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H I G H L I G H T S

• We analyse urban greenspace land-cover effects on soil organic carbon stocks (SOC).
• Domestic gardens held greater SOC concentrations than non-domestic greenspaces.
• Urban greenspace SOC storage exceeded that in regional agricultural soils.
• Differences in greenspace management affect SOC stocks.
• Tree planting may enhance SOC stocks in domestic gardens.
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Soil is the vital foundation of terrestrial ecosystems storingwater, nutrients, and almost three-quarters of the or-
ganic carbon stocks of the Earth's biomes. Soil organic carbon (SOC) stocks vary with land-cover and land-use
change, with significant losses occurring through disturbance and cultivation. Although urbanisation is a grow-
ing contributor to land-use change globally, the effects of urban land-cover types on SOC stocks have not been
studied for densely built cities. Additionally, there is a need to resolve the direction and extent to which
greenspace management such as tree planting impacts on SOC concentrations. Here, we analyse the effect of
land-cover (herbaceous, shrub or tree cover), on SOC stocks in domestic gardens and non-domestic greenspaces
across a typical mid-sized U.K. city (Leicester, 73 km2, 56% greenspace), and map citywide distribution of this
ecosystem service. SOCwasmeasured in topsoil and compared to surrounding extra-urban agricultural land. Av-
erage SOC storage in the city's greenspace was 9.9 kg m−2, to 21 cm depth. SOC concentrations under trees and
shrubs in domestic gardens were greater than all other land-covers, with total median storage of 13.5 kg m−2 to
21 cm depth, more than 3 kg m−2 greater than any other land-cover class in domestic and non-domestic
greenspace and 5 kg m−2 greater than in arable land. Land-cover did not significantly affect SOC concentrations
in non-domestic greenspace, but values beneath trees were higher than under both pasture and arable land,
whereas concentrations under shrub and herbaceous land-covers were only higher than arable fields. We con-
clude that although differences in greenspace management affect SOC stocks, trees only marginally increase
these stocks in non-domestic greenspaces, but may enhance them in domestic gardens, and greenspace topsoils
hold substantial SOC stores that require protection from further expansion of artificial surfaces e.g. patios and
driveways.

© 2013 The Authors. Published by Elsevier B.V. All rights reserved.

1. Introduction

Soil plays a major role in the global carbon cycle and is the founda-
tion of terrestrial ecosystems, providing or underpinning most of the

ecosystem services fromwhich humans benefit (MEA, 2005). Terres-
trial ecosystems store 2110 Pg of carbon, nearly three times the
amount in atmospheric CO2, with 74% of this provided by soils (Lal,
2008; Batjes, 1996). Historically, soil organic carbon (SOC) storage
has declined substantially, by approximately 40–90 Pg (Smith,
2008), contributing to anthropogenic CO2 emissions and soil degra-
dation (Lal, 2008). The main driver of this loss has been land-use
change from natural or semi-natural ecosystems to cultivated or
highly disturbed landscapes (Smith, 2008; Guo and Gifford, 2002;
Vitousek et al., 1997). This loss of SOC has impacts at the global
scale through its contribution to anthropogenic CO2 emissions and,
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at the local scale, through loss of critical soil functions including nutrient
andwater-holding capacity, aggregate stability, infiltration capacity and
resistance to erosion (Lal, 2009). Signatories to the United Nations Con-
vention on Climate Change and the Kyoto Protocol are required to pro-
vide inventories of terrestrial organic carbon (OC) stocks in order to
monitor changes in storage (Bradley et al., 2005). As a consequence, in-
creasingly accurate estimates of SOC stocks, associated with different
land-uses and management, are needed to inform policies and actions
that enhance OC storage and minimise future losses of SOC.

Urbanisation is an increasingly important contributor to land-use
change globally. Worldwide more than half the human population are
urban dwellers, a figure projected to increase to 70% by 2050 (United
Nations, 2008). Urban areas are expanding more rapidly than any
other land-use type (Hansen et al., 2005; McKinney, 2002; Antrop,
2000; Meyer and Turner, 1992), principally as a consequence of sprawl
(driven by the construction of large, low density residential develop-
ments) and declines in average household size (driven by increases in
longevity, single occupancy of dwellings and divorce rates, and in
some regions a growing number of second homes (Lepczyk et al.,
2007; Liu et al., 2003)). However, in many European cities sprawl has
been constrained by planning policy in recent decades. For example,
in the U.K. most new housing development is within urban areas,
often on the gardens of existing dwellings (garden grabbing) or other
previously abandoned/undeveloped land (Dallimer et al., 2011; Bibby,
2009).

The processes of urban expansion and densification both involve
land-use changes that impact upon ecosystem function and service pro-
vision (Gaston et al., 2010). Until recently, amajor gap in current under-
standing of urban ecosystems concerns the nature and property of their
soils particularly in Western Europe (Lehmann and Stahr, 2007; Byrne,
2007; Effland and Pouyat, 1997), despite the critical role of soil in
supporting most urban ecosystem services. However, recent research
investigating citywide SOC stocks, beneath both urban greenspaces
and impervious surfaces, has demonstrated that urban areas are capa-
ble storing much larger quantities of SOC than previously realised
(Edmondson et al., 2012). Indeed, average storage across an entire
U.K. city (assuming 0 kg SOC m−2 storage beneath buildings which
cover 15% of the city) was 14.5 kg m−2, to 1 m depth (Edmondson
et al., 2012). These measurements contrast with the earlier estimates
of SOC in suburban areas in England, which gave a mean value of
6 kg m−2, based on the untested assumption that these areas store
half the carbon of agricultural grasslands in the same region (Bradley
et al., 2005). Furthermore, these new data reveal that urban SOC stocks
are 12% higher than the mean storage value for agricultural grasslands
and only 15% lower than the mean storage value for woodlands in the
English national SOC inventory (Bradley et al., 2005), necessitating a
radical revision of the widely held misconception of low ecological
values of urban soils.

SOC concentrations are highest at the soil surface and decrease by a
negative exponential function, so that in the urban greenspaces of
Leicester 47% of the SOC to 1 m depth was found in the top 21 cm
(Edmondson et al., 2012), and values under different land-covers
converge with depth. Indeed, no difference was found between
SOC concentrations in soil under capped surfaces such as roads or
pavements (sidewalks) and soils beneath greenspaces at the same
depth, indicating that land-cover effects will be most important in the
topsoil (which we define here as 0–21 cm). Topsoil is the most impor-
tant part of the soil, its properties controlling rates of infiltration, nutri-
ent and water holding capacity and plant productivity, all of which are
often strongly correlated with organic matter content (Lal, 2010).

It is against the background of rapid expansion and regional densifi-
cation of urban areas in Europe, together with the need to establish na-
tional inventories of ecosystem carbon stocks that the paucity of data on
SOC amongst the different urban greenspace land-covers is of increas-
ing concern. In particular, there are important questions about whether
different types of urban greenspace and management options can

significantly affect these stocks. Despite the longer history of urbanisa-
tion, and the greater proportion of urban land-cover in Europe than in
the U.S.A., to date there have been no systematic studies of SOC varia-
tion with greenspace land-covers in any Western European cities. The
role of urban areas in SOC storage has been more extensively studied
in North America (e.g. see Raciti et al., 2012; Churkina et al., 2010;
Kaye et al., 2008, 2006; Golubiewski, 2006; Pataki et al., 2006; Pouyat
et al., 2002, 2006; Jo and McPherson, 1995). Despite this interest, in
North America the effects of land-cover on SOC stocks have also not
been systematically studied at a city-wide scale. Without this informa-
tion the consequences of land use changes for urban SOC stocks remains
unresolved and appropriate management of the greenspace resource
for this ecosystem service remains uncertain.

Recent studies have shown that land-cover types havemajor effects
on aboveground organic carbon storage in urban vegetation — for
example trees accounted for 97% of citywide total in the city of Leicester
(Davies et al., 2011). In this study domestic gardens contained only
0.8 kg OC m−2 in above-ground vegetation whereas urban trees and
woodland stored 28.9 kg OC m−2 on non-domestic land (Davies et al.,
2011). The extent to which these land-cover class differences are
reflected in greenspace SOC storage within urban areas remains un-
clear. As soils globally store considerably more carbon than vegetation,
it is important to determine whether policies to manage aboveground
OC storage such as tree planting have positive, negative or neutral ef-
fects on SOC stocks.

Here, we provide a detailed assessment of land-cover effects on
SOC stocks in urban greenspaces in a European city. We measured
SOC storage in urban greenspace land-cover classes across the entire
urban area of a mid-sized U.K. city, and also in its immediate agricul-
tural hinterland to provide regional context. As land-cover is likely to
have the greatest effect on topsoils (Bell et al., 2011), sampling fo-
cussed on the surface layer. The urban greenspaces were divided
into domestic gardens and non-domestically owned land, within
which land-cover class was characterised by vegetation height and
type. We quantified SOC across the greenspace of the entire urban
area to produce an SOC budget to 21 cm depth.Wemap the spatial dis-
tribution of SOC across the city using high resolution GIS land-cover
datasets to improve understanding of the importance of both small
and large patches of greenspaces to storage across the entire city sur-
face. These data were used to test the hypothesis that urban SOC con-
centration and storage would respond to aboveground vegetation
land-cover similarly to the national soil inventory data that indicate
higher SOC concentrations beneath trees than grassland (Bell et al.,
2011; Bradley et al., 2005). Furthermore, we predicted that urban SOC
storage throughout the sampled land-cover classes would exceed stor-
age in regional agricultural fields. This research seeks to improve under-
standing of land-cover effects on urban SOC storage, in order to inform
effective management of multifunctional greenspaces for OC storage.

2. Methodology

2.1. Study area

Our study focussed on Leicester, a mid-sized U.K. city, covering an
area of approximately 73 km2 (as defined by the unitary authority
boundary), with a human population of approximately 310,000
(Leicester City Council, 2012), located in the East Midlands of England
(52°38′N, 1°08′W) (Fig. 1a and b). The region has a temperate climate,
receiving 606 mm of precipitation each year and average annual daily
minimum and maximum temperatures of 5.8 °C and 13.5 °C respec-
tively (Met Office, 2009). More than three quarters of land in the East
Midlands is used for agriculture, of which arable farming is dominant
(Rural Business Research, 2012). The main bedrock types underlying
the city are from three groups; the Lias Group (Jurassic), the Penarth
Group (Triassic) and the Mercia Mudstone Group (Triassic). Superfi-
cial deposits cover a large proportion of the bedrock and are
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comprised of: alluvium, colluvium, fluvial deposits, glaciolacustrine
deposits, and glacial till (Rice, 1968). The distribution of both the bed-
rock geology and the superficial deposits within Leicester were derived
from British Geological Survey DiGMapGB-10 digital data (1:10,000
scale; http://www.bgs.ac.U.K./products/digitalmaps/digmapgb_10.
html). Soil types within the city are dominated by deep clays, deep
loam and seasonallywet deep clays and loam, according to the National
Soil Map for England and Wales produced by Cranfield University. The
soil types sampled in the city were: Hanslope, Whimple, Salop, Beccles
3, Ragdale and Fladbury 1.

2.2. Soil survey

A GIS was used to determine the land-cover characteristics of the
study area, based on the classification of land-cover polygons by

Infoterra and Ordnance Survey within their LandBase and MasterMap
(Murray and Sheill, 2003) digital cartographic datasets. Within these
datasets vegetation patches and tree canopiesweremapped to accuracy
of 0.25 m2. Greenspace across the city was classified into five land-
cover classes, three of which, found outside domestic gardens, were ef-
fectively stratified by vegetation height (as LandBase data are classified
using high resolution LiDAR): herbaceous vegetation (comprising
grassland and non-woody plants), shrubs and tall shrubs (including
woody bushes and immature trees with a mean height of up to 5 m),
and trees (mean height greater than 5 m). Domestic gardens were
sub-divided into herbaceous cover (including lawn, flowerbeds, and
vegetable patches) and cover by shrubs and trees (including woody
bushes, hedges, immature and mature trees).

Previous research has demonstrated that 30–50 randomly generated
locations within land-cover types provide good representation of
vegetation carbon stocks in a city area (see e.g. Davies et al., 2011),
therefore a sample of 45 points was randomly generated across the
city within two non-domestic land-cover classes; herbaceous vegeta-
tion and an amalgamated class of tree, tall shrub and shrub dominated
vegetation. Soil samples could not be taken at a number of points be-
cause we were unable to obtain permission to access the area, they
were deemed to be unsafe to visit (e.g., along railway embankments,
abandoned industrial sites) or consent to sample was refused. For do-
mestic gardens, a street layer was created in the GIS and 45 roads
were selected at random. Each of these roads was visited and, if there
were residential properties present and authorisation from a house-
holder was granted, soil cores were taken from the back garden of one
dwelling per road. Agricultural sites (arable n = 16; pasture n = 12)
were selected randomly from within a 7.5 km buffer zone around the
unitary authority boundary of Leicester, and the type of agriculture
was determined on site (either arable or pasture).

Each random sample point, in the non-domestic greenspace, formed
the centre of a 5 × 5 m quadrat, within which four replicate undis-
turbed soil cores were taken using sample rings to enable bulk den-
sity to be determined (Soil sample ring kit C, Eijkelkamp, Holland).
In domestic gardens, cores were extracted from herbaceous areas
within the garden (e.g. lawns, flowerbeds) and/or within the vicinity
of shrubs and trees (where gardens contained both land-cover classes
cores were taken beneath both herbaceous vegetation and shrubs and
trees). In both non-domestic and domestic greenspaces, the samples
were taken from three depths: 0–7 cm, 7–14 cm and 14–21 cm.
These depth intervals were determined by the specifications of the
soil coring equipment, which oversampled, by approximately 1 cm,
both above and below an internal 5 cm deep sample ring, in which
the undisturbed soil sample was collected. The ability to oversample
above the sample ring enabled the removal of any leaf litter layer or
lawn turf without disturbing the soil sample. Sampling to a depth of
21 cm was not always possible, as urban soils commonly contain an
array of materials including bricks, cement, and slag (Lorenz and Lal,
2009; Norra and Stuben, 2003), as well as stones and tree roots.

2.3. Soil preparation and analysis

Soil samples were dried at 105 °C for 24 h and subsequently
weighed. The soil fraction of the sample was homogenised into a fine
powder in an agate ball-mill (Pulverisette, Fritsch, Idar-Oberstein
Germany); but this process did not breakdown stones or anthropogenic
fragments (e.g. metals or plastics) within the sample. The ball-milled
sample was then passed through a 1 mm sieve and re-dried at 105 °C.
Any material greater than 1 mm in diameter was retained, weighed,
and removed from total sample weight in order to calculate fine earth
soil bulk density (g cm−3) (Edmondson et al., 2011). The method of
soil sample preparation differed from the conventionalmethod, where-
by samples are air dried then passed through a 2 mm sieve prior to
analysis (Rawlins et al., 2008). However method validation comparing
the use of the 1 mm sieve after milling to the conventional protocol

Fig. 1. The geographic location of a) the East Midlands (shaded grey) and Leicester (shad-
edblack)within England, and b) the outline of theUnitary Authority Boundary of Leicester
and the major road network within the city (52°38′N, 1°08′W).
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involving sieving before milling revealed no significant differences
in SOC concentration (mg g−1) or density (mg cm−3) (Edmondson
et al., 2012), but established our approach reduced sample handling
times and gave lower coefficients of variance between replicates.

Homogenised soils were analysed in duplicate for percent total
carbon (TC) in a CN analyser (Vario EL Cube, Elementar, Hanau,
Germany). Inorganic carbon (IC) was removed from soil samples fol-
lowing the method used by Rawlins et al. (2008), whereby 10 ml HCl
(5.7 M) was added to 2.5 g soil. Samples were centrifuged at 1800 g
for 10 min, the supernatant was removed and the soils were dried at
105 °C and CN analysis used to determine SOC concentration. As the
soil samples were initially dried to establish bulk density, pH measure-
ments were only made on dried soil by the standard procedure of
adding 5 g of soil to 10 ml of deionizedwater (Hendershot et al., 1993).

A sub-set of samples (n = 80) were selected to measure IC concen-
trations of soils sampled, selected at random from the entire range of
depths. IC concentration was calculated by subtracting SOC from TC
measured on sub-samples of the same soil. Using this method we did
not detect IC within the top 30 cm of any of the 80 samples, and in
deeper samples IC was only found in those with pH N 7.0. All samples
taken from across the city and adjacent agricultural land with
pH N 7.0were therefore treatedwithHCl prior to CN analysis to remove
any potential IC.

2.4. SOC stocks

SOC storage (kg m−2) was calculated for each individual soil sample
using SOC concentration (mg g−1) and soil density (g cm−3) taking
into account the mass of the N1 mm fraction discarded after milling.
Mean SOC density at each of the three depths (0–7, 7–14, and 14–
21 cm), for each land-cover class was multiplied by the total areas of
the relevant land-cover class within Leicester (Table 1) in order to esti-
mate land-cover specific soil carbon stocks. Finally, these values were
summed to obtain an estimate of SOC to a depth of 21 cm across the
greenspace of the entire city. Soils within Leicester capped by artificial
surface, including those within domestic gardens, were excluded from
this estimate, asmost or all of the topsoil is excavated during the imper-
vious surface construction process (Edmondson et al., 2012). SOC stor-
age estimates are hereafter presented as whole numbers in tables so
that the process of scaling up from individual samples to the city-scale
can be followed throughout the paper. This should not be taken to
imply such a level of accuracy.

The distribution of SOC in urban greenspace in 250 × 250 m grid
squares was calculated in the GIS using both the Landbase and
Mastermap layers to determine proportions of different land-cover
classes within each individual square, and the city-wide distribution
at this grid scale. The area of each individual land-cover class was
then multiplied by the relevant SOC storage values to produce a city-
wide map of the distribution of SOC to gain better understanding of
its spatial distribution in a city.

2.5. Statistical analysis

Analyseswere conducted usingArcGIS (version 9.3, ESRI), R (version
2.10.1, R Development Core Team, 2009) and PASW (version 18). The
effects of land-cover class or soil type and depth on SOC concentration
(mg g−1) or SOC density (mg cm−3) were analysed using two-way
ANOVA. Where data did not conform to ANOVA test assumptions,
even after transformation the non-parametric Scheirer–Ray–Hare test
was used on ranked data instead. The Tukey post-hoc test on parametric
data or Dunn's multiple comparison test on non-parametric data were
used to compare differences (p b 0.05) in SOC concentration and density
between either land-cover class or depth (Wheater and Cook, 2002; Zar,
1999).

3. Results

3.1. Effect of land-cover type and soil depth (0–21 cm) on SOC
concentration (mg g−1) and storage (kg m−2)

SOC concentrations (mg g−1) were significantly affected by
both land-cover class (F(6, 324) = 20.6, p b 0.001) and soil depth
(F(2, 324) = 32.5, p b 0.001) (Fig. 2a and b). There was also a significant
interaction between land-cover and depth reflecting a decline in SOC
with depth in the urban land-cover classes that was not apparent in
the arable soils (F(12, 324) = 1.9, p = 0.032). Urban SOC concentrations
varied by a factor of 1.65, and soils under trees and shrubs in gardens
had significantly higher SOC concentrations (75.2 mg g−1 ± 5.4 S.E.)
than all other urban land-cover classes, with the lowest concentration
in non-domestic herbaceous greenspace (45.5 mg g−1 ± 2.0 S.E.)
(Fig. 2a). Arable fields had a significantly lower SOC concentration
(mean 29.2 mg g−1 ± 1.1 S.E.) than all urban greenspace soils.

The response of SOC storage (kg m−2 to 21 cmdepth)was similar to
that of SOC concentration with significant effects of both land-cover
class (H(6, 306) = 20.9, p b 0.01) and depth (H(2, 306) = 6.8, p b 0.05)
(Fig. 3a and b). Unlike SOC concentration therewas no interaction effect
between land-cover class and depth on SOC storage (H(12, 306) = 4.9,
p = 0.96). Between 0 and 7 cm SOC storage was significantly greater
than in the subsequent two depths (Fig. 3b). However, as with concen-
tration the overall decline in SOC storage with depth was not present in
arable soils, wheremedian SOC storagewas just over 2 kg m−2 for each
successive 7 cm depth interval to 21 cm.

Median SOC storage in domestic gardens was significantly higher
than in all other urban and non-urban land-cover classes (Fig. 3a).
When median values for each depth class were added together storage
to 21 cm reached 13.5 kg m−2 under garden shrubs and trees. Amongst
the other urban land-cover classes there were no significant differences
in SOC storage (Fig. 3a). Total median values within the other urban
land-cover classes ranged from 9.9 kg m−2 in domestic gardens under
herbaceous vegetation to 8.6 kg m−2 under non-domestic herbaceous
vegetation, to 21 cmdepth. The agricultural soils under pasture had sig-
nificantly lower SOC storage density than the domestic garden soils and

Table 1
The areal extent and total number of sample sites in the greenspace land-cover classes within the city of Leicester.

Urban land-cover class Area (km2) Proportion of greenspace (%) Proportion of the total
area of the city (%)

Number of sample sites

Domestic greenspace
Garden shrub and tree 4.7 11.3 6.4 22
Garden herbaceous 8.4 20.2 11.5 36
Total domestic greenspace 13.1 31.5 17.9 58

Non-domestic greenspace
Tree N 5 m 6.3 15.2 8.6 42
Shrub and tall shrub b 5 m 3.0 7.2 4.1 10
Herbaceous 19.1 46.0 26.0 38
Total non-domestic greenspace 28.4 68.4 38.7 86
Total greenspace 41.5 100 56.6 144
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the soils under trees growing in non-domestic urban greenspace
(Fig. 3a). Total median SOC storage density was lowest in arable land,
at 7.1 kg m−2 to 21 cm, a value almost half that found under shrubs
and trees in domestic gardens (Fig. 3a).

3.2. Effect of soil type and soil depth (0–21 cm) on urban topsoil OC
concentration and density

Urban topsoil OC concentration (mg g−1) and density (mg cm−3)
to 21 cm were not significantly affected by soil types as digitally
mapped by Cranfield University (SOC concentration: F(6, 228) = 2.1,
p = 0.07; SOC density: H(6, 210) = 10.4, p = 0.07). Both urban SOC
concentration (mg g−1) and density (mg cm−3) declined significantly
with soil depth (SOC concentration: F(2, 228) = 16.2, p b 0.001; SOC
density: H(6, 210) = 26.3, p b 0.001), and there was no interaction
between soil type and soil depth (SOC concentration: F(12, 228) = 0.6,
p = 0.80; SOC density: H(12, 210) = 6.4, p = 0.79).

3.3. Spatial distribution and budget of greenspace SOC across the city

Citywide topsoil OC storage was calculated by greenspace type and
soil depth based on the samples taken in 7 cm sections to 21 cm
depth (Table 2). Total SOC storage to 21 cm depth was 411,553 tonnes
(95% C.I. = 394,087–492,020) (Table 2). This gives a mean topsoil OC
value of 9.9 kg OC m−2 within urban greenspace, or 5.6 kg OC m−2 of
topsoil across the whole city. The garden shrub and tree category in
areal extent covers only 11% (Table 1) but the underlying soil contrib-
utes 16% of the topsoil OC storage (Table 2). In contrast, the non-
domestic herbaceous vegetation provided 46% of total greenspace
(Table 1), but contained only 40% of the topsoil OC (Table 2).

The SOC density in greenspaces, to 21 cm depth, varied from be-
tween b0.1 to 9.5 kg m−2 per 250 × 250 m grid square (6.25 ha)
(Fig. 4a). Across the city the suburbs, in which there are both non-
domestic greenspace areas and housing areas with relatively large
gardens, often with some tree cover, contained the grid squares
with the highest SOC stocks in topsoil. As expected, the grid squares

Fig. 2.Mean soil organic carbon concentration (mg g−1) in a) the different greenspace and agricultural land-cover classes and b) in the three soil depth categories. Error bars indicate ±
1 SE. Different letters indicate significant differences in SOC concentration between land-cover classes or soil depth (Tukey test p b 0.05).
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in the city centre tended to hold the lowest SOC storage, reflecting
the low proportion and small patch size of greenspace in this part
of the city. A frequency histogram of SOC storage, comparing the 50
grid squares centred on the city centre commercial and business dis-
trict, with the remaining 1005 whole grid squares, revealed that over
half the squares containing less than 50 tonnes SOC per grid square

(equivalent to 0.8 kg m−2), and nearly a third of those containing
only 50–100 tonnes per grid square (or 0.8–1.6 kg m−2) greenspace
were located in the city centre (Fig. 4b). However, even within the city
centre there were individual grid squares that contained between
300–350 and 350–400 tonnes SOC per grid square (4.8–5.6 kg m−2

and 5.6–6.4 kg m−2 respectively) in greenspace topsoil. The distribution

Fig. 3.Median soil organic carbon stocks (kg m−2) in a) the different greenspace and agricultural land-cover classes and b) in the three soil depth categories. Error bars indicate 25th and
75th quartiles. Different letters indicate significant differences in total SOC storage between land-cover classes (Dunn's test p b 0.05).

Table 2
The quantities of soil organic carbon (SOC) (tonnes) stored across Leicester within each land-cover class and at each depth, measured to 21 cma.

Domestic gardens Non-domestic greenspace All greenspace

Soil depth Shrub and tree Herbaceous Tree Shrub and tall shrub Herbaceous Total

0–7 cm 24,307
(21,833–26,781)

32,800
(30,014–35,585)

25,015
(23,722–26,307)

11,049
(9534–12,564)

71,949
(66,621–77,278)

165,120
(158,319–171,920)

7.1–14 cm 22,817
(19,121–26,512)

32,392
(27,670–37,115)

18,082
(16,345–19,819)

9260
(6248–12,272)

50,653
(46,149–55,156)

133,203
(124,937–141,470)

14.1–21 cm 19,029
(15,406–22,652)

22,168
(15,514–28.821)

20,212
(10,374–30,050)

9992
(5698–14,286)

41,830
(37,600–46,060)

113,230
(99,428–127,033)

Total to 21 cm
Contribution to
total SOC storage

66,153
(60,417–71,888)
16%

87,359
(78,738–95,981)
21%

63,308
(53,235–73,382)
15%

30,301
(24,841–35,761)
7%

164,432
(156,273–172,592)
40%

411,553
(394,087–492,020)

a Values in parenthesis are 95% confidence intervals.
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of SOC storage in greenspacewas positively skewed,withmost of the grid
squares in the 300–350 and 350–400 tonnes SOC per grid square. The
upper limit of SOC storage within individual grid squares occurred
where the area of that square was almost exclusively greenspace, often
with high tree cover.

4. Discussion

4.1. Topsoil OC density: domestic gardens, non-domestic greenspace and
agricultural land

Across the city of Leicester topsoil SOC storage density and concen-
trations were greater in gardens than in non-domestic greenspace.
This is a likely consequence of garden management practices that in-
clude additions of organic matter such as peat, composts organic
fertilisers andmulches, and the contribution of woody trees and shrubs
that tend to enhance SOC stocks as reported previously (Bradley et al.,
2005; Osmond and Hardy, 2004; Robbins and Birkinholtz, 2003) and
seen in our data. Mulch applications have been shown to add a mean
value of 1.5 kg C m−2 to gardens in Chicago (Jo and McPherson,

1995), and in the U.K., bark mulches have become popular for weed
control, and composts are often added to increase garden fertility or
as ‘spent’ compost from pot plants, management practices that
were reported in a survey of households in Leicester (Gaston et al.,
2013). The trend of greater SOC storage density in garden soils than
non-domestic greenspace has previously been observed in three
U.K. cities (Rawlins et al., 2008), as well as in Baltimore, U.S.A.
(Pouyat et al., 2009, 2006). These findings contrast to the storage
pattern of OC in aboveground vegetation, which was considerably
lower in domestic gardens in our study city than in non-domestic
greenspaces (Davies et al., 2011), largely due to the greater impor-
tance of tree cover in urban parks and small woodlands.

No significant difference was observed in SOC storage to 21 cm
between the tree and shrub and tall shrub land-cover classes in the
non-domestic greenspace of Leicester, however, they were signifi-
cantly lower than in the garden shrub and tree land-cover class.
SOC storage density within these urban tree and shrub and tall shrub
dominated land-cover classes in Leicester was generally higher than
previous reports from the U.S.A. and Japan (e.g. Pouyat et al., 2009,
2002; Takahashi et al., 2008; Groffman et al., 2006), although data are
not directly comparable due to variation in sampling depths. However,
they were consistent with previous estimates for U.K. woodlands, for
example 7 kg m−2 to a depth of 15 cm (Ostle et al., 2009) and
13 kg m−2 to 30 cm (Bradley et al., 2005).

SOC storage density under herbaceous vegetation in non-domestic
greenspace did not differ significantly from soil beneath either the
shrub and tall shrub, tree and garden herbaceous land-cover classes.
Rawlins et al. (2008) reported a mean SOC concentration of 47 mg g−1

(approximately 7.1 kg m−2, assuming a soil bulk density of 1 g cm−3),
to 15 cmdepth, in grassland soils from three U.K. cities, a figure commen-
surate with the data for Leicester. These data were also within the range
reported for urban areas in the U.S.A. (Pouyat et al., 2009, 2006, 2002;
Kaye et al., 2008, 2005; Smetak et al., 2007; Jo and McPherson, 1995) al-
though as sampling depths varied between these studies the data are
not directly comparable.

The differences in SOC storage density resulted in a proportionally
greater contribution to total greenspace stocks from domestic gardens,
which provided only 32% of total greenspace area but held 37% of the
SOC storage in topsoil. This was driven by the greater levels of storage
in the domestic shrub and tree land-cover class. However, urban
greenspace tree and shrub land-cover classes, in non-domestic
greenspaces did not have significantly greater SOC storage densities
than herbaceous vegetation, they covered 22% of the total greenspace
and contributed 22%of total SOC storage. These data suggest that topsoil
beneath trees and shrubs in urban non-domestic greenspaces do not
accumulate SOC to a greater extent than soils beneath herbaceous
dominated vegetation, in contrast to the pattern commonly seen in
non-urban ecosystems (Bell et al., 2011). It is unclear whether the
similar storage concentrations found in all greenspace land-covers
(with the exception of the domestic tree and shrub class) were due
to specific urban management treatment interactions with the dif-
ferent land-cover types.

Soils in urban greenspace sampled to 21 cm depth were between
21 and 89% higher in SOC content than the adjacent agricultural
grasslands (Fig. 3a), not 50% lower as previously assumed (Bradley
et al., 2005). SOC storage to 21 cm depth in pasture (8.6 kg m−2)
and arable fields (7.3 kg m−2) around Leicester was similar to the
mean values for England of 7 kg m−2 for arable and 8 kg m−2 for
pasture to 30 cm depth (Bradley et al., 2005). Importantly, the signifi-
cantly lower SOC concentrations in agricultural pasture and arable
fields than in the urban greenspaces is a reminder of the extent to
which agriculture, especially ploughing, use of inorganic fertilisers and
crop removal has degraded SOC stocks and soil quality (Lal, 2009,
2008; Bellamy et al., 2005). Agriculture in the East Midlands is predom-
inantly arable, furthermore some of the pasturemay form part of an ag-
ricultural rotation system and be ploughed and used for arable

Fig. 4. a) Distribution of soil organic carbon (SOC) to a depth of 21 cm across Leicester in
250 × 250 m grid squares, and b) The frequency distribution of SOC storage (kg m−2) to
21 cm depth in 250 × 250 m grid squares across the city of Leicester, showing the 50 grid
squares centred on the commercial and business district (shaded black) and the remaining
1005 grid squares (shaded grey).
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cultivation. In contrast, although some urban soils are highly disturbed
and altered by anthropogenic activities (Lorenz and Lal, 2009), most of
the soil in urban greenspaces (such as lawns,woodlands and gardens) is
rarely disturbed and so retains SOC, for example, herbaceous vegetation
across the city covered 67% of all the greenspace, which in an urban area
is a predominantly permanent lawn or grassland. Furthermore, these
soils were significantly less compacted than that in the surrounding ag-
ricultural region and although the urban soils did have bulk density
values that showed awider range than agricultural soils, none exceeded
the limits for plant root growth (Edmondson et al., 2011), providing fur-
ther evidence that these soils are not functionally compromised.

4.2. Citywide SOC storage, and management implications

The application of high spatial resolution GIS enabled the contribu-
tions of small patches of greenspaces even in the dense urban centre
to be measured and summed across the city revealing that, at the
scale of 250 × 250 m, none of the grid squares was completely devoid
of greenspace and consequently SOC. In contrast, U.K. national soil in-
ventories have been based on at a 1 km2 scale grid, in which areas of
‘continuous urban fabric’ have been ascribed an SOC value of zero,
reflecting in part the resolution CORINE land-cover map (Xu et al.,
2011; Bradley et al., 2005; Cruikshank et al., 1998), and widely held as-
sumptions that urban soils are organic carbon depleted. A combination
of both the resolution of land-use/land-cover data and lack of measure-
ment of SOC concentrations in urban soils has resulted in the large dis-
crepancy between measured urban SOC stocks (Edmondson et al.,
2012) and the assumed urban SOC stocks in the national inventory
(see Bradley et al., 2005).

Given the importance of maintaining accurate national soil organic
carbon inventories our findings indicate the urgent need to extend the
studies we report here to a countrywide analysis of urban SOC stocks
for a larger sample of representative cities. This should be targeted to
better understand the effect of urbanisation pattern (dense versus
sprawling cities), soil type, climate and land management at a national
and international level may result in as these factors are all likely to im-
pact on SOC storage. Notwithstanding these constraints our data can be
used to indicate the potential importance of urban SOC stocks national-
ly. For example, in the current national inventory 3.6% of the 1015 Tg
SOC to 30 cm depth in English soils is reported to be held in ‘suburban
land’ based on an average storage of 4 kg m−2 (Bradley et al., 2005).
Using the 9.9 kg m−2 greenspace average in Leicester to 21 cm depth,
the estimate for storage in ‘suburban land’ could increase by 53 Tg in-
creasing national storage by 5%. However, this does not include carbon
storage in soils in ‘urban areas’ as defined by the relatively low spatial
resolution CORINE land cover maps. Unfortunately, Bradley et al.
(2005) do not provide data on the area of England that is counted as
‘urban’ and assumed by them to contain no SOC. However, it is clear
from our spatial analysis that there is an additional quantity of organic
carbon in greenspace soils in inner-city areas, that has will not have
been accounted for in the national inventory, suggesting a further dis-
parity exists between the current estimates and actual contribution of
urban areas additional to that for ‘suburban’ land.

There is a positive association between SOC concentration and
provision of other regulating and supporting ecosystem services pro-
vided by soils, particularly in the topsoil which is the vital interface be-
tween above- and belowground processes (Franzluebbers, 2002). These
critically important services include, water filtration, erosion control,
soil strength and stability, nutrient conservation, and pollutant immobi-
lisation (Lal, 2010; Franzluebbers, 2002; Watts et al., 2001; Merrington
and Alloway, 1997; Watts and Dexter, 1997). Themeasurement of high
levels of SOC storage in the topsoils sampled in urban greenspaces
under different land-covers, in combination with the map of SOC stor-
age distribution across the city demonstrates the extent to which
other these other key ecosystem services have been undervalued and
overlooked across urban areas. Even within the city centre there were

still patches of greenspace with functional soils that should be able to
support these multiple ecosystem services.

The research presented within this paper contributes to a rapidly
expanding body of quantitative evidence that has challenged the con-
ventional view of urban environments as largely lacking in ecological
value (see e.g. Haines-Young, 2009). Such evidence is increasingly dem-
onstrating the provision of multifunctional ecosystem services in urban
greenspaces, often above the levels now found in modern agricultural
landscapes (Fuller et al., 2009). Urban greenspaces, concurrent with en-
hancing OC storage in soils and vegetation (Edmondson et al., 2012;
Davies et al., 2011), underpin a range of valuable services, including
vegetation, regulation of the urban heat island effect (Hart and Sailor,
2009; Gaffin et al., 2008), urban drainage (Whitford et al., 2001), trap-
ping of pollutants (including particulates) with consequent benefits to
human respiratory health (Guo et al., 2009; Brunekreef and Holgate,
2002), habitat for wildlife (Gaston et al., 2005) and improved human
wellbeing (Fuller et al., 2007; Chiesura, 2004). The importance of SOC
as a vital component of the benefits and services provided by
greenspaces in dense urban areas demands recognition in land-use pol-
icies and planning rules that should seek globally to protect andmanage
this valuable resource.

To date, there are no examples of urban greenspace management
specifically for SOC storage, however urban tree planting has become
an extremely popular and increasingly widely implemented strategy
to increase urban ecosystem service provision including aboveground
carbon storage (Davies et al., 2011). Our previous research has demon-
strated that tree planting within non-domestic greenspace can signifi-
cantly enhance OC stocks aboveground as in our study city urban trees
in non-domestic greenspace held 97% of aboveground OC (Davies
et al., 2011). However, the present study reveals that tree planting in
these areas will not translate into a tangible increase in topsoil SOC
storage.

When considering ecosystem OC stocks in cities and towns, a key
focus should be the protection of the current resource alongwith poten-
tial enhancement of SOC storage. Provision of this ecosystem service can
be directlymanaged by local authorities as large patches of greenspaces
are council owned (for example in Leicester 13% of the city area is coun-
cil managed greenspace (Davies et al., 2011)); or indirectly managed
through planning policy, for example in the U.K. the requirement for
planning permission to cover front gardens with impermeable surface
could prevent the loss of surface SOC. However, in order effectively to
manage the global urban SOC resource there is a clear need to augment
the current data to produce well informed management strategies.

Our data reveal that urban greenspaces are already providing a
much larger SOC resource than has previously been recognised and
necessitates parallel studies in other urban areas to determine its
global importance. Although the global extent of urban land is between
2 and 3% of total land mass (MEA, 2005), urban areas are expanding in
extent faster than any other land use type (Hansen et al., 2005;
McKinney, 2002; Antrop, 2000; Meyer and Turner, 1992) and some
countries are more intensely urbanised particularly in Western
Europe, for example 14% of the U.K. land is urban (DEFRA, 2005). In ad-
dition, cities and towns across the globe cover a range of densities, for
example those in the USA tend to be much more sprawling than in
Europe (Gaston, 2010), and the regional responses of SOC storage to ur-
banisation will vary with land-use, land-cover and climate. However,
the effects of urbanisation on national or international SOC stocks will
depend largely on the nature of the land-use change. For example,
whilst our work demonstrates that urban expansion onto degraded ag-
ricultural may have a net positive effect on SOC storage, growth into a
natural or semi-natural habitat such asmoorlandmay result in a decline
in stocks.

An increased understanding is clearly required not only of urban
SOC stocks but also the rates of SOC turnover in urban soils, and their re-
sponse to shifts in urban land-cover, management and environmental
change. However, the hypothesised links between SOC storage, land-
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cover and soil type were not apparent in our case study city, suggesting
that processes driving both storage and turnover are controlled by dif-
ferent factors in cities and towns compared to the wider countryside.
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