49 point) lateral-grid spacing of 5km. The initial wavefrogiaén spans an angular range
of £15° over the enlarged 240kr240km area. This plot verifies that the numerical method eeschled appropriately and that the Cartesian coordineges a
likely to be sufficiently accurate for many cases of interst The 2— and 3—components compared. The former displaysfiigimt waveform differences at
large and smalks, since the acoustic axis is neared somewhere in the middielatter is initially zero and has grown by splitting intolg&hd qS2 waves
with opposing polarities (creating a bipolar net wavefar(o) An x3 section near the same axis, showing a gap/lacuna in the @oasi 3—component, the
position of which is somewhat offset from the receivers shgvpulse—broadened 2—components at lowgpositions. See text for further discussion.

mated’ inversion of waveform data. In a pioneering study dted& Husebye (1978) analysed apparently—systematicdisiagc amplitude
variations across the NORSAR array using their own one—wapggator. The ‘focussing’ which they sought to explainldaww con-

ceivably be augmented by polarization and entire waveforforination (including shear—wave splitting). The theadtdetails and the
inherent non—uniqueness of such teleseismic waveformdimrehave yet to be clarified, but a key step is the ability twled gradual vector
waveform evolution across a dense array of receivers. With slata the prospects are good for enhanced anisotropgstxploiting the
polarization variations such as those of Figure 1.
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