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Synfire chains have long been proposed to generate precisely timed sequences of neural
activity. Such activity has been linked to numerous neural functions including sensory
encoding, cognitive and motor responses. In particular, it has been argued that synfire
chains underlie the precise spatiotemporal firing patterns that control song production
in a variety of songbirds. Previous studies have suggested that the development of
synfire chains requires either initial sparse connectivity or strong topological constraints, in
addition to any synaptic learning rules. Here, we show that this necessity can be removed
by using a previously reported but hitherto unconsidered spike-timing-dependent plasticity
(STDP) rule and activity-dependent excitability. Under this rule the network develops stable
synfire chains that possess a non-trivial, scalable multi-layer structure, in which relative
layer sizes appear to follow a universal function. Using computational modeling and a
coarse grained random walk model, we demonstrate the role of the STDP rule in growing,
molding and stabilizing the chain, and link model parameters to the resulting structure.

Keywords: activity dependent plasticity, computational model, microcircuits, network development, random walk,

songbird, synfire chains, zebra finch

1. INTRODUCTION
The ability of the brain to process information quickly, reliably
and reproducibly is an important challenge for neuroscience.
One solution that the brain appears to use is precisely timed
and sequential activity patterns. First conjectured in order to
account for such sequential patterns (Abeles, 1982, 1991), synfire
chains are effectively feed-forward structures composed of multi-
ple layers in which the activity flows from the input, sequentially
through the layers, with each repetition of the input producing
the same precise firing pattern.

Accumulating evidence from electrophysiological recordings
demonstrates that such precise sequences of neural activity occur
regularly in vivo. For example, it has been shown that precise
chains of activity can determine visual input (Ayzenshtat et al.,
2010) in monkeys and predict their reaching (Abeles et al., 1993),
opening a puzzle box (Prut et al., 1998), moving a joystick
(Hatsopoulos et al., 2003), and drawing (Shmiel et al., 2006).
In rats, neural sequences can be used to predict the behavioral
response to auditory cues (Villa et al., 1999). There are also
reports that the spontaneous activity displayed by systems at rest
contain repeating sequential patterns (Mao et al., 2001; Luczak
et al., 2007). Indeed, the latter reports suggest that such patterns
could be generated by the underlying circuit even in the absence
of structured input.

Although spatiotemporal activity patterns have been found
in a range of mammalian preparations, by far the most con-
crete example of precisely timed neural sequences with a direct
link to a specific behavior can be found in a variety of song
birds. The zebra finch is a particularly interesting song bird as

it, like humans, learns stereotyped vocal behavior, usually from
its parents. In adult birds, song production is primarily under-
taken by the feed-forward song motor pathway; higher vocal
center (HVC) neurons control the firing of neurons in the robust
nucleus of the arcopallium (RA), which control the vocal out-
put through the telencephalon (Mooney, 2009; Ölveczky and
Gardner, 2011). The evidence suggests that HVC orchestrates
song production (Mooney, 1992; Brainard and Doupe, 2000;
Long and Fee, 2008) and the sequential and precisely timed activ-
ity patterns found here are exactly correlated to song vocalization
on a sub-millisecond timescale (Hahnloser et al., 2002). One
hypothesis is that synfire chains are responsible for these firing
patterns (Long et al., 2010) and recent computational models
based on collections of synfire chains and feedback inhibition
have successfully reproduced HVC behavior in normal (Jin, 2009)
and deafened birds (Hanuschkin et al., 2011).

The conjectured importance of synfire chains has inspired a
large body of computational work, which has demonstrated the
capacity of synfire chains to generate precise sequences of spikes
(Abeles, 1982, 1991; Diesmann et al., 1999). Extensions include
investigations into the role of such structures in working mem-
ory (Kitano et al., 2003; Aviel et al., 2005; Ishibashi et al., 2006),
within balanced networks (Gewaltig et al., 2001; Aviel et al., 2003;
Tetzlaff et al., 2004; Kumar et al., 2008; Trengove et al., 2012), in
the presence of noise (van Rossum et al., 2002; Ikeda, 2003), and
with inhibitory modulation (Shinozaki et al., 2010).

In the context of songbirds, strictly feed-forward synfire chains
are thought to encode the syllables that make up the song (Jin,
2009; Fiete et al., 2010; Hanuschkin et al., 2011). In particular,
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each syllable consists of a sequence of notes, that may be encoded
by the layers in the chain. Accordingly, the sequences of notes
within the syllable are very precisely timed over a syllable with
of O(100) ms overall duration (Brainard and Doupe, 2002; Glaze
and Troyer, 2006). The sequences of syllables that then form
motifs and songs involve additional syntax, that likely require
the formation of loops in the chain, synfire braids or other
compositional structures (Jin, 2009; Hanuschkin et al., 2011).

Naturally, the question of synfire chain development is also
of much interest. Early work on the development of synfire
chains (Bienenstock, 1991, 1992) utilized Hebbian plasticity.
More recently, the discovery of spike-timing-dependent plasticity
(STDP) provided a new impetus to model the ab initio devel-
opment of synfire chains. Previous computational studies on
developing synfire chains have focused on a specific STDP rule
that was first reported by Bi and Poo (1998) for rat hippocampal
cell cultures (Figure 1D). In this temporally asymmetrical func-
tion, apparently causal firing patterns lead to the potentiation
of the corresponding synapse whereas apparently anti-causal fir-
ing patterns lead to its depression (Abbott and Nelson, 2000; Bi
and Poo, 2001; Caporale and Dan, 2008). In part because of its
intuitive appeal, this general form of the STDP rule has since
become the classical STDP rule in computational neuroscience,
and henceforth we refer to it as such1.

1Note that the precise details of the STDP function, typically consisting of
a positive exponential for positive pre-to-post synaptic firing time difference
and a negative exponential (typically with a smaller amplitude prefactor and
a longer time constant) for negative time differences, are inconsequential for
our purposes here.

FIGURE 1 | Schematic of network collapse. Evolution of an existing chain
under classical and triphasic STDP rules. For an initial network configuration
(A) evolving under classical STDP (D), the initially sub-threshold connection
from neuron 1 to neuron 3 will potentiate (B). When sufficiently strong (as
strong as the initial suprathreshold connection from neuron 1 to neuron 2),
spikes in neuron 1 will propagate in parallel to neurons 1 and 3, causing
both neurons to spike synchronously. At this point layers 2 and 3 of the
chain are said to have collapsed (C). If the chain (A) develops under
triphasic STDP (E), the chain structure is stable (all far-forward or backward
connections are depressed).

The classical STDP rule is particularly appealing in the context
of synfire chain development. Specifically, the repeated potentia-
tion of forward projections and the depression of backward pro-
jections appear conducive to the development of chains. Indeed,
many authors (Doursat and Bienenstock, 2006; Jun and Jin, 2007;
Masuda and Kori, 2007; Hosaka et al., 2008; Iglesias and Villa,
2008; Fiete et al., 2010) have successfully demonstrated devel-
opment of synfire chains using variants of this classical STDP
rule. Note however, that in all these studies, the STDP rule was
complemented by additional mechanisms that served to limit
the number of synaptic partners a neuron can have. If projec-
tions from the input are consistently potentiated, these efferent
(forward) projections will be limited only by the potential con-
nectivity of the network. For a fully connected network, inputs
will project directly onto the entire network. To prevent this,
topological constraints are imposed.

There are different ways to impose such topological con-
straints. Perhaps the most straightforward approach is to limit
the initial connectivity of the network (Masuda and Kori, 2007;
Hosaka et al., 2008). The sparseness of the network dictates the
shortest path through that network, and hence the length of the
resulting chain. An alternative approach uses so-called pruning
rules to limit the number of possible connections formed, for
example, eliminating all weak synapses (Iglesias and Villa, 2008)
or limiting the number of strong synapses (Jun and Jin, 2007).
The level of pruning thus determines the width of the chain.
Finally, heterosynaptic plasticity can be employed to facilitate
chain formation (Doursat and Bienenstock, 2006; Fiete et al.,
2010). There a cap was set on the combined weight of efferent and
afferent synapses. Including such a limit on pre- as well as post-
synaptic weights allows multiple chains to be embedded within
one network.

While pruning, heterosynaptic plasticity and other topolog-
ical constraints clearly play important roles in development,
it is important to understand the relative contribution of the
STDP rule as distinct from the additional constraints or mech-
anisms that are used to grow the chain. In fact, it is easy to
see that with strict capping conditions in place to limit the size
of any layer within the chain, the development of stable synfire
chains could be achieved even by a completely random process,
in which arbitrary neurons are recruited to the chain. When
strong topological constraints are included, one may therefore
ask to what extent the details of the learning rule are important
at all.

Here, we ask whether it is possible to grow synfire chains in
any other way (excluding any form of capping rules). If so, we ask
what forms of STDP rule may be suitable, and what is the role
of synaptic plasticity in the growth process. Of particular interest
to us is a triphasic STDP rule that contains a second depressive
region for large positive time differences. Nishiyama et al. (2000)
found such a depressive region for time differences greater than
15 ms in rat hippocampal slices. Wittenberg and Wang (2006) also
used rat hippocampal slices, and found a depressive region at time
differences greater than 25 ms.

In this paper we begin by describing the collapse of synfire
chains that are subject to the classical STDP rule in the absence of
topological constraints. We argue that triphasic STDP rules can
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maintain stability in existing chains, even in the absence of any
topological constraints. We go on to develop a model based on
triphasic STDP. We show that a model incorporating triphasic
STDP and an additional non-topological constraint (activity-
dependent excitability) leads to the growth of stable chains that
scale with network size. The emerging chains are characterized by
a range of layer widths and chain lengths. Finally, we show that
a triphasic rule can be used to develop multiple chains within a
network.

In our model, as in others (Doursat and Bienenstock, 2006;
Jun and Jin, 2007; Liu and Buonomano, 2009; Fiete et al., 2010),
the presence of spontaneous activity is crucial to the growth of
synfire chains. Long before synapses become active in neural tis-
sue, neurons are believed to display spontaneous, sparse spiking
activity (Feller, 1999; O’Donovan, 1999; Weliky and Katz, 1999;
Blankenship and Feller, 2010) and such activity plays a criti-
cal role in development (Syed et al., 2004; Moody and Bosma,
2005; Warland et al., 2006; Tritsch and Bergles, 2010). However,
spontaneous activity has been observed to diminish once neu-
rons are part of an active network (Syed et al., 2004; Moody and
Bosma, 2005; Warland et al., 2006; Tritsch and Bergles, 2010).
Here, we take inspiration from these observed features of devel-
oping neural tissue: a key role for spontaneous activity and its
suppression in more mature, functional networks. Specifically, in
our model, neuronal excitability is taken to be activity dependent,
so that spontaneous activity is suppressed among neurons within
active chains. This feature leads to stable and strictly feed-forward
synfire chains.

2. RESULTS
2.1. CLASSICAL STDP LEADS TO CHAIN COLLAPSE
Consider a very small synfire chain, only three layers, each con-
taining one neuron. The first neuron, the input, initiates the
chain. With each input spike, the activity propagates down the
chain with fixed propagation delays; the input triggers activation
of the first layer, then the second. Now consider that the synapses
in this fully connected network are plastic and evolve in line
with the classical (Bi and Poo, 1998) STDP function (Figure 1D).
With every instantiation of the input, the synapse between the
input and the first layer will be potentiated, and similarly the
synapse between the first and second layer. Fatally for the chain
structure, as the time difference between input and layer two is
positive, it also falls within the positive tail of the exponential
curve and this synapse will also be potentiated. After sufficiently
many repetitions of the input, the potentiation of this long range
projection from the input to layer two will cause the second layer
to fire directly after the input. Hence, the chain collapses (see
Figures 1A–C for a schematic illustration). This small example
applies generally to any size (length and width) of network, and
outlines why, in networks with sufficiently dense initial connec-
tivity, classical STDP alone is not sufficient for the development
of synfire chains, or even for maintaining the stability of existing
chains.

To illustrate this argument we simulated a small (10 neu-
ron and initially 10-layer) synfire chain embedded within a fully
recurrent network. The neurons are binary (see “Methods”) and
weights between them set to 0 except for those that form the

FIGURE 2 | Comparison of chain maintenance with classical and

triphasic STDP. Top: The number of layers in a chain structure where
synapses are allowed to evolve in line with classical STDP (solid, red) and
triphasic STDP (dashed). Bottom: Sample raster plots of both systems at
the beginning (O), after 25 s (×) and after 50 s of simulated time (�).

chain, (wi i + 1), which are set to the firing threshold. The result-
ing spatiotemporal pattern, a string of single spikes (Figure 2), is
a result of the simple (static) chain. As the STDP rule begins to
shape the network, the activity pattern changes, with increasing
numbers of neurons spiking synchronously due to the reduction
in the number of layers in the chain. Before long, the entire chain
has collapsed: the activity pattern consists of a synchronous set of
network spikes following each input spike.

It is clear that the cause of the destabilization is the long expo-
nential tail in the classical STDP rule. A rule without this long
tail, or with a depressive regime at large positive spike-timing-
differences may not lead to collapse. We suggest that a triphasic
rule as reported in Nishiyama et al. (2000) and Wittenberg and
Wang (2006) may be employed for this purpose. Taking inspira-
tion from these studies, we define a triphasic STDP rule

�wij = A

[
1 − (�tij − α)2

α2

]
exp

(− | �tij − α |
α

)
, (1)

where �wij is the change in synaptic strength between pre- and
postsynaptic neurons i and j, �tij is the time difference between
spikes in neurons i and j, α is a scaling parameter that determines
the width of the potentiation window (τp+ = 2α) and A is the
learning rate (see Figure 1E).

Critical to the success of the triphasic rule is the interplay
between τp+ (the crossing point from potentiation to depres-
sion for positive time differences, see Figure 1E) and the time
delay d associated with spike propagation between two neurons.
Specifically, single delays must result in potentiation while multi-
ple delays must depress, such that τp+/2 < d < τp+. Given this
STDP rule, we again embed a small chain within a fully con-
nected network. As before, the spatiotemporal string is observed
(Figure 2), but now the stability of the structure is maintained.
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2.2. GROWING SYNFIRE CHAINS WITHIN NETWORKS
The simple reasoning above illustrates how triphasic STDP is able
to maintain existing chain structures. But, as previously stated,
our goal is to demonstrate that a triphasic rule can be used to
grow synfire chains within a homogeneous network. Here we
use a triphasic rule to grow synfire chains from fully connected
networks. Additionally, we show how this process can be simply
understood as a bounded random walk.

2.2.1. The model
Model equations are given below (see “Methods”). Briefly, our
model consists of a pool of binary, excitatory neurons, each asso-
ciated with a firing threshold θ. A small set of input neurons spike
synchronously at fixed intervals (multiple sets of input neurons
are considered later). Input neurons project excitatory connec-
tions onto all pool neurons (Figure 3). Synapses are all plastic
and associated with a fixed time delay. Spontaneous activity in any
pool neuron results in STDP, both in afferent synapses from the
input neurons, and in synapses with other pool neurons. A suf-
ficiently low rate of spontaneous activity (relative to the input
frequency) ensures that plasticity between pool neurons does not
disrupt the chain growth. With an appropriate STDP rule, the
above description is sufficient to grow some synfire chains, but
does not, on its own, guarantee chain stability.

To achieve stability in developing or developed synfire chains,
our neurons display activity-dependent excitability which results
in a suppression of spontaneous activity as soon as a neuron is
recruited to the chain. This ensures that the chain remains strictly
feed-forward, eliminating any scenarios in which an already
recruited neuron spikes spontaneously during activation of the
chain but before or after its rank in the chain. Had such sponta-
neous events been permitted, the STDP rule would promote the
incorporation of the spontaneously active neuron into the (new)
corresponding layer within the chain, which may result in feed-
back projections and hence cyclic activity patterns. Such loops
disrupt chain formation and can, in some cases, cause the collapse
of existing chains.

As mentioned above, the key components of the STDP func-
tion in our model are potentiation for small positive spike time
differences; depression for longer positive time differences, with

FIGURE 3 | Network structure. Arrows indicate full connectivity: Each
pool neuron has connections from every input neuron and is reciprocally
connected with every other neuron in the pool. All connections are
excitatory. Pool neurons fire spontaneously at a low rate. Input neurons fire
synchronously at a considerably higher rate.

a crossover to depression between one and two time delays (e.g.,
two layers apart in an existing chain); and depression for nega-
tive time differences. This is implemented in our model with a
modified Mexican-hat function [Equation (4) in the “Methods”].
The width of the depressing regimes in this function determines
how many layers (forwards and backwards) within a chain will be
depressed. The parameters are tuned so that maximal potentia-
tion (STDP peak) is significantly stronger than maximal depres-
sion (two STDP troughs), but the time window corresponding to
potentiation is significantly narrower, leading to occasional strong
potentiation and more frequent, typically weaker depression. By
additionally including a very small and constant depression step
for very long spike time-differences (both positive and negative),
STDP due to effectively uncorrelated spontaneous activity is very
slowly depressed. This small modification of the STDP func-
tion is sufficient to ensure scalability to any size network (or any
number of layers in a chain). The same effect could have been
achieved by weak synaptic fatigue rather than directly via the
STDP function, but the modification of the STDP function is
convenient.

2.2.2. Synfire chain development
Initially, all synaptic weights are set to 0 such that all the activity in
the network at this stage is spontaneous (except that of input neu-
rons). The development of synfire chains in our model is driven
by spontaneous events in pool neurons that occur within rela-
tively short time intervals before or after a set of input events.
A spontaneous spike in a pool neuron directly after an input neu-
ron spike leads to potentiation. For perfectly synchronized inputs,
each spontaneous event in a pool neuron will result in identical
potentiation or depression of connections from each of the input
neurons onto that pool neuron. An accumulation of potentia-
tion events at these connections, with sufficiently low intervening
depression, will result in suprathreshold activation of that neu-
ron by the inputs and its recruitment onto the first layer of the
chain. Once recruited, a neuron will spike directly after every pre-
sentation of the input. Thus, the relative rates of potentiation and
depression determine the rate of recruitment of neurons from the
pool onto the first layer.

Similarly, neurons in the first layer spike at the same rate as
the input, and therefore, are able to recruit a second layer. This
process is repeated again by each additional layer. Each new layer
consists of perfectly synchronized neurons, resulting in identi-
cal potentiation or depression events between each member of
the layer onto any particular pool neuron. Note that the per-
fect synchrony imposed in our model is merely a consequence
of its simplicity (namely, the instantaneous, memoryless dynam-
ics of the binary neurons) and does not constitute a general
requirement.

Layer formation is driven entirely by the form of the triphasic
STDP rule. As soon as the first layer begins to form, it begins to
recruit the second layer. However, the synapses from layers with
few neurons must reach higher weights to induce spikes in (and
consequently recruit) pool neurons. Therefore, recruitment onto
the second layer will accelerate as the first layer grows, and so
on for further layers. Note that with no hard limit on the num-
ber of neurons in a layer or on the number of the efferent or
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afferent synapses of a neuron, recruitment continues to all lay-
ers throughout the simulation. In other words, layers are added
to the end of the network, whilst at the same time, existing layers
continue to grow in size, until all neurons are recruited onto the
chain (Figure 4).

Importantly, the rate of recruitment depends on the current
state of the network. In particular, the variable layer sizes and the
competition among layers to recruit result in dynamic modula-
tion of each layer’s recruitment rates. From the perspective of the
pool neuron, its afferent connections undergo gradual potentia-
tion from each possible recruiting layer of the chain until one layer
wins, at the moment of recruitment; at this point, the repeated

FIGURE 4 | Network activity and synaptic weights. Network activity
(left) and weight matrix evolution (right) during synfire chain development
(from top to bottom). Neuron indices in weight matrices have been sorted
by spike time order (in response to the last input in the simulation), and
thus represent the neuron’s position in the developed chain.

activation of the neuron leads to rapid depression of all competing
connections from the non-recruiting layers. Eventually, all neu-
rons are depleted from the pool onto the maturing chain. The
progressive modulation of each layer’s recruitment rate leads to a
characteristic chain structure, as shown in Figure 5 for a variety
of network sizes.

In fact, the numerical evidence suggests that the model pre-
sented here is scale-invariant, so arbitrarily large networks could
be used to grow synfire chains whose layer sizes (upon normal-
ization by network size) follow a universal function. Figure 5
suggests that increasing the network size maintains the number
of layers while increasing layer widths such that the relative pro-
file (given by the relative widths of the layers) is conserved. Note
that to achieve this scale invariance, the width of the input layer is
also scaled. As we will see later, the width of the input layer plays
a similar role to the learning rate in modulating the number of
layers and their width profiles.

To better understand this recruitment process and the factors
shaping and modulating the topology of the chain, it is helpful to
describe the growth process in terms of a bounded random walk.

2.3. RANDOM WALK
Momentarily disregard the neurons in our model and consider
only the fluctuating synaptic weights. Because the magnitude
and rate of these fluctuations are determined by our simula-
tion parameters: the learning rate and the spontaneous and
input firing rates, it is possible to model their trajectory before

FIGURE 5 | Scaling of network size: Mean layer sizes ± standard

deviations for different size networks (100 runs). Layer sizes are
normalized by the number of pool neurons (see legend). The number of
input neurons and learning rate are scaled accordingly. The chain structure
follows a consistent pattern that scales with network size, preserving the
number of layers and their relative sizes. Top: A sample network of 250
pool neurons (black) and five inputs (gray).
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recruitment as a random walk. For the first recruitment to the
chain this problem is addressed analytically giving the expected
first recruitment time. For recruitments to subsequent layers,
the problem is slightly more complex, and thus we simulate the
random walk numerically.

For tractability, consider a simplification of our triphasic
STDP function to a piecewise constant function (henceforth
dubbed a “step rule”) given by Equation (5) and schematically
illustrated in the inset of Figure 6C. This function approxi-
mately replicates the overall ratios of potentiation and depres-
sion from the triphasic rule (Equation 1). As in the triphasic
rule, depression occurs over a much wider range of time delays,
but with lower magnitude, and potentiation is limited to pos-
itive spike time differences that are less than two transmission
delays.

2.3.1. First recruitment time
Let us concentrate on the very first recruitment event, and specif-
ically on the expected first recruitment time. The system con-
sists of N pool neurons and Nin input neurons, with all initial
weights set to zero. Pool neurons display Poisson firing at a rate
λp, and input neurons fire regularly at a rate λin. For the step
rule, the probability per stimulus for the potentiation or depres-
sion of a given synapse is constant and given by the probability
of coincident input and pool spikes within the corresponding
(potentiation or depression) window of the STDP function. The
probability of depression is larger, simply because of the larger
depression window, and is limited to positive synaptic weights
(see “Methods”).

We denote the discrete potentiation and depression steps of the
step rule Ap and Ad. Without loss of generality, we take the poten-
tiation step Ap to be double the depression step Ad. Thus, the
possible set of weights a synapse can have is discrete (Figure 6A)
and defined as

wij ε {kAd, k = 0, 1, . . . , R}. (2)

Thus, up until recruitment time, a pool neuron’s synaptic
weights hop among each of the k bins in a (biased) random
walk, with the requirement for positive (excitatory weights) rep-
resented as a reflecting boundary condition at k = 0. Since each
neuron sees identical input spikes, the input weights to any given
neuron move in tandem. Initially input spikes will not cause
postsynaptic firing. Only when the combined input reaches the
firing threshold Ninwij ≥ θ will a postsynaptic spike be gener-
ated, immediately recruiting this neuron to the first layer. At
this point, the spontaneous activity for this neuron is stopped,
which prevents further movement of its afferent weights and
ensures that once a neuron is recruited to a layer, it cannot be
recruited elsewhere. Thus, this weight leaves the weight pool and
its random walk is terminated. (Mathematically this is repre-
sented by an absorbing boundary condition at R = �θ/(NinAd)�,
so wR ≥ θ/Nin).

The formulation of the dynamics of pool weights in terms of
a random walk allows us to calculate analytically the expected
time of the first recruitment for any given parameter set (see
“Methods”). In Figure 6B these results are compared to our
numerical random walk (with discrete inputs) and the full

FIGURE 6 | Synfire chain growth can be described as a random walk.

(A) When the step rule is used, the synaptic weights fall into one of a set of
discrete bins. Synaptic weights hop among the bins with probability per
unit time (C↑) and (C↓) (see “Methods”). If a weight reaches the final bin,
(wR ), the neuron is recruited and the weight exits the random walk. (B) The
expected time of the first recruitment as calculated (see “Methods”)
compared to the mean and standard deviation of first recruitment times in
random walk simulations (10,000 runs) and full neural simulations
(1000 runs). (C) Multi-layer chain structures that evolve from the full neural
simulations (black) vs. simplified neural simulations (gray) and random walk
simulations (white). Mean and standard deviation of layer sizes were
calculated over 500 runs. The simplified neural simulations used the “step
rule” (inset) with delay (d = 7.4 ms and each pool neuron’s efferent synaptic
weights reset to 0 at the time of its recruitment onto the chain.

neuronal simulations and show agreement across all three meth-
ods. Thus, the recruitment process into the first layer is accurately
described by a bounded random walk, as demonstrated here for
the first recruitment. For later recruitments onto the first layer
and prior to the formation of a second layer, the only correc-
tion needed is that the pool of available neurons is gradually
depleted.
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2.3.2. Subsequent layer formation
When describing the development of the entire chain, we think
now not of one random walk but of multiple concurrent ran-
dom walks. If plasticity events were independent, these random
walks would exactly describe chain development in our system.
In fact, the spike-timing-dependence in the learning rule intro-
duces some correlations in plasticity events. In what follows, we
first describe the random walk formulation and further approx-
imations that simplify our model, and then compare this model
with neural simulations.

Consider three classes of random walks. Firstly, as before,
the recruitment of the initial layer is driven by plasticity events
between the pool neurons and the inputs. Secondly, there is also
plasticity between the individual pool neurons. Intra-pool inter-
actions occur with much lower probabilities (due to the low
spontaneous firing rates). Nonetheless at the time of recruitment
onto the chain, a pool neuron may already have some non-zero
weights in its connections with the remainder of the pool. To
neglect the effect of the second set of (intra-pool) random walks,
in our simulations, we reset efferent weights of newly recruited
neurons to 0. (Simulations including intra-pool dynamics give
quantitatively similar results, indicating that the contribution of
intra-pool dynamics is very small, data not shown). Finally, dur-
ing recruitment to subsequent layers of the chain, each pool
neuron undergoes random walks that compete to recruit it onto
each of the existing layers in the chain.

For any layer � of size N�, recruitment onto the subsequent
layer occurs when the combined efferent weights onto a pool neu-

ron j reach the threshold, wj = ∑N�

i = 1 wij ≥ θ. Thus, for every
pool neuron, the combined afferent weight w�j undergoes a ran-
dom walk with dynamic step sizes for potentiation N� · Ap and
depression N� · Ad. Note that for sufficiently large layers (with
N� ≥ θ/Ad), a single set of potentiation events (following a sin-
gle spontaneous spike) is sufficient for recruitment. It is this
dependence of layer size on the rate of recruitment that gives
our networks their characteristic shape. With the input layer size
fixed, neurons are initially recruited onto layer one with constant
rate. When recruitment into layer two begins, the recruitment rate
onto layer one begins to diminish due to the competition. At some
point, N1 will outnumber the number of the inputs, at which time
recruitment onto the second layer will be faster than recruitment
onto the first layer. Thus the second layer will soon outnumber
the first, and so on, until the maximum growth rate is reached.

To compare the above random walk model with neural
simulations, a number of simplifications are implemented in
the neural simulations. These include the elimination of intra-
pool dynamics, a small adjustment of neuronal delays, and the
elimination of plasticity for large (positive or negative) spike-
time differences (see “Methods”). With those simplifications,
the growth process and final network structures predicted by
the random walk model neatly match the simplified simula-
tions (Figure 6C). The near match even to the full neural sim-
ulations shows that for the parameter regimes described here,
the recruitment dynamics is well described by a set of inde-
pendent recruitment events. Furthermore, the tractability of
the random walk description allows insight into the recruit-
ment process that may not be immediately evident from the

simulations, most notably, the relationship between layer size
and recruitment rate. Understanding these dynamics allows us
to return to the full simulations and modulate the network
structure.

2.4. MODULATION OF NETWORK STRUCTURE
In Figure 5 we saw the characteristic shape of the networks pro-
duced by our triphasic learning rule for different size networks.
In fact, the general features of the chain development and struc-
ture are robust to changes in a wider range of parameters. Grossly,
chains will form with relatively narrow early layers, progres-
sively wider middle layers, and decreasing layer sizes toward the
end of the chain. That said, the detailed chain structure (the
mean number of layers and the relative layer sizes) can be mod-
ulated by the number of input neurons or the learning rate
(Figure 7).

Increasing the number of input neurons produces a shorter,
fatter network, i.e., with larger but fewer layers. Smaller input lay-
ers lead to longer thinner chains. Indeed, as mentioned above,
recruitment rates, and hence layer sizes depend strongly on the
size of the recruiting layer. With a small input group and there-
fore a slow recruitment rate, the subsequent (larger) layers will
quickly become the dominant recruiters, thus rapidly increasing

FIGURE 7 | Effect of learning rate and input size. The length of the final
chain (top) and the width of the largest layer (bottom) are dependent on
the learning rate and input size.
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the number of layers. Conversely, with a large input, recruitment
remains closer to the head of the network for much longer. The
amplitude of the STDP function (the learning rate), can similarly
modulate the length to width ratio of the network. With lower
learning rates, the recruitment is slower (just as with smaller input
layers), leading to slower development and longer and thinner
chains.

2.5. MULTIPLE INPUTS
In the results described so far, there has been one distinct set of
inputs projecting onto the remainder of the network. However,
in the brain, there are often multiple inputs which compete with
each other for control of target neurons. For example, the pro-
jections from either eye segregate the target tissue into ocular
dominance columns. The development of synfire chains with
multiple inputs or the embedding of multiple chains within a
network have been topics of recent interest (Aviel et al., 2003;
Teramae and Fukai, 2007; Liu and Buonomano, 2009; Fiete et al.,
2010). In this section we ask what happens if our system includes
multiple inputs. Furthermore, how does the number of distinct
inputs affect the final network configuration?

In agreement with previous authors (Liu and Buonomano,
2009; Fiete et al., 2010), we have found that multiple inputs
lead to the development of multiple synfire chains within one
originally homogeneous network. Adding a second input group
to our original setup (Figure 8) resulted in two distinct chains.
Importantly, there usually emerged one dominant chain that grew
larger and subsequently faster than the other. This phenomenon
can be directly attributed to the described effect layer size has
on recruitment rates. The initial symmetry breaking between
the two chains occurs by chance, but immediately leads to a

FIGURE 8 | Two-chain networks with two inputs. (A) Histogram of
“largest chain size,” defined as the number of neurons in the larger of the
two chains (the small chain size is the complement to 100—the total
number of pool neurons), from 150 runs. (B) The difference in mean lengths
between the larger and smaller chains is in keeping with the divergence in
chain size.

positive feedback loop, which only intensifies as the chain sizes
diverge.

There are various plausible instances for which similar com-
petition between inputs may be beneficial, e.g., at the bound-
aries between maps (frequency maps in primary auditory cortex
or whisker response maps in barrel cortex). However, when
balanced representation of inputs is important, the dynamics
observed here are likely to be detrimental. The possibility of
mitigating these effects through balancing inhibitory networks
[e.g., similarly to Dorrn et al. (2010)] therefore raises interesting
questions.

Increasing the number of inputs beyond two only intensifies
the symmetry breaking described above. Simulations with up to
ten input groups show that the majority of networks display one
long chain and a number of smaller chains. Here too, most chains
tend not to overlap (data not shown).

2.6. FULL NEURAL SIMULATIONS: LEAKY INTEGRATE AND FIRE MODEL
Our results using binary neurons show how triphasic STDP can
be used to grow synfire chains without additional topological con-
straints. Nonetheless, this approach was only tested in relatively
small networks of binary neurons. To test this plasticity rule with
more biologically realistic neural models, network sizes and con-
nectivity, we implemented triphasic STDP in a network of 10,000
leaky integrate and fire (LIF) neurons with sparse (6%) random
connectivity (see “Methods”).

We find that the mechanism scales to realistic network sizes.
At the end of the simulation, 8551 of the 10,000 neurons were
recruited into a single chain of 11 layers. This final network
structure is presented in Figure 9. Hence, we conclude that the
combination of triphasic STDP and activity-dependent excitabil-
ity is also sufficient to grow synfire chains in more biologically
realistic networks. Note that due to the reduced connectivity,
there is no longer all-to-all feed-forward connectivity between
contiguous layers. The reduced connectivity increased the num-
ber of layers, and slightly modified the network structure, but
grossly maintained a qualitatively similar diamond like shape.
The increase in neuron numbers and reduction in connectiv-
ity should further increase the possibility of embedding multiple

FIGURE 9 | Structure of network with 10,000 neurons. All other
parameters as in Table 1. Note that only 8551 of the neurons were
recruited due to limits on computational time.
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chains. To do this, one could include multiple input groups as
above.

3. DISCUSSION
Here we have presented a model for the development of synfire
chains that relies on a triphasic STDP rule and activity-dependent
excitability. Within this model, there is no need to apply any
topological constraints either on the initial connectivity or the
evolving connectivity in the system. Indeed, we demonstrate that
synfire chains can grow from initially homogeneous, fully con-
nected networks. The development of synfire chains without a
limit on synaptic connections is a novel contribution to this
topic of long-standing interest in computational neuroscience
(Abeles, 1982, 1991; Bienenstock, 1991, 1992; Diesmann et al.,
1999; Gewaltig et al., 2001; van Rossum et al., 2002; Aviel et al.,
2003, 2005; Ikeda, 2003; Kitano et al., 2003; Tetzlaff et al., 2004;
Doursat and Bienenstock, 2006; Ishibashi et al., 2006; Jun and
Jin, 2007; Masuda and Kori, 2007; Hosaka et al., 2008; Iglesias
and Villa, 2008; Kumar et al., 2008; Liu and Buonomano, 2009;
Fiete et al., 2010; Shinozaki et al., 2010). In fact, as recently shown
(Kunkel et al., 2011), classical STDP [as in Bi and Poo (1998)],
without additional limitations on connectivity, is insufficient for
chain development.

STDP has been found to occur within the song production
system of zebra finch (Boettiger and Doupe, 2001). However,
the form of any STDP function within HVC (the site of pos-
tulated synfire chains) has yet to be determined. The triphasic
STDP functions proposed here offer an interesting alternative
for growing synfire chains and, we believe, a new and excit-
ing direction for experimental research in songbird HVC and
beyond. Interestingly, in our model, chain growth follows a
self-organization process that leads to chain profiles that scale
with network size and are not dissimilar in gross features to
the layers of the cortex (Landing et al., 2002). Modulations in
the number of input neurons and plasticity parameters can be
used to fine tune the structure of the chain. Our results sug-
gest that in areas of the brain where pruning does not dominate
development, the detailed activity-dependent form of the local
neuronal and synaptic plasticity rules may play an important
role in shaping the developing pattern. In the context of song-
bird HVC, the network structures obtained (with 6–10 layers)
and network activation pattern [O(100) ms in duration] would
be consistent with the postulated encoding for the sequences
of notes making up a syllable (or basic unit) of the bird
song.

The growth and stability of our synfire chains rely on a class
of STDP functions that are characterized by (1) potentiation for
short pre- to postsynaptic spike time differences, correspond-
ing to connections that project only one layer forward and
(2) depression for longer spike time differences, corresponding
to connections that project two or more layers forward, and
for negative time differences, for backward-projecting connec-
tions. A wide class of STDP functions with this general form
can successfully be used to develop synfire chains. One exam-
ple may be a modified two-exponential STDP function in which
the positive-time exponential is offset to become depressive for
longer time intervals, longer than a single propagation delay

(Delgado et al., 2010; Waddington, 2011). We conclude that with
any variant of the triphasic rule, a stable feed-forward chain
will successfully evolve conditioned on (1) the choice of time
scales (and overall probability to potentiate or depress); (2) an
appropriate balance of spontaneous activity and input rate; and
(3) fixed propagation delays. These conditions are now discussed
in turn.

Within this class of STDP functions, the relative strength of
potentiation to depression (and their associated probabilities) in
the STDP function determines the possibility, and if so speed
of layer formation and can be used to modulate the emerg-
ing chain structure. The requirement for a strictly feed-forward
chain (or absence of loops) implies that distant connections
across the network (particularly backward projecting ones) must
remain weak over time scales of development. For sufficiently
large networks (or numbers of layers) to support stable chain
structures, we have incorporated a very weak (almost negligi-
ble) depressive regime in our STDP function. With this addi-
tional feature, the scaling of synfire chains with network size is
ensured.

In our model, stochastic spontaneous activity is critical to the
development of chains, but stops immediately upon recruitment.
This suppression of spontaneous activity is qualitatively consis-
tent with many reports in the literature (Syed et al., 2004; Moody
and Bosma, 2005; Warland et al., 2006; Tritsch and Bergles, 2010),
although it is likely that in vivo the transition would not be as
sharp. Specifically, our model suggests that in regions displaying
precise spatiotemporal activity patterns, and where the STDP rule
plays a major role in development, suppression of spontaneous
activity may coincide with recruitment of neurons onto these
patterns. With suppression of spontaneous activity in place, the
above triphasic STDP function indeed leads to stable and strictly
feed-forward structures. However, in vivo, it is certainly plausible
that synfire chains co-existwith underlying recurrent microcir-
cuitry (i.e., containing loops). Indeed, if synfire chains are used
in working memory and other pattern maintenance systems, such
loops may be required.

We should also note that in our model the time differ-
ence used to calculate STDP and the transmission delay are the
same. Classically the time difference used to measure STDP is
taken from the post-synaptic potential arrival at the dendrite
to neuron firing. In our leaky-integrate-and-fire simulations,
we have set our transmission delay at 5 ms and also use this
as the time difference for the STDP calculation. This assumes
that the axonal delay is roughly equal to the dendritic delay, so
that the time between spikes is the same as the time taken for
the EPSP to reach the soma and then back-propagate. It fur-
ther assumes that propagation delays dominate over the synaptic
delay which is neglected. For networks in which this assump-
tion breaks down and synaptic time delays dominate, these time
delays may themselves be modulated by the plasticity rule (with
higher efficacies having faster synaptic transmission)—as sce-
nario not considered in our model. Furthermore, in reality,
delays are heterogeneous and if our STDP rule were to con-
tribute to network formation, one may expect the observed
values of τp+ to vary as well. As there are only few reports
of triphasic STDP in the literature to date (Nishiyama et al.,
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2000; Wittenberg and Wang, 2006), it is too early to tell whether
changes in the potentiation window of the STDP function cor-
relates in any way with transmission delays in the corresponding
systems.

To better understand the self-assembly of the circuit, we for-
mulated the recruitment process in terms of a random walk that is
then amenable to population density analysis. To our knowledge,
this is the first study that uses a population density of weights,
rather than one of neurons (which have been used routinely).
The parameters in our model give rise to an interesting dynamical
regime, in which depression dominates most of the time. Viewed
as a continuous-time random walk, the recruitment process can
be described by rare upward hopping events, that are typically
overshadowed by a strong downward drift. Recruitment of neu-
rons onto the chain is therefore a rare and relatively rapid series of
events. The ability of the same class of STDP rules to drive chain-
formation outside of this parameter regime is an interesting and
open question.

The link between plasticity of individual synapses or neurons
and network properties is a fundamental and exciting prob-
lem in neuroscience, if often an elusive one. In the context of
synfire chains, pruning and other capping rules that limit num-
bers of synapses offer a mesoscopic solution to the self-assembly
problem. In contrast, the triphasic STDP rule, complemented
by activity-dependent plasticity provides a different solution, in
which the emerging structure is shaped by the interplay between
local (synaptic) and network-wide dynamics. Specifically, the
chain profile is determined by global competition between the
different layers (i.e., by the functional circuit) over recruited con-
nections. While it is clear that development in neural tissue relies
on the complex and delicate balance of many mechanisms on
a variety of time scales, our results suggest that plasticity rules
based on spike timing could potentially play a very important
role in molding the functional circuit structures in the nervous
system.

4. METHODS
4.1. BINARY NEURAL SIMULATIONS
We use binary neuronal states Sj ε{0, 1} and continuous-valued,
instantaneous membrane potential Vj (i.e., infinite leak) to deter-
mine neuronal spiking (Sj = 1). The potential at every point in
time (t) sums over contributions from other spikes occurring
precisely one time-delay earlier t − d and is defined as,

Vj(t) =
N + Nin∑

i = Nin + 1

Si(t − d) wij

Si(t) =
{

1 Vi ≥ θ

0 Vi < θ,
(3)

where wij is the weight of the synapse from any neuron i to a
pool neuron j and θ is the firing threshold. Once a spike has
occurred a neuron enters an absolute refractory period tref. The
time delay d denotes the spike-to-spike transmission time and is
assumed to be equal to the �t argument in the STDP functions
(denoting the time difference between the arrival of the pre- and
post-synaptic spikes at the synapse). All synaptic weights wij are

initially set to 0 and evolve according to one of three plasticity
functions.

In triphasic STDP,

�wij =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

A
[

1 − (�tij − α)2

α2

]

× exp
(− | �tij − α |

α

)
−50 ms ≤ �tij ≤ 50 ms

�wij|�tij = 50 ms �tij > 50 ms

�wij|�tij = −50 ms �tij < −50 ms,

(4)

In other words, this function is identical to Equation (1) except
that �wij is fixed at its values of �tij = ±50 ms for longer time
intervals |�tij| > 50 ms; this fixing of �wij gives a small constant
depression (< 1.5 × 10−3).

In the step STDP function, the potentiation and depression are
piecewise constant

�wij =
⎧⎨
⎩

Ad τd− < �tij < 0
Ap 0 ≤ �tij < τp+
Ad τp+ ≤ �tij < τd+,

(5)

and zero otherwise. Finally, in classical STDP, we choose an anti-
symmetric rule

�wij =
⎧⎨
⎩

Ac e−β�tij �tij > 0
−Ac e β�tij �tij < 0

0 �tij = 0,

(6)

where the amplitude Ac and the decay rate β are taken to
be equal for both exponentials. For computational efficiency,
the value of �tij was rounded to the nearest millisecond and
�wij was read from a look-up table. This made no qualita-
tive difference to results. Note that the above rules (Equations
4–6) are additionally constrained so that synapses are exci-
tatory at all times and bounded above with 0 ≤ wij ≤ wmax.
All STDP pairings are nearest neighbor. Experiments with
all-to-all pairing yielded qualitatively the same results (not
shown). Simulations were run until all neurons had been
recruited.

4.2. SIMPLIFIED NEURAL SIMULATIONS
For the comparison of random walk results with neural simula-
tions (Figure 6C), a number of simplifications are implemented.
First, intra-pool dynamics are eliminated (i.e., synaptic plasticity
among unrecruited neurons, which may bias the choice of neu-
rons to be recruited). In fact, this has a very small effect on the
recruitment dynamics and chain structure. Second, to ensure that
each potentiation event applies at most to a single layer, the delay
between neurons is slightly increased to d = τp+ − 0.1 ms. This
has a minor effect on chain structure. Finally, we use the simpler
“step rule” which has strictly zero plasticity for long spike time
differences |�tij| > 36 ms (i.e., < τd− or > τd+). This has negli-
gible effect on simulations with relatively small networks, but may
occasionally induce recurrent connections and hence collapse of
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the synfire chains for larger simulations (with thousands or more
neurons).

Simulations parameters for both full and simplified neural
simulations can be found in Table 1.

4.3. RANDOM WALK
The probability per unit time for the potentiation of a given
synapse C↑ is constant and given by

C↑ ≡ λin λp τ+ e−λpτ+ , (7)

where τ+ = τp+ is the width of the potentiation window. The
above assumes a regular input pattern (hence the constant λin)
and a Poisson firing pattern for the spontaneous firing of the
pool neurons; accordingly the probability of a spike within a
time window τ+ is λp exp (−λpτ+). We further assume that
the Poisson rate is much lower than the input rate; hence it
is sufficient to consider a single pair of input and spontaneous
events.

For depression a similar formula holds

C↓ ≡
{
λin λp τ− e−λpτ− w > 0
0 w = 0 ,

(8)

where τ− = τd− + τd+ is the combined width of both of the
depression windows, and synaptic depression is limited to pos-
itive weights (for simplicity, the neuronal indices ij have been
dropped from wij).

Since we take Ap to be double Ad, the weights are restricted to
a state space of discrete bins (0, . . . , R) where recruitment occurs
in bin R (Figure 6A). For very large N, or given a large num-
ber of repeats of the experiment, a probability density function
	�(t) can be defined, where �n is the fraction of the total num-
ber of neurons that occupy bin n, i.e., whose weights equal nAd.
The elements of 	� are non-negative and sum to a value equal to
or less than 1. We can now approximate the stochastic process of

first layer formation by a master equation for 	�(t) (Larralde et al.,
1992; van Kampen, 1992)

d

dt
	� = M · 	�, (9)

with the matrix M given by an asymmetric tridiagonal Toeplitz
matrix, summarized by

d�n

dt
= C↑ �n − 2 + C↓�n + 1 − (C↓ + C↑)�n,

0 < n < R − 1, (10)

with boundary conditions

d�0

dt
= C↓ �1 − C↑ �0 (11)

d�1

dt
= C↓ �2 − (C↓ + C↑) �1

d�R − 1

dt
= C↑ �R − 3 − (C↓ + C↑) �R − 1.

For a midrange bin �n rises by potentiation from bin n − 2 at rate
C↑ (giving the C↑ subdiagonal in M, Ap/Ad = 2 rows below the
diagonal) and depression from bin n + 1 at rate C↓ (giving the
(C↓) subdiagonal directly above the diagonal in M); �n decreases
by either potentiation or depression at a rate C↓ + C↑ (diago-
nal terms in M). Due to the reflecting boundary condition at bin
n = 0, this bin’s occupancy is governed only by depression onto
it and potentiation from it. The upper absorbing boundary con-
dition at n = R eliminates depression from bin R to bin R − 1.
Together with initial conditions (full occupancy at �0),

�0(0),�1(0), . . . , �R(0) = 1, 0, . . . , 0,

this system determines 	�(t). Note that the master equation for-
mulation above considers uniform hopping rates over continuous

Table 1 | Simulation parameters. Unless otherwise noted simulation parameters are as follows.

BINARY NEURONS—NEURAL AND NETWORK PARAMETERS

N 100 λin (Hz) 3.0 wmax 0.7

Nin 5 λp (Hz) 0.1 d (ms) 5.0

tref (ms) 6.0 θ 1.0

Triphasic STDP Step rule STDP Classical STDP

A 0.1 Ad; Ap 0.04;2Ad Ac 0.1

α (ms) 4.0 τp+; τd+; τd– (ms) 7.5;36; − 36 β (ms−1) 0.05

τp (ms) 2α d (ms) 7.4

LEAKY INTEGRATE AND FIRE NETWORKS

N 10,000 λp (Hz) 0.1 d (ms) 5.0

Nin 200 λin (Hz) 3.0 wmax (nS) 20.0

A 8 τsyn (ms) 0.2 θ (mV) −50.0

tref (ms) 20.0 EL (mV) −85.0 Vreset (mV) −80.0

Eex (mV) 0 gL (nS) 1.125 Cm (pF) 22.5
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time (and hence neglects the discrete times of the stimulation
protocol).

4.3.1. First recruitment time
It is now possible to estimate the formation time and the initial
speed of formation of the first layer. We begin with the probability
that recruitment hasn’t yet happened, which is given by the entire
contents of bins 0, . . . , R − 1

R − 1∑
n = 0

�n(t). (12)

The probability of recruitment between time t and t + dt is
(van Kampen, 1992)

f1(t) = − d

dt

R − 1∑
n = 0

�n(t)

= C↑�R − 1(t) + C↑�R − 2 (t). (13)

so that f1(t) is the probability density for recruitment, for each
(independent) random walk. The expected recruitment time 〈t1〉
is then given by

〈t1〉 =
∫ ∞

0
t f1(t) dt. (14)

In a network with N pool neurons, we can now calculate the
first recruitment time. To find the probability density for at least
one neuron being recruited fN (t), we calculate the probability that
none have been recruited between time 0 and t and subtract this
from one

fN (t) = 1 −
(

1 −
∫ t

o
f1(t) dt

)N

= 1 −
(

R − 1∑
n = 0

�n(t)

)N

. (15)

The expected first recruitment time is then given by 〈tN〉,

〈tN〉 =
∫ ∞

0
t fN(t) dt. (16)

Solutions to Equation (16) were computed by numerically
solving the eigenvalue problem in Equation (9). Interestingly,
given our parameter regime, the solution yields one dominant
eigenvalue (i.e., one dominant time scale), indicating that the
recruitment process onto the first layer can be described as a
rapid escape (or multiple very closely spaced potentiation events)
from the unrecruited pool. Solving for 	� over time confirms this.
Initially all weights are zero: All probability is concentrated in bin
0 [�0 (0) = 1]. This bin initially depletes rapidly due to potenti-
ation and some bins will have higher occupancy, i.e., �1, ..., R − 1

will begin to grow. As these bins are populated, depression comes
into play, reducing most weights to 0 again. The net result is that
the occupancy in higher bins remains almost stationary at a very
low value; while the first bin occupancy �0 depletes very slowly
(due to recruitment).

In a relatively small sized network this means that at any time
almost no potentiated weights are visible: recruitment into the
first layer takes place if a neuron’s weights happen to potentiated
rapidly a number of times in relatively close succession. This is

indeed what is observed. The advantage of our analysis is that we
can estimate the time at which the first layer starts to form directly
in terms of the simulation parameters.

4.3.2. Chain formation
For recruitment to further layers, we simulate the random walk
explicitly. Since all weights from any layer to any pool neuron
undergo plasticity in sync, it suffices to simulate L random walks
for each pool neuron, where L is the (dynamic) number of lay-
ers in the system. Each weight w�j is defined as total efferent
weight from the layer � = 0, . . . , L to a neuron, j, initially set to 0.
The magnitude of the plasticity steps are ApN� (for potentiation)
and AdNL (for depression), where N� is the size of the previous
layer (or the input in the first instance). As before, probabilities
to potentiate and depress are given by C↑ and C↓, respectively.
Starting from N0 = Nin and N�>0 = 0, all random walks are run
concurrently. Each recruitment event (with some weight cross-
ing threshold) leads to an increment in the corresponding layer
size N�+ 1. All random walks associated with this pool neuron are
then halted upon recruitment.

4.4. LEAKY INTEGRATE AND FIRE MODEL
The simulation was built using the neural simulation software
NEST (Gewaltig and Diesmann, 2007). As in previous models,
the network consists of N identical network (i.e., pool) neurons
and Nin input neurons. Here connectivity was set at 6%. Each
input was randomly assigned connections to 0.06 N network neu-
rons. Similarly, network neurons were connected to 0.06 N other
network neurons. The input neurons have no incoming connec-
tions. Network neurons spike with a spontaneous (Poisson) firing
rate λp. Input neurons spike regularly with a rate λin. All synaptic
connections are excitatory. However, the weak synaptic efficacies
(relative to the firing threshold) and sparse spontaneous activity
within the unrecruited pool of neurons means that this activity
cannot propagate.

The neural model was chosen from those distributed with
NEST (“iaf_cond_exp”). The sub-threshold membrane potential
Vj of neuron j evolves according to

Cm
dVj

dt
= −gL(Vj − EL) + gsyn,j(Vj − Eex), (17)

where Cm is the membrane capacitance, EL and Eex are the rever-
sal potentials of the leak and excitatory synaptic conductances,
respectively, gL is a constant leak conductance, and gsyn is a
non-negative (and initially zero) synaptic conductance. Because
all synapses are excitatory, synaptic conductances increase
instantaneously with synaptic inputs and decay exponentially
otherwise,

τsyn
dgsyn,j

dt
= −gsyn,j +

N + Nin∑
i = 1

wij Si(t − d), (18)

where τsyn is the synaptic time constant, 0 ≤ wij ≤ wmax is the
bounded weight of the synapse and Si(t) ε {0, 1} is 1 if the
pre-synaptic neuron i fired at time t and 0 otherwise; d is the
delay between neurons. (Note that for legibility, the index j has
been omitted from gsyn,j.) If the membrane potential Vj reaches
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the firing threshold θ, the neuron is said to have spiked and Vj

is set to the reset potential Vreset. The neuron then enters an
absolute refractory period of tref, during which Vj is fixed at
Vreset. All synapses were modified according to triphasic STDP
(Equation 4). All parameters can be found in Table 1.
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