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Four different complexes of the type shown, [Fe(LR)2]
2+, have been prepared, with R =

methyl, allyl, benzyl and isopropyl. All the compounds are high-spin in acetone solution and

the solid state at room temperature and below, except for one salt of [Fe(LMe)2]
2+ which is

predominantly low-spin at 150 K in the crystal. This contrasts with the parent complex (R =

H), which exhibits thermal spin-crossover just below room temperature.
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ABSTRACT

2,6-Di(1-methyl-pyrazol-3-yl)pyridine (LMe), 2,6-di(1-allyl-pyrazol-3-yl)pyridine (LAll), 2,6-

di(1-benzyl-pyrazol-3-yl)pyridine (LBz) and di(1-isopropyl-pyrazol-3-yl)pyridine (LiPr) have

been synthesized by alkylation of deprotonated di{1H-pyrazol-3-yl}pyridine (3-bpp), and

converted to salts of the corresponding [Fe(LR)2]
2+ complexes (R = Me, All, Bz and iPr).

Crystal structures of [Fe(LMe)2]X2 (X– = BF4
–, ClO4

– and PF6
–), [Fe(LAll)2][BF4]2,

[Fe(LBz)2][BF4]2 and [Fe(LiPr)2][PF6]2 have been determined at 150 K. All of these contain

high-spin iron centres except [Fe(LMe)2][BF4]2·xH2O, which is predominantly low-spin at that

temperature. All the complexes are high-spin between 5-300 K as solvent-free bulk powders,

and are also high-spin in (CD3)2CO solution between 193-293 K. This was unexpected, since

the parent complex [Fe(3-bpp)2]
2+ undergoes spin-crossover in the same solvent with T½ =

247 K [Dalton Trans. 40 (2011) 12021]. The high-spin nature of the [Fe(LR)2]
2+ complexes in

solution must reflect a subtle balance of steric and electronic factors involving the ligand ‘R’

substituents.
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INTRODUCTION

The chemistry of spin-crossover complexes [1-3] continues to be heavily studied, because of

their potential applications as switchable components in memory and display devices [4], in

nanoscience [2] and in MRI contrast agents [5]. A class of compound that has been heavily

used in spin-crossover research during the past ten years are iron(II) complexes of the

isomeric 2,6-di(pyrazolyl)pyridine ligands, 1-bpp and 3-bpp [6, 7]. The 1-bpp ligand

framework can be substituted at every position of its pyrazole and pyridine rings [7].

Substitution at the pyridine ring allows functional groups to be included at the periphery of

the [Fe(1-bpp)2]
2+ centre without significantly perturbing the iron centre. This approach has

afforded multifunctional spin-crossover complexes [8], coordination polymers of [Fe(1-

bpp)2]
2+ centres [9], and complexes with tether groups for deposition on surfaces [10]. In

contrast, substituents at the pyrazole groups allow for steric and electronic control of the spin-

state properties of a [Fe(1-bpp)2]
2+ complex, so its spin-crossover properties can be modified

in a rational way [7]. The synthetic versatility of [Fe(1-bpp)2]
2+ is unique among the

commonly used compounds in the field of spin-crossover.

<Insert Ligand Schematic here>

The coordination chemistry of substituted 3-bpp derivatives is less developed by comparison,

because of the poorer availability of suitable synthetic precursors. However, 3-bpp ligands

derivatised at N1 and C5 of the pyrazole rings are well-established, and have been employed

in luminescent complexes [11-13], in catalysis [14-16], in hydrometallurgical applications

[17] and in self-assembly reactions [18, 19]. However, although [Fe(3-bpp)2]
2+ itself is a

versatile spin-crossover compound [6], the application of substituted 3-bpp ligands to spin-

crossover chemistry has only recently been investigated, by us [20] and by Aromí et al [21].
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We describe here the first investigation of iron complexes of 3-bpp derivatives that are

disubstituted at the pyrazole N1 positions. These are analogues of 1-bpp ligands bearing

substituents at the pyrazole C3 sites, where the pyrazole substitutents are known to have a

strong bearing on the spin-state properties of a coordinated iron centre [6]. Four 3-bpp

derivatives have been investigated in this work: 2,6-di(1-methylpyrazol-3-yl)pyridine (LMe),

2,6-di(1-allylpyrazol-3-yl)pyridine (LAll), 2,6-di(1-benzylpyrazol-3-yl)pyridine (LBz) and 2,6-

di(1-isopropylpyrazol-3-yl)pyridine (LiPr). Some noble metal complexes of LMe [13] and LAll

[16] have been reported before but their iron complexes have not yet been investigated, while

LBz and LiPr are new ligands to our knowledge. We were particularly interested in salts of

[Fe(LMe)2]
2+ since the Fe[BF4]2 complex of the equivalent 1-bpp derivative, 2,6-di(3-

methylpyrazol-1-yl)pyridine (Me2-1-bpp), exhibits an unusually low thermal spin-transition

temperature for a complex of this type which leads to unique light-induced spin-crossover

properties [22]. We were therefore keen to see whether salts of [Fe(LMe)2]
2+ exhibit

comparable effects.

EXPERIMENTAL

Unless otherwise stated, all manipulations were carried out in air using reagent-grade

solvents. 2,6-Di(pyrazol-3-yl)pyridine (3-bpp) [23], 2,6-di(1-methylpyrazol-3-yl)pyridine

(LMe) [13] and 2,6-di(1-allylpyrazol-3-yl)pyridine (LAll) [16] were prepared by literature

methods, while all other reagents and solvents were used as supplied.

Synthesis of 2,6-di(1-benzylpyrazol-3-yl)pyridine (LBz)

2,6-Bis(pyrazol-3-yl)pyridine (2.00 g, 9.5 mmol) and lithium hydride (0.22 g, 28.4 mmol)

were suspended in dry THF, in the presence of benzyl bromide (4.86 g, 28.4 mmol). The

mixture was then heated at reflux for 44 hours under a nitrogen atmosphere. The resultant



6

white precipitate was removed via filtration and washed with water. The solid was then

recrystallised from chloroform and dried in vacuo. Yield 1.67 g, 45 %. EI HR mass spectrum:

m/z 391.1795 ([LBz]+; calcd for C25H21N5 m/z 391.1797). 1H NMR (CDCl3)  5.31 (br s, 4H,

CH2), 7.01 (br s, 2H, Pz H4), 7.18-7.38 (br m, 10H, C6H5), 7.40 (d, 2.3 Hz, 2H, Pz H5`), 7.75

(t, 7.5 Hz, 1H, Py H4), 7.86 (br s, 2H, Py H3/5). 13C{1H} NMR (CDCl3):  56.2 (2C, CH2),

105.2 (2C, Pz C4), 118.6 (2C, Py C3/5), 127.5 (Ph C2/6), 128.0 (Ph C3/5), 128.8 (Ph C4), 130.9

(2C, Pz C5), 136.4 (2C, Ph C1), 137.3 (1C, Py C4), 151.7 and 152.0 (both 2C, Py C2/6 and Pz

C3).

Synthesis of 2,6-di(1-isopropylpyrazol-3-yl)pyridine (LiPr)

The same method as described for LBz was followed, using 2-iodopropane (4.83 g, 28.4

mmol). After 72 hrs at reflux under a nitrogen atmosphere, the resultant white precipitate was

collected, washed with water and dried in vacuo. The product was employed without further

purification. Yield 2.67 g, 95 %. EI HR mass spectrum: m/z 296.1874 ([HLiPr]+; calcd for

C17H22N5 m/z 296.1870). 1H NMR ({CD3}SO)  1.47 (d, 6.6 Hz, 12H, CH{CH3}2), 4.57

(sept, 6.6 Hz, 2H, CH{CH3}2), 6.92 (d, 2.1 Hz, 2H, Pz H4), 7.83 (s, 2H, Pz H5), 7.84 (s, 3H,

Py H3-5). 13C{1H} NMR ({CD3}SO):  22.2 (4C, CH{CH3}2), 54.3 (2C, CH{CH3}2), 104.0

(2C, Pz C4), 119.3 (2C, Py C3/5), 128.9 (2C, Pz C5), 139.0 (1C, Py C4), 149.6 and 151.0 (both

2C, Py C2/6 and Pz C3).

Synthesis of the complexes

The same basic method, as described here for 1[BF4]2, was followed for all the complexes in

this study. Iron(II) tetrafluoroborate hexahydrate (0.14 g, 0.4 mmol) was added to a stirred

solution of LMe (0.20 g, 0.8 mmol) in nitromethane (15mL) and the resulting yellow solution

was stirred for a further 30 minutes. Diethyl ether was then added until a yellow precipitate

formed which was collected via filtration. The product was then recrystallised from
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methanol/diethyl ether to give a yellow crystalline solid. The same method, using the

equivalent quantities of the appropriate ligand and metal salt, yielded the other complexes.

Recrystallised yields ranged from 38-70 %. CAUTION Although we have experienced no

problems with 1[ClO4]2, metal-organic perchlorates are potentially explosive and should be

handled with due care in small quanitities.

Analytical data:

For [Fe(LMe)2][BF4]2 (1[BF4]2): Found C, 44.0; H, 3.65; N, 19.7 %. Calcd. for

C26H26B2F8FeN10 C, 44.1; H, 3.70; N, 19.8 %. Electrospray mass spectrum: m/z 267.1

([Fe(LMe)2]
2+). 1H NMR (CD3OD): δ 2.2 (12H, CH3), 22.6 (2H, Py H4), 48.5 (4H, Pz H4),

57.1 and 62.0 (both 4H, Py H3/5 and Pz H5).

For [Fe(LMe)2][ClO4]2 (1[ClO4]2): Found C, 42.6; H, 3.50; N, 19.1 %. Calcd. for

C26H26Cl2FeN10O8 C, 42.6; H, 3.57; N, 19.1 %. Electrospray mass spectrum: m/z 267.1

([Fe(LMe)2]
2+).

For [Fe(LMe)2][PF6]2 (1[PF6]2): Found C, 37.8; H, 3.10; N, 17.1 %. Calcd. for

C26H26F12FeN10P2 C, 37.9; H, 3.18; N, 17.0 %. Electrospray mass spectrum: m/z 267.1

([Fe(LMe)2]
2+).

For [Fe(LAll)2][BF4]2 (2[BF4]2): Found C, 50.1; H, 4.15; N, 17.0 %. Calcd. for

C34H34B2F8FeN10 C, 50.3; H, 4.22; N, 17.2 %. Electrospray mass spectrum: m/z 319.12

([Fe(LAll)2]
2+). 1H NMR (CD3CN): δ –0.6 (8H, CH2), 2.1 (8H, CH=CH2), 2.2 (4H, CH=CH2),

21.7 (2H, Py H4), 46.8 (4H, Pz H4), 58.9 and 61.8 (both 4H, Py H3/5 and Pz H5).

For [Fe(LBz)2][BF4]2 (3[BF4]2): Found C, 58.8, H, 4.10; N, 13.8 %. Calcd. for

C50H42B2F8FeN10 C, 59.3; H, 4.18; N, 13.8 %. Electrospray mass spectrum: m/z 419.2

([Fe(LBz)2]
2+). 1H NMR (CD3CN): δ –0.5 (8H, CH2), 2.1 (8H, Ph H2/6), 5.5 (8H, Ph H3/5), 6.5

(4H, Ph H4), 5.5 (8H, CH2), 20.8 (2H, Py H4), 46.0 (4H, Pz H4), 59.5 and 60.9 (both 4H, Py

H3/5 and Pz H5).
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For [Fe(LiPr)2][BF4]2·H2O (4[BF4]2·H2O): Found C, 48.9; H, 4.95; N, 16.7 %. Calcd.

for C34H42B2F8FeN10·H2O C, 48.7; H, 5.29; N, 16.7 %. Electrospray mass spectrum: m/z

323.2 ([Fe(LiPr)2]
2+). 1H NMR (CD3CN): δ 2.0 and 2.1 (both 6H, CH{CH3}2), 4.7 (4H,

CH{CH3}2), 21.1 (2H, Py H4), 45.8 (4H, Pz H4), 60.8 and 61.6 (both 4H, Py H3/5 and Pz H5).

For [Fe(LiPr)2][PF6]2 (4[PF6]2): Found C, 43.2; H, 4.40; N, 14.9 %. Calcd. for

C34H42F12FeN10P2 C, 43.6; H, 4.52; N, 15.0 %. Electrospray mass spectrum: m/z 323.2

([Fe(LiPr)2]
2+).

Single crystal X-ray structure determinations

All the single crystals in this work were grown by slow diffusion of diethyl ether vapour into

nitromethane or acetonitrile solutions of the compounds except for 1[BF4]2·xH2O which was

crystallised from methanol/diethyl ether, and 2[BF4]2 which was crystallised from

acetonitrile/di-isopropyl ether. Diffraction data were measured using a Bruker X8 Apex

diffractometer fitted with an Oxford Cryostream low temperature device, using graphite-

monochromated Mo-K radiation ( = 0.71073 Å) generated by a rotating anode.

Experimental details of the structure determinations in this study are given in Table 1. All the

structures were solved by direct methods (SHELXS97 [24]), and developed by full least-

squares refinement on F2 (SHELXL97 [24]). Crystallographic figures were prepared using

XSEED [25] which incorporates POVRAY [26].

<Insert Table 1 here>

X-ray structure determination of [Fe(LMe)2][BF4]2·xH2O (1[BF4]2·xH2O; x ≈ 1). The

asymmetric unit contains two half-molecules of the complex, labelled ‘A’ and ‘B’. Fe(1A)

spans the C2 axis 1/2, y, 1/4, while Fe(1B), N(2B), C(5B), N(12B) and C(15B) lie on 0, y, 1/4.

There are also two unique anions and a disordered solvent site lying on general
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crystallographic positions. Both anions are disordered over two sites, with independently

refined occupancy ratios close to 0.6:0.4. The refined restraints B–F = 1.40(2) and F...F =

2.29(2) Å were applied to these residues. The disordered solvent site contained three Fourier

peaks separated by 1.2 Å, that lie within hydrogen-bonding distance of one of the BF4
– anion

sites, and also with its own symmetry equivalent related by the crystallographic inversion

centre –x, –y, 1–z. These were refined as three partial water sites, whose occupancies summed

to 1. All non-H atoms with occupancy >0.5 were refined anisotropically, while C-bound H

atoms were placed in calculated positions and refined using a riding model. The partial water

H atoms could not be located and are not included in the model, but are accounted for in the

density and F(000) calculations. The highest residual Fourier peak of +1.0 e. Å–3 lies one of

the disordered anions.

X-ray structure determination of [Fe(LMe)2][ClO4]2 (1[ClO4]2). The structure was

originally solved in the monoclinic space group C2, then transformed up to R32 following an

initial refinement using the ADSYMM routine in PLATON [27]. The asymmetric unit

contains: half a complex cation, with Fe(1) spanning the C2 axis x, x + 1/3, 1/6; one-third of a

ClO4
– ion, with the Cl and one O atom lying on the C3 axis 0, 0, z; half a ClO4

– ion whose Cl

atom spans the C2 axis x, x, 0; and, one-sixth of a ClO4
– ion disordered about the 32 site 1/3,

2/3, 1/6, with the Cl atom lying on this position and one O atom on the axis 1/3, 2/3, z. The

pyrazole ring C(14)-C(19) was modelled as disordered, over two equally occupied sites. The

following restraints were applied to that residue: intra-ring C–C = 1.40(2), C–N = N–N =

1.34(2), N–C{methyl} = 1.48(2) and C–C{pyridyl} = 1.41(2) Å. Attempts to extend the

disorder model to the complete complex half-cation did not afford a chemically reasonable

refinement. No other disorder was included in the model, although some of the ClO4
– O

atoms also have slightly high displacement ellipsoids. All non-H atoms except for the
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disordered ligand atoms were refined anisotropically, and H atoms were placed in calculated

positions and refined using a riding model.

X-ray structure determinations of [Fe(LMe)2][PF6]2 (1[PF6]2) and [Fe(LBz)2][BF4]2

(3[BF4]2). The asymmetric units of these crystals contain one complete formula unit, with all

the molecules lying on general crystallographic sites. No disorder was detected during the

refinements, and no restraints were applied. All non-H atoms were refined anisotropically,

and H atoms were placed in calculated positions and refined using a riding model.

X-ray structure determinations of [Fe(LAll)2][BF4]2 (2[BF4]2). The asymmetric unit

contains one-quarter of a complex dication, with Fe(1) lying on the 4 site 3/4, 7/8, 1/2, and

N(2) and C(5) on the C2 axis 3/4, y, 1/2. There is also one-third of a crystallographically

ordered BF4
– ion, with B(14) and F(16) lying on the C3 axis x, x, x; and, a second anion site

with occupancy 1/6 lying on a general crystallographic position close to the 4 site 1, 3/4, 5/8.

The latter residue has very high displacement ellipsoids and is certainly disordered, although

attempts to model this using two or three partial anion sites led to unstable refinements. It

was therefore refined as a single site in the final least squares cycles, subject to the fixed

restraints B–F = 1.35(2) and F...F = 2.20(2) Å. The unique allyl substituent is also disordered,

and was refined over three orientations labelled 'A' (occupancy 0.60), 'B' (0.25) and 'C' (0.15).

The fixed restraints C–N = 1.47(2), C–C = 1.51(2), C=C = 1.34(2), 1,3-C...N = 2.43(2) and

1,3-C...C = 2.46(2) Å were applied to this residue. All crystallographically ordered non-H

atoms, plus the major allyl group disorder site, were refined anisotropically while H atoms

were placed in calculated positions and refined using a riding model.

X-ray structure determination of [Fe(LiPr)2][PF6]2·2MeCN (4[PF6]2·2MeCN). There are

two formula units in the asymmetric unit (Z’ = 2), whose complex cations are labelled ‘A’
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and ‘B’. Two of the four unique PF6
– ions are disordered, one of them over three sites with a

0.4:0.4:0.2 occupancy ratio, and the other over two equally occupied orientations. The refined

restraints P–F = 1.60(2) and cis-F...F = 2.61(2) Å were applied to those residues. One

isopropyl group [C(13A)-C(15A)] was also disordered over two sites with refined

occupancies of 0.8 and 0.2, and was modelled with the fixed restraints C–N = 1.48(2), C–C =

1.52(2), 1,3-C...N = 2.44(2) and 1,3-C...C = 2.48(2) Å. Finally one solvent molecule was

modelled over two half-occupied sites, that were refined without restraints. All non-H atoms

with occupancy ≥0.5 were refined anisotropically, except for the disordered solvent sites. All 

H atoms were placed in calculated positions and refined using a riding model.

Other measurements.

Electrospray mass spectra were obtained using a Waters Micromass ZQ4000 spectrometer

from MeCN solution. CHN microanalyses were performed by the University of Leeds

Department of Chemistry microanalytical service. Infra-red spectra were obtained as nujol

mulls pressed between NaCl windows between 600-4,000 cm–1, using a Nicolet Avatar 360

spectrophotometer. TGA measurements employed a TA Instruments TGA 2050 analyser.

Magnetic susceptibility measurements were obtained using a Quantum Design SQUID

magnetometer in an applied field of 1000 G. Diamagnetic corrections were estimated from

Pascal’s constants [28], and a diamagnetic correction for the sample holder was also applied.

Magnetochemical calculations and graph preparation were carried out using SIGMAPLOT

[29]. Susceptibility measurements in solution were obtained by Evans method using a Bruker

DRX500 spectrometer operating at 500.13 MHz [30]. A diamagnetic correction for the

sample [28], and a correction for the variation of the density of the (CD3)2CO solvent with

temperature [31], were applied to these data.
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RESULTS AND DISCUSSION

Alkylation of 3-bpp is achieved by deprotonating preformed 3-bpp with lithium hydride, and

reacting the resultant dianion with appropriate alkyl halides [16, 32]. The desired N1,N1’-

disubstituted products LMe [13], LAll [16], LBz and LiPr were cleanly obtained in each case,

with no evidence for competitive alkylation at the pyrazole N2 sites [33]. This presumably

reflects protection of the N2 sites of the doubly deprotonated [3-bpp–2H]2– intermediate by

lithium ion chelation [34]. The salts [Fe(LMe)2]X2 (1X2; X– = BF4
–, ClO4

– and PF6
–) were

prepared by treatment of the appropriate iron(II) salt with 2 equiv of LMe in nitromethane at

room temperature. Similar reactions with the other ligands afforded [Fe(LAll)2][BF4]2

(2[BF4]2) [Fe(LBz)2][BF4]2 (3[BF4]2) and [Fe(LiPr)2]Y2 (4Y2, Y– = BF4
– and PF6

–; the PF6
–

salt of this complex was also studied because it afforded better single crystals than the BF4
–

salt).

Single crystal X-ray analyses at 150 K were obtained of all the complex salts in this work,

except for 4[BF4]2 (Fig. 1, Tables 2 and 3). The crystallography of the compounds is quite

varied, in that only 1[PF6]2 and 3[BF4]2 contain one complete formula unit with no internal

symmetry in their asymmetric units. 1[BF4]2 crystallises as a monohydrate phase from

undried MeOH/Et2O, with two half-molecules of the complex spanning crystallographic C2

axes. The asymmetric unit of 1[ClO4]2 contains one C2-symmetric half-molecule, and is

complicated by disorder in the unique LMe ligand. This disorder is a consequence of a close

intermolecular contact between one of the two unique pyrazole rings and its symmetry

equivalent related by –x, –x+y, –z. Only the ‘A’ disorder site in one molecule of this pair, and

the ‘B’ disorder site of the other, can be occupied at the same time, with a random

distribution of ‘A’ and ‘B’ occupancies in each pair of half-cations throughout the crystal

(Fig. 2). Crystalline 2[BF4]2 adopts a cubic space group with one-quarter of a formula unit in

the asymmetric unit. The unique allyl substituent is extensively disordered, reflecting the
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presence of a neighbouring BF4
– anion site that is only part-occupied on charge neutrality

grounds. Finally, the solvate 4[PF6]2·2MeCN contains two formula units in its asymmetric

unit (i.e. Z’ = 2), with only minor structural differences between the two unique complex

dications.

<Insert Figures 1 and 2, and Tables 2 and 3, here>

The iron centres in 1[PF6]2, 2[BF4]2, 3[BF4]2 and 4[PF6]2 are all clearly high-spin at this

temperature (Tables 2 and 3), based on their Fe–N distances and the distortion parameters 

and  (these measure the deviation of the FeN6 polyhedron from an ideal octahedral

geometry, which is always significantly larger in the high-spin state [35]). Consideration of

1[ClO4]2 is complicated by its ligand disorder (Fig. 2), but  and  imply that this complex

is also high-spin at 150 K (Table 2). The only exception to this trend is 1[BF4]2·xH2O, whose

asymmetric unit contains two unique half-molecules are predominantly low-spin at 150 K on

the basis of their metric parameters. While molecule A is apparently fully low-spin, however,

molecule B has a detectable residual high-spin fraction at that temperature according to its

larger Fe–N bond lengths and distortion parameteres (Table 2). Interestingly, like

1[BF4]2·xH2O, [Fe(Me2-1-bpp)2][BF4]2 also crystallises as a hydrate phase from undried

methanol, although the two compounds are not isostructural [22].

Comparison of the three 1X2 salts (X– = BF4
–, ClO4

– and PF6
–) sheds some light on their

different behaviour in the crystal (Fig. 3). The iron coordination geometry in 1[PF6]2 is

unique in this study, in being significantly distorted from the ideal D2d symmetry associated

with a [Fe(bpp)2]
2+ centre (Table 2). This angular distortion is is a manifestation of the Jahn-

Teller effect in a high-spin d6 ion [36-38], which is common in high-spin [Fe(1-bpp)2]
2+

derivatives but has rarely been seen thus far in their [Fe(3-bpp)2]
2+ analogues [7]. The

distortion involves a reduction in the trans-N{pyridyl}–Fe–N{pyridyl} angle () from its
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ideal value of 180°, and/or a twisting of the two tridentate ligands away from the

perpendicular ( < 90º, where  is the dihedral angle between the least squares planes of the

two ligands). Distorted [Fe(bpp)2]
2+ complexes in the solid phase are trapped in their high-

spin state, since the structural changes required to convert them to their (undistorted) low-

spin forms are too great to be accommodated by a rigid solid lattice. These angles in 1[PF6]2

imply a significant Jahn-Teller distortion is present in that salt, since they are significantly

lower than their ideal values and lie in the range where spin-crossover would not normally be

observed (Table 2) [7]. The Jahn-Teller distortion in 1[ClO4]2 is less clear cut because of the

ligand disorder but is clearly smaller (Table 2), with a combination of distortion angles  =

178.8° and  ≥ 83.3° that would not preclude spin-crossover based on our earlier work [7]. 

The twisted ligand conformation in that cation [38], and the close intermolecular contacts

that give rise to the ligand disorder [39], are more likely to contribute to the inhibition of

spin-crossover in that salt. In comparison, the fully and predominantly low-spin iron centres

in 1[BF4]2·xH2O exhibit almost perfect D2d molecular symmetry, with regular coordination

geometries and essentially planar LMe ligands (Fig. 3).

<Insert Figure 3 here>

Although some of the compounds contain occluded solvent in the crystalline state, after

drying they all afford solvent-free bulk powders by elemental microanalysis except 4[BF4]2,

which analyses as a monohydrate. Variable temperature magnetic susceptibility

measurements showed that bulk samples of all these solids are high-spin between 5-300 K

(Fig. 4, top; the reduction in MT below 50 K is not caused by spin-crossover, but reflects

zero-field splitting of the high-spin iron centres [40]). In most cases that is consistent with

their crystal structures, which contain high-spin iron centres at 150 K. The exception is

1[BF4]2, which is almost fully low-spin in its hydrated crystal at 150 K but is high-spin as a

solvent-free powder (the anhydrous nature of the sample was confirmed by a TGA analysis,
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which showed <0.2 % mass loss below 500 K). Evidently, dehydration of crystalline

1[BF4]2·xH2O causes a structure change with a concomitant change in spin-state. Attempts to

shed light on this by growing single crystals of solvent-free 1[BF4]2 have been unsuccessful,

however.

<Insert Fig. 4 here>

Further insight into the spin-state properties of the complexes was gained from their solution

behaviour, which was determined by variable temperature Evans method measurements in

(CD3)2CO [30]. The BF4
– salts of all four complexes remain fully high-spin in this solvent,

between 193-293 K (Fig. 4, bottom). This is unexpected, since the parent complex [Fe(3-

bpp)2][BF4]2 undergoes spin-crossover with a midpoint temperature T½ = 247 K under the

same conditions [41]. The methyl and isopropyl substituents in 1[BF4]2 and 4[BF4]2·H2O are

electron-donating, which should stabilise the low-spin state of those complexes on inductive

grounds, and thus raise T½. Since this is not observed, the steric influence of the pyrazole

substituents in 1[BF4]2-4[BF4]2·H2O must be more important in determining their spin-states.

Notably the iron complex of the corresponding 1-bpp derivative, 2,6-di(3-isopropylpyrazol-1-

yl)pyridine, is high-spin under the same conditions which was also attributed to the steric

properties of the isopropyl groups in that compound [37, 42].

Space-filling plots of the crystal structures identify close intramolecular C–H… interactions

of 2.6-2.9 Å in 2[BF4]2, 3[BF4]2 and 4[PF6]2 between the allyl, benzyl or isopropyl ‘R’

substituents of one LR ligand and the pyridyl ring of the other (Fig. 5). Such close contacts

will prevent spin-crossover on steric grounds, by inhibiting the associated contraction of the

Fe–N bonds [42]. In [Fe(LiPr)2]
2+ this steric repulsion is a consequence of the bulk of the

isopropyl groups. The steric influence of the ligand substituents in [Fe(LAll)2]
2+ and

[Fe(LBz)2]
2+ is less clear, but in both crystal structures there are individual allyl and benzyl
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groups oriented to form comparably close inter-ligand contacts (Fig. 5). In the solid state the

orientations of these substituents are fixed by the surrounding lattice, which would thus

inhibit spin-crossover as observed. However the allyl group disorder in 2[BF4]2, and the

different benzyl conformations in 3[BF4]2, imply that these substituents have a degree of

conformational flexibility which would ameliorate these steric clashes during a spin-

crossover equilibrium in solution. Moreover, there are no prohibitive intramolecular steric

clashes involving the methyl groups in the salts of 12+, while the predominantly low-spin

nature of 1[BF4]2·xH2O at 150 K shows that [Fe(LMe)2]
2+ can indeed undergo spin-crossover

in principle (Fig. 5). Hence, the absence of spin-crossover in solution for 1[BF4]2-3[BF4]2

cannot be explained from steric effects alone, and must reflect a careful balance of steric and

electronic influences.

<Insert Fig. 5 here>

CONCLUSION

Alkylation of the four pyrazolyl N1 sites in [Fe(3-bpp)2]
2+ suppresses the thermal spin-

crossover undergone by this complex, regardless of the steric and electronic properties of the

new substitutents. Although the crystal structure of 1[BF4]2·xH2O shows that complex at

least can undergo spin-crossover under certain conditions, all the other complex salts in this

work remain high-spin at all the temperatures examined, in solution and the solid state. For

4X2 (X– = BF4
– and PF6

–) this was to be expected, owing to the steric influence of the LiPr

isopropyl substituents [37, 42]. For the other complexes, whose ligand substituents are less

bulky, the origin of their high-spin nature is less clear.

This result contrasts with the known chemistry of analogous complexes from the [Fe(1-

bpp)2]
2+ series [7]. Although solution phase data were not reported, some salts of [Fe(1-
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bpp)2]
2+ derivatives bearing methyl [22] or hydroxymethyl [43] substituents at the pyrazole

C3 position do undergo thermal spin-crossover in the solid state. Moreover, the steric

influence of the distal subsitutents in 1,1-disubstituted-3-bpp (LR) and the corresponding 3,3-

disubstituted-1-bpp ligands is essentially identical (Table 4). Hence it was unexpected that

none of the complexes in this work should exhibit spin-crossover as bulk materials, or in

solution. Conversely, however, for those compounds where a direct comparison is available,

none of the complexes in this work is isostructural with its corresponding salt from the [Fe(1-

bpp)2]
2+ series [22, 37, 44]. Therefore, although the differences between [Fe(LR)2]

2+ and

[Fe(1-bpp)2]
2+ derivatives bearing the same distal ‘R’ substituents are small at the molecular

level (Table 4 and Fig. 6), they are clearly sufficient to change their solid state chemistry.

<Insert Table 4 and Figure 6 here>
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3[BF4]2 and 2[BF4]2. These data can be obtained free of charge via
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Table 1. Experimental details for the single crystal structure determinations in this work.

1[BF4]2·xH2O 1[ClO4]2 1[PF6]2 2[BF4]2 3[BF4]2 4[PF6]2·2CH3CN

Formula C26H28B2F8FeN10O C26H26Cl2FeN10O8 C26H26F12FeN10P2 C34H34B2F8FeN10 C50H42B2F8FeN10 C38H48F12FeN12P2

Mr 726.05 733.32 824.36 812.18 1012.41 1018.67

Crystal system monoclinic trigonal monoclinic cubic orthorhombic monoclinic

Space group C2/c R32 C2/c I 4 3d Pbca P21/n

a (Å) 17.1632(16) 18.6378(12) 34.124(3) 22.8650(18) 15.4334(17) 20.494(2)

b (Å) 20.9906(19) – 12.3128(11) – 14.0656(17) 23.257(3)

c (Å) 19.1771(17) 24.3461(14) 17.6817(17) – 43.884(5) 20.609(2)

 (°) 96.605(5) – 114.441(6) – – 101.271(6)

V (Å3) 6863.0(11) 7324.0(8) 6763.4(11) 11954.0(16) 9526.3(19) 9633.3(19)

Z 8 9 8 12 8 8

T (K) 150(2) 150(2) 150(2) 150(2) 150(2) 150(2)

calc (g.cm–3) 1.405 1.496 1.619 1.354 1.412 1.405

 (mm–1) 0.520 0.690 0.643 0.454 0.396 0.468

Measured

reflections

37795 23056 62406 87527 162266 524427

Independent

reflections

6723 4972 10895 2127 11794 23521

Rint 0.056 0.030 0.082 0.041 0.049 0.047

Observed reflections

[I > 2(I)]

4552 4218 7634 1847 9529 17909

Data, restraints,

parameters

6723, 40, 460 4972, 14, 216 10895, 0, 464 2127, 25, 162 11794, 0, 640 23521, 102, 1282

R1(I > 2(I))a,

wR2(all data)b

0.085, 0.297 0.061, 0.171 0.048, 0.132 0.048, 0.136 0.045, 0.127 0.063, 0.188
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GOF 1.041 1.058 1.023 1.108 1.024 1.100

min, max (e.Å–3) –0.58, 1.05 –0.55, 0.68 –0.62, 0.78 –0.21, 0.36 –0.76, 1.00 –0.74, 0.94

Flack parameter – 0.00(3) – –0.02(3) – –

aR =  [Fo – Fc] / Fo
bwR = [w(Fo

2 – Fc
2)2 / wFo

4]1/2
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Table 2. Selected bond distances and angles for the crystal structures of [Fe(LMe)2]
2+ (12+) salts (Å, º). ,  and  are indices showing the spin

state of the complex [7,35], while  and  are measures of the angular Jahn-Teller distortion sometimes shown by [Fe(bpp)2]
2+ centers in their

high-spin state (see the text for details) [36,37]. Typical values of these parameters in [Fe(bpp)2]
2+-type derivatives are given in ref. [7].

1[BF4]2·xH2O

(Half-molecule A)

1[BF4]2·xH2O

(Half-molecule B)

1[ClO4]2 1[PF6]2

Fe−N{pyridyl} 1.958(5) 2.034(7) 2.079(6) 2.1503(16), 2.1539(19) 

Fe−N{pyrazolyl} 2.019(4), 2.020(4) 2.048(6), 2.079(5) 2.140(3)–2.329(6)a 2.1981(17)–2.2843(17)

 78.8(3) 77.2(2) 73.7(2)–75.0(2)a 74.21(14)

 98.3(6) 113.7(5) 146.1(7)–153.9(7)a 147.8(2)

 317 360 413–467a 456

 178.6(3) 180 178.78(16) 168.92(7)

 86.28(5) 89.28(5) 83.33(6)–88.13(5)a 78.93(2)
aRange of values given for all the ligand disorder sites in the molecule.
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Table 3. Selected bond distances and angles for the crystal structures of salts of [Fe(LAll)2]
2+ (22+), [Fe(LBz)2]

2+ (32+) and [Fe(LiPr)2]
2+ (42+) (Å, º).

See Table 2 and refs. [7] and [35-37] for the definitions of the distortion parameters , , ,  and .

2[BF4]2 3[BF4]2 4[PF6]2·2CH3CN

(Molecule A)

4[PF6]2·2CH3CN

(Molecule B)

Fe−N{pyridyl} 2.129(3) 2.1357(15), 2.1436(14) 2.147(2), 2.156(2) 2.144(2), 2.145(2) 

Fe−N{pyrazolyl} 2.217(3) 2.2000(15)–2.2497(15) 2.203(2)–2.255(2) 2.192(2)–2.275(2) 

 74.53(6) 74.43(12) 73.91(17) 74.08(17)

 140.1(2) 141.8(2) 146.7(3) 145.7(3)

 440 447 457 456

 180 171.00(6) 175.94(8) 173.50(9)

 90 88.11(2) 87.80(3) 89.51(3)
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Table 4. Comparison of the metric parameters determining the steric influence of the methyl substituents in crystalline salts of [Fe(LMe)2]
2+ (12+)

and [Fe(Me2-1-bpp)2]
2+ (Me2-1-bpp = 2,6-bis{3-methylpyrazol-1-yl}pyridine). See Fig. 6 for the definitions of the parameters a-e. All the crystal

structures are of the high-spin states of the complexes, unless otherwise stated.

[Fe(LMe)2]X2 X– = BF4
– a ClO4

– b PF6
–

a (Fe–N) 2.019(4)-2.101(4) 2.176(3) 2.1981(17)-2.2843(17)

b (N–N) 1.367(7)-1.382(8) 1.365(4) 1.367(2)-1.377(2)

c (N–C) 1.365(11)-1.468(8) 1.458(5) 1.473(3)-1.481(3)

d (Fe–N–N) 138.1(4)-139.2(4) 138.3(2) 137.74(14)-140.26(14)

e (N–N–C) 121.2(6)-124.0(7) 120.4(3) 120.09(19)-121.52(17)

[Fe(Me2-1-bpp)2]X2 X– = BF4
– [22] ClO4

– a [44] SbF6
– [38]

a (Fe–N) 2.178(2)-2.204(2) 2.164(3)-2.175(3) 2.169(3)–2.214(3)

b (N–C) 1.327(4)-1.335(4) 1.319(5)-1.334(5) 1.331(5)-1.337(5)

c (C–C) 1.477(5)-1.493(5) 1.466(6)-1.494(8) 1.489(5)-1.495(5)

d (Fe–N–C) 140.1(2)-140.4(2) 140.1(3)-140.8(3) 139.7(2)-141.1(3)

e (N–C–C) 120.6(3)-121.8(3) 121.0(4)-122.8(4) 119.9(3)-121.8(4)
aThis complex has a mixed high:low-spin state population at the temperature of measurement. bOnly the parameters from the crystallographically
ordered part of the ligand are given.
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Figure 1. Views of the [Fe(LMe)2]
2+ dication in 1[PF6]2 (top left); [Fe(LAll)2]

2+ in 2[BF4]2 (top

right); [Fe(LBz)2]
2+ in 3[BF4]2 (bottom left); and [Fe(LiPr)2]

2+ in 4[PF6]2·2CH3CN (molecule

A, bottom right). The allyl substitutents in [Fe(LAll)2]
2+ are plotted in different disorder

orientations, while only the major orientation of the disordered isopropyl group in the

molecule of [Fe(LiPr)2]
2+ is shown. Displacement ellipsoids are at the 50 % probability level,

and H atoms have been omitted for clarity. Colour code: C (ligand backbone), dark gray; C

(substituents), white; N, blue; Fe, green.
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Figure 2. Partial packing diagram of 1[ClO4]2, showing the intermolecular steric clash that

leads to the ligand disorder. The intermolecular C…C contacts of 2.8 Å shown in red,

between the ‘B’ disorder site on adjacent molecules related by –x, –x+y, –z, mean that this

site cannot be simultaneously occupied in both molecules in each pair. All atoms have

arbitrary radii, and the view is along the [110] vector, with the c axis vertical. Colour code: C

(ligand backbone), dark gray; C (substituents), white; H, pale gray; N, blue; Fe, green.
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Figure 3. Comparison of the molecular structures of the [Fe(LMe)2]
2+ dications in

1[BF4]2·xH2O (molecule B; top), 1[ClO4]2 (center) and 1[PF6]2 (bottom). The view in each

case is along the Fe(1)–N(2) bond. All atoms have arbitrary radii, H atoms are omitted for

clarity, and both disorder orientations of the LMe ligand in 1[ClO4]2 are shown. Colour code:

C, white; N, blue; Fe, green.
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Figure 4. Top: Solid state variable temperature magnetic susceptibility data for 1[BF4]2 (●), 

1[ClO4]2 (♦) and 1[PF6]2 (□). Variable temperature susceptibility measurements for the other 

complexes in this study are essentially identical to these data. Bottom: Magnetic

susceptibility data in (CD3)2CO solution for 1[BF4]2 (●), 2[BF4]2 (■), 3[BF4]2 (◊) and 

4[BF4]2·H2O (○). 
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Figure 5. Space-filling views of the [Fe(LMe)2]
2+ dication in 1[BF4]2·xH2O (molecule B; top

left); [Fe(LAll)2]
2+ in 2[BF4]2 (top right); [Fe(LBz)2]

2+ in 3[BF4]2 (bottom left); and

[Fe(LiPr)2]
2+ in 4[PF6]2·2CH3CN (molecule A, bottom right). The allyl substitutents in

[Fe(LAll)2]
2+ are plotted in different disorder orientations, while only the major orientation of

the disordered isopropyl group in the molecule of [Fe(LiPr)2]
2+ is shown. Colour code: C

(ligand backbone), dark gray; C (substituents), white; H, pale gray; N, blue; Fe, green.
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Figure 6. Comparison of the metal:ligand geometry in [Fe(LMe)2]
2+ (12+, top) and [Fe(Me2-1-

bpp)2]
2+ (bottom; Me2-1-bpp = 2,6-bis{3-methylpyrazol-1-yl}pyridine). The labels a-e refer

to the parameters listed in Table 6. Colour code: C, white; N, blue; Fe, green.
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