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Predictions for pulsed-field-gradient NMR
experiments of diffusion in fractal spaces®

By R. A. DamioN AND K. J. PACKER

Department of Chemistry, University of Nottingham,
Unwversity Park, Nottingham NG7 2RD, UK.

In this paper, theoretical predictions are made for pulsed-field-gradient NMR, experi-
ments of diffusion in fractal spaces. We obtain the general g-space behaviour of the NMR,
signal, which upon Fourier transformation, delivers the probability density for displace-
ments. We also show that there exists a power law behaviour in the limits of large ¢ or
small displacements.

Introduction

Within the past few decades there has been much interest in the phenomenon of anoma-
lous diffusion and, in particular, what has become known as fractional Brownian motion
(Mandelbrot & Van Ness 1968; Gefen et al. 1983; Voss 1989; Metzler et al. 1994). Frac-
tional Brownian motion is recognised by the characteristic dependence on time of, for
example, the second moment of its increments:

<r?(t) >~ t2H (1)

where subdiffusive behaviour is exhibited for 0 < H < 1/2, superdiffusive behaviour for
1/2 < H < 1, and normal Brownian motion is obtained when H = 1/2. The Hurst
exponent, H, is related to the latent dimension (Mandelbrot 1984) of the random walk,

d,y, through (Voss 1989)
1
H = i (2)
The walk dimension, also called by other authors the trail or path dimension, is the
fractal dimension of the curve described by a random walker in space, parametrised by
time.
Such dynamical behaviour may be caused by normal Brownian motion confined to
a fractal space of dimension dy, and it is this type of system, where d,, > 2, in which
our interest here lies. It is our desire in this paper to make some predictions in the
context of pulsed-field-gradient (PFG) NMR for the g-space behaviour (Callaghan et al.
1992) of diffusion in fractal spaces. The motivation for this stems from the recognition
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that several structures which are frequently investigated using NMR techniques, such as
porous media, lung tissue and smectic liquid crystals, have been found to possess fractal
characteristics.

The fractional diffusion equation and solutions

Our results are based on the work of Metzler et al. (1994), who obtained and solved the
fractional diffusion equation

9%/ dw k 0

4 0
= py, t)) , 3)

where k is a fractional diffusion coefficient (dependent on d,,), where d is the spectral
or fracton dimension (Alexander & Orbach 1982; Ben-Avraham & Havlin 1983; Rammal
& Toulouse 1983), and is given by

(4)

The derivation of (3) was achieved largely heuristically, guided by some empirical results
of computer simulations and scaling arguments. The solution was given in the form of
an H-function as (see appendix and Mathai & Saxena 1978)

Plryt) = Q@RI Y gt o) (5)
T g d 2T |2l | (1 ) (0, %) |

where P(r,t)r% ~1dr is the probability of a particle having a displacement between 7 and
r 4 dr at time ¢. It is implicitly assumed that the displacement is zero at t = 0. (Here,
our P(r,t) differs from Metzler et al.’s, except for the inclusion of x, because of errors
on their part in obtaining the normalisation factor, and in omitting the numerical factor
in the argument of the H-function.)

In the context of PFG NMR, in general, it would not be P(r,t) which is measured
but a one-dimensional projection of this along, say, the z-axis. This projection may
be obtained either by directly integrating P(r,t) or by subtracting 2 from the spectral
dimension in the diffusion equation (3) and solving. In either case, the result is (assuming
2< df < 3)

dw (1 _ df + 2 1)
(¢, t) = a(t)H>S _ dw T 7 6
(C ) ( ) 1,2 [deﬁdw/Qt (2_ j 7d7w);(07d7w) ( )

A (24 1/241/dw)2—d;
alt) = e T ™
I'(1—df/dw +ds/2)T(dp/2 = 1)
where ®(¢,t)(% ~3d( is the probability of a particle having a displacement in the z-
direction between ¢ and ¢ + d¢ at time t. We would prefer to re-define ®((,t) such
that

(¢, 1) =Y PR(¢, ), (8)



so that the normalisation condition is simply

JAR S ©)
0
For this density function we obtain for the mean-square-displacement

A(dg/2 = 1D)(A +dy/2 —dy/dw) 2/,

<> T(1+ 2/dy)

(10)

where it should be noted that s is not equivalent to the normal diffusion coefficient unless
dy = 2.

Using the series expansion (38) for H-functions given in the appendix, we may re-write
(¢, t) in the form

w(G ) = )t
i I(dy/dy —2—v) (—1)¥ ( ¢ )2(2_df/dw+'/)
T(1— dy/dw — 2)du(1 —dsjde + 1)) 01\ 261/2¢1/du

U2 —ds/dy —v) (D”( ¢ )2”
P(1—ds/dy —2/dy(v—1)) vI \2xY2tVdw )~

v=0

+

(11)
It now becomes apparent that in the limit of ¢ < 2k/2¢1/dw (¢, t) obeys a power law:

D(¢,t) ~a(t) e (12)

From this, it can be seen that for dy < 3 the density has a “weak” singularity at ¢ =0,
where by “weak” we mean that the density is normalisable.

g-space behaviour

Previous attempts (Banavar et al. 1985; Jug 1986; Kirger & Vojta 1987; Kéarger et al.
1988; Widom & Chen 1995) to address the issue of the form of the NMR signal decay,
S(q,A), due to fractional Brownian motion, as measured in a PFG experiment, have all
concluded similarly that

S(gq,A) ~ exp(—cq? A% dw), (13)

where ¢ = ygd/2m, «v is the gyromagnetic ratio, g is the magnetic-field-gradient strength,
¢ is the time duration of the gradient pulses, A is the gradient pulse separation time, and
c is a constant. It will become clear, however, that we present here a somewhat different
conclusion.

In the narrow-pulse approximation, 6 < A, S(gq, A), has a Fourier transform relation
with the probability density for displacements, and is given by

A) = / N (14)



Thus, we may directly obtain S(g, A) by Fourier transforming ¥ (¢, A). Using the Fourier
relationships for H-functions as given by Glécke & Nonnenmacher (1993), one obtains

dy _dy 1 _dr 1y 11
S(q,A) — 7TO'H§:§ [4ﬁqm1/2A1/d"’ ng ) (5 7i)); ((2l l)Q ) 2)7(27 2) , (15)
dw 272
1
o — . (16)

I'l—dg/dy +ds/2)T(ds/2 — 1)

Again, employing the series expansion (38), it can be shown that (15) may be expressed
as

Lo =T —dy/dy+ds/2+v)T(ds/2 —1+v) (=1)” 1/2 A 1/dun2v
S(Q’A):”/ZU;O fl“(1+21/f/dw)1“(1/2—{—y) - (2man PAM )2
(17)

from which it is readily found that for dy = 3 and d,, = 2 the usual result is obtained:
S(q,A) = exp(—47¢°DA), (18)

where, since d,, = 2, we have equated k with the familiar diffusion coefficient D.
An interesting feature of the behaviour of S(g, A) is now observed for large gA!/dw.
From Mathai & Saxena (1978), we have for large z and n # 0

m,n (avap) o
Hp’q [m (bquq) l2I% (19)
where )
« = max (ajA; > j=1,...,n. (20)

We easily find that in this asymptotic limit, 4wgk!/2AY/ 4w > 1,
S(q,A) ~ (grt/2AYde)2=di 9 < dp < 3. (21)

This is, of course, just the reciprocal-space complement of the small ¢ limit given in (12).
It is interesting to note that this power law behaviour is similar to that predicted for
scattering from volume-fractal structures (Sinha 1989) and, in particular, is absent from
previous theories (cf. equation (13)).

The scattering analogy
Analogies with PFG NMR and scattering or diffraction have previously been observed
(Callaghan et al. 1992), and it is possible to provide an alternative derivation of the

power law in (21) using these ideas.
For the PFG experiment,

//¢ 20) W (2]20, A)e2™ 1 =%0) d 2 d 2, (22)



where ¢(29)dz is the probability of finding a particle initially between positions zo and
zo + dzg, and W (z|zp, A)dz is the conditional probability of locating a particle between
z and z +dz given that at a time A earlier it was at zp. We may re-express this in terms
of the displacement ( as

S(.0) = / / 6(z0)W (20 + C|z0, A>T d(d . (23)

In the limit that ¢ is much less than the root-mean-square displacement, W becomes
dependent upon the final position only, that is,

W (20 + (|20, A) ~ ¢(20 + (). (24)

We may now re-write (23) inserting the one-dimensional space autocorrelation function,

(¢) ~ /¢(Zo)¢(20 + ¢)d2o, (25)

as

S(a.8)~ [ etc)emcac. (26)

In scattering terminology, this would be a one-dimensional equivalent of the structure
factor, and it is this which gives rise to the diffraction-like peaks observed in some PFG
experiments.

For a space which behaves as a volume fractal the autocorrelation function is expected
to decay according to the power law (Takayasu 1989)

e(¢) ~ ¢4, (27)

which, one might note, is consistent with (12), and thus as expected, upon substituting
this into (26) we find

S(q, A) ~ > (28)
Also, the condition placed on (, that it must be much less than the root-mean-square
displacement, implies the corresponding condition for g,

1

q> < (2>1/2

(29)

Thus, we have verified somewhat the predictions based on the work of Metzler et al., and
have also gained a little insight into the existence of the large ¢ limit.
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Appendix: the H-function

We provide here a definition of the H-function. (For further details see Mathai & Saxena
1978.) The H-function is a very general function and contains as special cases many of
the special functions. It is related to an inverse Mellin transform as follows:

m,n m,n (a 7A )
Hy"lel = Hy [Z (bj, B:)
- Hm™n > (alv Al)v (a23 A2)7 ) (apv Ap)
Pa (b1, B1), (b, Ba), ..., (bg, By
1 S
= i b x(s)z°ds, (30)

where . §
(s) = [ 00 — Bjs) [[;- T(1 —a; + 4;s)
Hg:m-‘rl I'(1—b; + Bjs) H?:n—i—l I'(a; — Ajs)

where an empty product is taken as unity. In the above, the indices m, n, p, ¢ are
positive integers such that 0 < n < p, 1 < m < ¢, the parameters A; (j = 1,...,p) ,
B; (j = 1,...,q) are positive real numbers, and a; (j = 1,...,p) , b; (j = 1,...,q) are
complex numbers such that

(31)

Aj(bh + V) #* Bh(aj — A= 1),
v,A=0,1,2...; h=1,..m; j=1,...,n. (32)

C' is a contour separating the points for which x(s) is singular,

b.
S:%’ _]:1,,TTL, V:()?l""’ (33)
and 1
S:%’ ]:133713 V:0717 (34)

J

The H-function is analytic for z # 0 if u > 0, or for 0 < |z| < =1 if u = 0, where

B; — zp:Aj (35)

1 j=1

,LL:

q

J

and . .
B=1[4"IIB;". (36)
The H-function may be expressed in series form (Braaksma 1964) provided that

Bj(bh + I/) 7é Bh(bj + )\)
v,A=0,1,2...; j#h; j,h=1,...m. (37)



This being satisfied, we then have

Hy"le] =
o II T = Bin+v)/Bu) [T - a; + Aj(ba +v)/B)
: j(#h)=1 j=1
XD 5
h=tv=0 T T —b;+ Bj(bw+v)/Bn) [] T(a;— A;j(bn+v)/Bn)
Jj=m+1 j=n+1
(_1)”Z(bh+'/)/3h
X B, . (38)
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