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This tutorial review discusses the structural and electronic consequences of the Jahn-Teller effect in

transition metal complexes, focussing on copper(II) compounds which tend to be the most studied. The

nature of a Jahn-Teller distortion in molecular complexes and extended lattices can be manipulated by

application of pressure or temperature, by doping a molecule into a host lattice, or simply by molecular

design. Many of these results have been achieved using compounds with a trans-[CuX4Y2] coordination10

sphere, which seems to afford copper centres that are particularly sensitive to their environment. Jahn-

Teller distortions lead to some unusual phenomena in molecular magnetism, and are important to the

functionality of important classes of conducting and superconducting ceramics.

Introduction

In 1937, Hermann Jahn and Edward Teller used symmetry15

arguments to demonstrate that a non-linear system in a

degenerate energy state cannot be stable. It will spontaneously

distort itself in some way so that its energy state will split, in such

a way as to remove its degeneracy.1 Such a distortion always has

the effect of lowering the energy of the system to a small extent,20

and is thus energetically favourable (Scheme 1). This prediction

has been borne out in practise in many areas of chemistry.2

Scheme 1. The two prototypical Jahn-Teller distortions of an octahedral
copper(II) complex. Both distortions lower the energies of two electrons25

in the eg subshell, while raising the energy of only one. Thus, there is a
net reduction in electronic energy upon distortion of the complex. All
Jahn-Teller distortions are driven by a comparable energy stabilisation.

30

Jahn-Teller distortions are most often associated with transition

metal centres, either in molecular complexes or in ionic lattices.

They are important, because Jahn-Teller effects strongly affect

the electron distribution within a material or molecule, as well as

the arrangement of their atoms. Thus, Jahn-Teller distortions of35

the metal ions in a ceramic material can have large consequences

for its conductivity, magnetism or other physical properties,2

examples of which are described below. Jahn-Teller distortions

also occur in several types of organic radical,2 including some

alkyl and aryl radicals and ions,3 fulleride anions4 and ionised40

carbon nanotubes.5 Although they are phenomenologically

distinct, closely related effects (Peierls distortions) are also seen

in linear chain structures including solid lattices,6 conducting

polymers6 and chains of atoms on surfaces.7

In transition metal centres, the splitting of the d-energy levels in a45

ligand field can often lead to degenerate electron configurations,

that are subject to Jahn-Teller effects. For example, in octahedral

symmetry d1
, d2

, d4 (both spin-states), d5 (low-spin), d6 (high-

spin), d7 (low-spin) and d9 transition ions all have orbitally

degenerate electron configurations, that should be Jahn-Teller-50

active. In practise, ions with degenerate occupancy of the eg

subshell nearly always exhibit strong Jahn-Teller distortions,

because of the M–L antibonding character of those orbitals. Thus,

the Jahn-Teller effect is pronounced in six-coordinate complexes

of high-spin d4 [chromium(II), manganese(III)], low-spin d7
55

[cobalt(II)] and d9 [copper(II)] ions. It is also important in less

common oxidation levels of other transition ions with those d-

electron counts. The other d-electron configurations on the above

list show degeneracy in the t2g subshell, which makes a much

weaker, or zero, contribution to M–L bonding. In those cases,60

Jahn-Teller distortions are more subtle and can be so weak as to

be unobservable using routine characterisation techniques

(although not always – see below).8

Nearly any other coordination geometry can also be subject to a

Jahn-Teller distortion in principle, as long as its d-electron count65

leads to a degenerate ground state (see below). A notable

exception are linear complexes, which are not treated by the Jahn-

Teller theorem.1 While open-shell two-coordinate compounds



often show bent coordination geometries, these reflect the

formation of additional agostic M–L bonding interactions rather

than Jahn-Teller phenomena.9

This article describes the measurement, manipulation and

consequences of the Jahn-Teller effect in transition metal5

chemistry. Six-coordinate copper(II) compounds are by far the

most common, and the most studied, molecular Jahn-Teller

system so they will feature prominently in the discussion.10-12

Systems containing other ions and coordination geometries will

also be referred to where appropriate, however.210

Definitions of terms

A common point of confusion in copper chemistry in particular,

is that not all copper(II) complexes are subject to the Jahn-Teller

effect. Complexes with octahedral and tetrahedral geometries are15

well known to be Jahn-Teller active,10 while it has recently been

pointed out that the rare trigonal prismatic coordination geometry

also leads to a strong Jahn-Teller distortion in d9 complexes.13

Notably, Jahn-Teller distortions in the two six-coordinate

geometries are different. While octahedral copper(II) complexes20

exhibit the well-known trans-elongation along one L–Cu–L axis,

trigonal prismatic examples instead undergo an elongation of two

cis Cu–L bonds (Fig. 1). This can be understood as a

consequence of splitting the degenerate e’’ orbital pair (dxz and

dyz, Scheme 2), which are oriented towards the donor groups in a25

trigonal prismatic ligand sphere.13 In tetrahedral examples,

splitting of the t2 orbital manifold is reflected in the bond angles

about the metal ion, rather than its bond lengths, and leads to a

flattening of the coordination sphere towards the square planar

limit (termed a “tetragonal distortion”).10.14
30

Scheme 2. Crystal field splittings for the common coordination
geometries of copper(II) complexes, grouped according to whether they
display Jahn-Teller distortions. The splittings between energy levels are
indicative only, and are not drawn to scale.35

In contrast, five-coordinate and square planar copper(II)

complexes are not Jahn-Teller active, because the singly occupied

40

Fig. 1 Crystal structures of copper(II) complexes with 2,2’-bipyridyl
ligation, with arrows illustrating different Jahn-Teller distortions that
occur (Å, º). Top, octahedral [Cu(bipy)3]

2+;16 middle, tetrahedral
[Cu(bipy)2]

2+;17 bottom, a trigonal prismatic complex of a tris-bipyridyl
tripodal ligand.18 An undistorted [Cu(bipy)2]

2+ centre would show an45

inter-ligand dihedral angle of 90º.

d-orbital in those geometries is not degenerate (Scheme 2). In

particular, the most common coordination geometry for50

copper(II) complexes is square-pyramidal, in which the apical

Cu–L bond is longer than the basal ones by up to 0.5 Å. The

lengthened apical bond is not a Jahn-Teller elongation in this

case. Rather, it is simply a consequence of the double electron

occupancy of the antibonding a1 (dz2) orbital, and the single55

occupancy of b1 (dx2–y2), leading to increased antibonding electron

density along the apical Cu–L axis.15 Second-order pseudo-Jahn-

Teller effects (see below) can occur in five-coordinate complexes,

however, leading to more subtle structural changes.

While Jahn-Teller elongations and compressions are both60

theoretically possible in octahedral complexes, in practise Jahn-

Teller elongations are more common by far. This is particularly



Scheme 3. The pseudo-Jahn-Teller distortions commonly observed in heteroleptic six-coordinate copper(II) complexes. The splittings between energy
levels are indicative only, and are not drawn to scale. The b1 and b2 levels in the C2v symmetry are not strictly degenerate, but will be very close in energy.

5

true in copper(II) chemistry, where genuine, experimentally

verified Jahn-Teller compressions are almost unheard of.12 This

reflects a small additional stabilisation of 3dz2 by mixing with the

metal 4s orbital, which has the same a1g symmetry as 3dz2 in the

Oh and D4h point groups. Jahn-Teller compressions are sometimes10

seen in complexes of other metal ions, however, notably high-

spin manganese(III).19

A further complication, is that six-coordinate copper(II)

complexes with cis- or trans-[CuX2L4] geometries can also

exhibit pronounced structural elongations along one of their15

degenerate L–Cu–X or L–Cu–L axes (Scheme 3). That would not

be predicted from the arguments in the previous paragraph, since

the unpaired d-electron does not occupy a degenerate d orbital in

the C2v or D4h point groups associated with these geometries

(Scheme 3). These distortions arise from vibronic coupling of the20

non- degenerate ground state with excited d-energy states, and are

termed “pseudo-Jahn-Teller” effects.11 Pseudo-Jahn-Teller

distortions can also arise in five-coordinate copper(II) centres

(see above), leading to more complicated structural changes.11

Although they are different in origin, Jahn-Teller- and pseudo-25

Jahn-Teller-distortions have similar consequences for the

structural and electronic properties of a complex. They are

therefore considered interchangeably in this article.

A final grey area in the literature, is the description of

coordination geometries of complexes with long axial or apical30

M…L contacts. This is a problem in copper(II) chemistry, since

tetragonal copper(II) complexes with a square plane of ligand

donors and one or two axial Cu…L interactions of 2.1-2.9 Å are

very common.11 Considering the covalent and van der Waals radii

of copper (1.4 Å) and the common N/O/F donor atoms (1.35-1.535

Å),20 an axial Cu–L distance of up to 2.4 Å might be considered

as a genuine Cu–L bond; 2.4-2.8 Å represents a weaker,

secondary Cu…L interaction, predominantly electrostatic in

nature; and Cu…L > 2.8 Å is a van der Waals contact only.

Corresponding Cu–L distances for P/S/Cl donors would be <2.840

Å (bond), 2.8-3.2 Å (secondary interaction) and >3.2 Å (van der

Waals contact).

The above criteria represent a slightly arbitrary division of a

continuum of bonding interactions. However, only the shortest

interactions in the above list should probably be considered when45

assigning a coordination geometry to a complex. For example,

this has consequences for the tripodal ligand complex at the

bottom of Fig. 1. Although described in the literature (and the

Figure) as a Jahn-Teller distorted trigonal prismatic centre,13,18

the very long sixth Cu…N distance implies that a five-coordinate50

description may be equally valid. A multitude of other copper(II)

crystal structures in the literature show similar ambiguities, too.

Dynamic and disordered Jahn-Teller distortions

A straightforward example is provided by the salt [3-55

ClC6H4NH3]8CuCl10,
21 which contains centrosymmetric [CuCl6]

4–

octahedra with three unique Cu–Cl bonds (Fig. 2).22 These data

show only minor changes on cooling to 156 K, and indicate a

Jahn-Teller compressed copper(II) centre. This impression is

reinforced by its powder EPR spectrum, which shows a pattern of60

g-values (g = 2.20, g|| = 2.04). 23 At first glance, that is consistent

with an unpaired electron in a dz2 orbital on the copper ion, which

would lead to g > g|| = 2.0023,24 and again implies a Jahn-Teller

compressed structure (Scheme 1). However, the EPR g|| value

(2.04) is higher than would be expected for a {dz2}1 configuration65

(2.00). Moreover, the crystallographic thermal ellipsoids of the

chlorine atoms associated with the two longer Cu–Cl distances

are significantly elongated, along the directions of the Cu–Cl

bonds (Fig. 2). Both observations indicate that this interpretation

may be erroneous. In fact, the copper ion adopts a Jahn-Teller70

Fig. 2 Crystal structure of the [CuCl6]
4– ion in [3-ClC6H4NH3]8CuCl10 at

295 K, showing the Cu–Cl bond lengths (Å). The thermal ellipsoids of

Cl(2), Cl(3) and their symmetry equivalents indicate unresolved disorder,
involving expansion and/or contraction of those Cu–Cl bonds. Symmetry75

code (i): –x, –y, –z.22



elongation, that is disordered between the Cl(2)–Cu–Cl(2i) and

Cl(3)–Cu–Cl(3i) axes (Fig. 2).

Such ambiguities can be resolved by EXAFS, whose short

timescale yields true bond distances that are uncontaminated by

disorder. In this case, an EXAFS study yielded a rhombic5

coordination sphere with Cu–Cl = 2.276(14), 2.377(18) and

2.83(5) Å at 10 K. The average of the two higher values, 2.60 Å,

agrees perfectly with the two longer Cu–Cl distances from the

crystallographic data above (Fig. 2).25 The anomalous EPR data

reflect the fact that g1 and g2 are averaged in the spectrum10

because of the disorder. The “true” g-values of the copper centres

were obtained by replacing 80 % of the copper in the material

with diamagnetic cadmium(II) ions.26 The remaining copper ions

in [3-ClC6H4NH3]8Cd0.8Cu0.2Cl10 are well-separated and

magnetically isolated, giving a higher resolution single-ion EPR15

spectrum with g1 = 2.30, g2 = 2.09, g3 = 2.04. That maps perfectly

onto the g-pattern expected for a Jahn-Teller-elongated, {dx2–y2}1

copper(II) centre (g1 > g2 ≥ g3 > 2.002324), while the true g1 and

g2 values agree well with the averaged g value (2.20) from the

initial study.23
20

A survey of copper(II) complexes that are known to show Jahn-

Teller disorder is given in the ESI†. Most of these involve

polyatomic organic ligands, which complicates the interpretation

of the crystal structures. The size and direction of the ligand

donor atom thermal ellipsoids (Fig. 2) are not a good indicator of25

masked disorder in that case, since they contain contributions

from every covalent bond those atoms are involved in (not just

the Cu–L bond). That issue can be resolved by a TLS analysis,

which deconvolutes the thermal ellipsoids to provide a measure

of the atomic displacements along each bond in the molecule.12,27
30

TLS analyses are easily obtained using the program PLATON.28

The Jahn-Teller disorder in [3-ClC6H4NH3]8CuCl10 is static, and

invariant with temperature. However, in many cases such

disorder is dynamic and reflects fluxionality of the Jahn-Teller

distortion in the molecule. This leads to temperature-dependent35

crystallographic and EPR behaviour, which show apparently

“averaged” data at higher temperatures but where the true

structure and g-values are slowly frozen out as the temperature is

lowered.12,27 Analysis of the temperature dependence of Jahn-

Teller disorder can yield the relative energies of the different40

orientations of the disorder axis, which depend on the steric

properties of the crystal lattice as much as on the individual

molecule (Fig. 3). The analysis in Fig. 3 was performed by

modelling the metal/ligand vibrational potentials in isolated

molecules,10 but more sophisticated treatments based on Monte45

Carlo simulations can reproduce cooperative Jahn-Teller

fluxionality in an extended crystalline lattice.29

Where Jahn-Teller disorder exists, placing a crystal under

uniaxial stress can cause the Jahn-Teller elongation to order in an

orientation parallel to the applied tension. This has been50

demonstrated in salts containing the [Cu(NO2)6]
4– ion.31

Such detailed studies of Jahn-Teller fluxionality have mostly

been carried out using copper(II) complexes.10,27 However,

comparable Jahn-Teller disorder has also been identified in six-

coordinate complexes of other metal ions including55

vanadium(III),32 cobalt(II),33 nickel(III),34 rhodium(II)35 and

silver(II).36

Fig. 3 Left: temperature dependence of the Cu–N bond lengths in two60

unique molecules in the crystal structure of [CuTp2] (Tp– = hydrido-tris-
pyrazolylborate). The lines show the fit of the data to a model based on

the electronic and vibrational energies of the copper coordination sphere.
Right: the results of that calculation, plotted as the electronic and
vibrational energies of the molecules in different Jahn-Teller states. The65

minima in the plots correspond to orientation of the Jahn-Teller distortion
along the three different N–Cu–N axes in the molecules, with N(1)–
Cu(1)–N(1ii) being the most stable. Symmetry code (ii): 1–x, 1–y, 1–z.30

Manipulating Jahn-Teller distortions under pressure

Most compounds of copper(II) behave similarly to those of other70

transition metal ions under hydrostatic pressure, in that a general

contraction of M–L bonds is observed as the pressure is

increased.37-39 This bond shortening tends to be more pronounced

for the longer (weaker) Cu–L bonds in a Jahn-Teller elongated

copper(II) centre, which can lead to a phase change under75

pressure,39 or to the formation of new intermolecular Cu–L

interactions as the atoms are forced together.40-42 No more notable

structural changes are usually observed.

However, two copper(II) compounds are known where

application of hydrostatic pressure leads to rotation of the Jahn-80

Teller elongation axis about the metal ion, from one L–Cu–L axis

to another. First to be discovered was the deuterated Tutton’s salt,



[ND4]2[Cu(OD2)6][SO4]2. The Jahn-Teller elongation of the hexa-

aqua copper(II) centres is disordered between different O–Cu–O

axes at above ca. 150 K, but becomes crystallographically

ordered in one position below that temperature. Interestingly,

however, the orientation of the ordered elongation is different in5

the protio material [NH4]2[Cu(OH2)6][SO4]2, and deuterated

[ND4]2[Cu(OD2)6][SO4]2.
43 The deuterated crystal reverts to the

protio phase under pressure, so that the Jahn-Teller elongation

axis switches from one O–Cu–O axis to another (Fig. 4).43,44 The

critical pressure for this phase transition is ca. 500 bar (0.0510

GPa‡) at room temperature, is temperature dependent, and shows

a pressure hysteresis when cycled close to room temperature.45

Hence, the high-pressure phase of [ND4]2[Cu(OD2)6][SO4]2 can

also be obtained at 1 bar‡, where it is metastable, if the crystal is

kept below 297 K when the pressure is released.46 A pressure-15

induced Jahn-Teller reorientation also occurs in the chromium

analogue [ND4]2[Cr(OD2)6][SO4]2,
47 but not in

M2[Cu(OH2)6][SO4]2 (M+ = NH4
+, K+) or Rb2[Cr(OD2)6][SO4]2

which behave normally under pressure.44,46,47

20

Fig. 4 Neutron diffraction structure of the [Cu(OD2)6]
2+ ion in

[ND4]2[Cu(OD2)6][SO4]2 at 15 K, with the Cu–O bond lengths for the
deuterated and protio compounds at the same temperature, at 1 bar and [in
square brackets] at 1.5 kbar‡ (Å).43,46 Symmetry code (i): –x, –y, –z.

The other example is catena-[CuF2(OH2)2(-pyrazine)], which25

crystallises as a 1D coordination polymer, with the co-parallel

chains being linked into three dimensions by O–H…F hydrogen

bonding (Fig. 5).48 The centrosymmetric copper ions have a

trans, trans, trans disposition of fluoro, aqua and pyrazine N-

donor ligands, with a pronounced pseudo-Jahn-Teller elongation30

lying along the N–Cu–N axis at ambient pressure between 20 and

298 K. As the pressure is increased at 298 K, the compound

undergoes two abrupt structural transitions at 0.9 GPa and 3.1

GPa. These were originally proposed to involve the consecutive

reorientation of the Jahn-Teller elongation along the O–Cu–O and35

F–Cu–F directions.49

A new, more detailed crystallographic study has partially borne

out that proposal, in that the transition at 0.9 GPa does indeed

involve migration of the Jahn-Teller elongation axis to the O–

Cu–O axis, as described (Fig. 5).42 This is reflected in the40

material’s magnetic response, which becomes more strongly

antiferromagnetic in the intermediate-pressure phase. That is

caused by reorientation of the copper dx2–y2 magnetic orbital from

being perpendicular to, to parallel with, the direction of the

coordination polymer chain.49 However, single crystal structures45

above 3.3 GPa instead showed a new phase with a tripled unit

cell, in which two out of every three coordination polymer chains

become covalently linked through bridging fluoro ligands.

Differences in the structural data for the highest pressure phase

between this study and the earlier one were noted, however, and50

have still to be reconciled at the time of writing.42

Fig. 5 Crystal structure of catena-[CuF2(OH2)2(-pyrazine)] at ambient

pressure, at 150 K.48 Bond lengths are shown at ambient pressure, and [in
square brackets] at 1.2 GPa (Å).42 The O–H…F hydrogen bonds shown55

link the co-parallel chains in the lattice into a 3D network.

A comparable, temperature-dependent switching of a Jahn-Teller

elongation axis, which leads to a magnetic transition in a family

of copper(II) coordination polymers, is described below.

A different type of pressure-induced switching occurs in60

Rb2CuCl4·2H2O, which contains layers of discrete trans-

[CuCl4(OH2)2]
2– octahedra linked by O–H…Cl hydrogen bonds,

with a pseudo-Jahn-Teller elongation along one Cl–Cu–Cl axis.

Consistent with this, a copper EXAFS study showed three distinct

scatterers under ambient conditions at distances Cu–O = 2.00(5),65

and Cu–Cl = 2.25(5) and 2.85(5) Å. Application of hydrostatic

pressure at first showed a typical gradual contraction of all these

distances, before an abrupt transition at 16 GPa. Above this

pressure, the Cu–O distance is unchanged at 1.96 Å, but all four

chlorine scatterers in the copper EXAFS experiment are now70

equivalent at Cu–Cl = 2.25 Å. This indicates suppression, rather

than reorientation, of the pseudo-Jahn-Teller distortion in the

complex under pressure.50

Comparable behaviour had been proposed for some layered

perovskites of type M2CuCl4 (M+ = an alkali metal or primary75



ammonium ion). These contain layers of trans-[CuCl2(-Cl)4]
2–

octahedra, formed from pseudo-Jahn-Teller copper ions linked by

alternating Cu…Cl–Cu bridges. Application of pressure leads to

significant changes to their magnetic response, and vibrational

and UV/vis spectra, which has been interpreted as indicating a5

disappearance (quenching) of the Jahn-Teller distortion when M+

= Rb+ or EtNH3
+.51 More recent structural studies under pressure,

from diffraction or EXAFS methods, have not always been

consistent with that conclusion however, and have shown that

canting of the [CuCl2(-Cl)4]
2– layers can account for at least10

some of the magnetic and spectroscopic observations while

retaining a pseudo-Jahn-Teller elongation at the copper centres.

Currently it seems unlikely that Jahn-Teller quenching occurs in

M2CuCl4 materials, at least at pressures below ca. 16 GPa.51

15

Manipulating Jahn-Teller distortions by molecular design

Some years ago, we showed that the EPR spectrum of

[Cu(LMes)2][ClO4]2 (Mes = 2,4,6-trimethylphenyl; Scheme 4) is

unprecedented for a six-coordinate copper(II) complex, and

clearly indicates a {dz2}1 electron configuration at the copper ion20

(Fig. 6).52 The more usual disordered Jahn-Teller-elongated {dx2–

y2}1 structure could be ruled out for two reasons. First, the same

spectrum (with minor differences) is observed in solution as well

as in the solid state, ruling it out as a crystallographic artifact.

Second, the observed values g = 2.20 and g|| = 2.01 (in frozen25

MeCN solution) agree well with the g > g|| = 2.0023 pattern

expected for a {dz2}1 radical.24 In contrast, disordered Jahn-Teller

elongated species with such an “inverse” pattern of g-values

usually show higher-than-expected values of g|| (see above).12,27

30

Fig. 6 Q-band powder EPR spectra at 10 K of two complexes related to
those in Scheme 4, with: a) structure A (without Jahn-Teller disorder);
and b) structure B (Scheme 4).12 The four-line splitting in each spectrum
arises from hyperfine coupling to the Cu nucleus (63,65Cu, I = 3/2).

The {dz2}1 electronic structure of [Cu(LMes)2]
2+ corresponds to35

structure B in Scheme 4, with four long Cu–N{pyrazole}

distances.52 Importantly this is not a Jahn-Teller compression,

because the eg d-orbitals are not degenerate in the idealised D2d

symmetry of these complexes.12 Rather, it corresponds to a

suppression of the expected pseudo-Jahn-Teller elongation40

(structure A, Scheme 4). Similarly unusual EPR spectra are

shown by salts of [Cu(LiPr)2]
2+ and [Cu(LPh)2]

2+ in the solid and

solution phases,12 but not by the parent complex [Cu(bpp)2]
2+

which behaves like a typical Jahn-Teller elongated complex with

this ligand type.52 Hence, the unusual electronic structures of45

[Cu(LR)2]
2+ (R ≠ H) are probably sterically driven. The bulky 

distal substituents prevent any contraction of the Cu–N{pyrazole}

bonds, forcing them all to be comparably long as observed.

Scheme 4 The structures and ground-state configurations adopted by50

[Cu(bpp)2]
2+ (R = H; structure A) and its derivatives [Cu(LR)2]

2+ (R = iPr,
Ph or Mes; structure B). Short and long Cu–N bonds are indicated by
solid and dashed lines, respectively∫.

55

Structure B can also be imposed on other related copper(II)

complexes of linear tridentate ligands by steric hindrance (as

above),53 by ligand conformational strain,53 and by tuning the

basicities of the ligand donor atoms.54 In the latter case, structure

B is obtained in the absence of steric hindrance, if the distal60

ligand-donor groups are less basic than the central one. In the

latter regard, we have also unexpectedly observed that

[Cu(bpp)2]
2+ itself exhibits structure A as a pure compound, but

transforms to structure B when doped into a host lattice, in

[M0.95Cu0.05(bpp)2][BF4]2 (M2+ = Fe2+ or Zn2+).55 The lower65

basicity of the pyrazole donor groups in [Cu(bpp)2]
2+, compared

to the central pyridyl donor, apparently makes structures A and B

close in energy. The complex is therefore forced to adopt

structure B in a rigid host lattice, that cannot undergo the local

structural rearrangements required to accommodate a dopant site70

with structure A. Comparable phenomena have been seen in a

small number of inorganic materials containing copper(II) dopant

ions, like K2CuxZn1–xF4 which also adopts a {dz2}1 electronic

structure when x is small.12

There have been two recent observations of copper(II) complexes75

undergoing a temperature-dependent transition between

structures A and B. In one example, a transition from structure B

towards structure A was observed on cooling in a complex with a

static Jahn-Teller structure, which was associated with the

freezing out of anion disorder in the structure.54 In the other,80

unusual EPR behaviour in a fluxional Jahn-Teller crystal implied

that a fraction of the sample adopts a {dz2}1 configuration as the

temperature is raised.56 That situation is analogous to Fig. 3, but

where one of the minima in the Jahn-Teller potential surface

corresponds to an axial compression.85



Structure B in molecular complexes has only been found in

compounds with D2d symmetry, like those in Scheme 4. Notably,

these are stereochemically analogous to the trans-

[CuCl4(OH2)2]
2– ion in Rb2CuCl4·2H2O, which undergoes Jahn-

Teller quenching under pressure (see above).50 Moreover, most of5

the copper(II) sites in inorganic materials that adopt {dz2}1 ground

states also have trans-[CuX4Y2] coordination geometries.12,57 The

electronic structure of copper(II) ions in D2d symmetry seems to

be unusually sensitive to their local environment.

10

Exceptions to the rule

As always, there are rare exceptions to the rules discussed in the

previous sections. Jahn-Teller distortions in six-coordinate

complexes with degeneracy in the t2g orbital manifold are usually

small, because of the weak influence of those electrons on M–L15

-bonding.8 However, a few such complexes containing

tridentate ligands related to terpyridine exhibit strong angular

structural distortions away from the idealised D2d symmetry (Fig.

7).58,59 Calculations have implied that this unusual

stereochemistry is promoted by ligands imposing a narrow cis-20

bite angle on the metal.60 For example, the iron(II) compound in

Fig. 7 has an intra-chelate cis-N–Fe–N angle of 72º, much lower

than the ideal value of 90º. Other unexpectedly strong Jahn-Teller

distortions of t2g-degenerate ions are also occasionally seen in

oxide materials.61
25

Fig. 7 Crystal structures of [Cu(bpp)2][BF4]2 (top)52,62 and high-spin30

[Fe(bpp)2][PF6]2 (bottom; bpp = 2,6-di{pyrazol-1-yl}pyridine),60 showing
their different Jahn-Teller distortions (Å, º). The copper structure is one of
the three unique molecules in the low temperature polymorph of that
compound.62

35

Although the vast majority of square planar metal ions are low-

spin, high-spin examples are known in a handful of iron oxide

materials like SrFeO2. The first high-spin square-planar

complexes have recently been obtained, in salts of [FeL2]
2– (LH2

= meso-3,4-dihydroxy-oxolane). A high-spin d6 ion with D4h40

symmetry is Jahn-Teller active. Although the crystallographic

distortion in the compound is small, calculations imply that it has

an important energetic role in stabilising the high-spin square

planar site by reducing Fe–O covalency.63

45

Jahn-Teller Effects in Molecular Magnetism

A bulk magnet retains its magnetisation when removed from a

magnetic field. This requires strong coupling interactions

between the electron spins in the material, whether they are

localised electrons in an ionic or molecular solid, or itinerant50

electrons in a metal. Single molecule magnets (SMMs) are

compounds whose individual molecules also retain magnetisation

outside an applied field, albeit only at very low temperatures of

<5 K.64 They are of great current interest for quantum

information storage applications,65 and also for potential uses as55

magnetic refrigerants.66

The best-known SMMs are polymetallic complexes with high-

spin magnetic ground states, arising from ferromagnetic coupling

of the individual metal ions in the molecule. The effect also

requires a strong magnetic anisotropy in the molecule; that is, its60

magnetic moment must be different in different directions.

Manganese(III) complexes meet the latter criterion particularly

well, because the Jahn-Teller elongation exhibited by six-

coordinate, high-spin d4 manganese(III) ions lead to an

anisotropic distribution of d-electron spins.65

The most studied SMMs were also the first to be discovered,

namely the “Mn12” complex

[Mn12O12(O2CMe)16(H2O)4]·2MeCO2H·4H2O and its derivatives

(Fig. 8).67 The acetate ligands can easily be replaced with other

carboxylates or different oxyanion ligands, leading to a large70

family of compounds that all show SMM behaviour. Their

effectiveness as SMMs stems from their disk-like molecular

structures, comprising a central [MnIV
4O4] heterocubane

surrounded by a belt of eight MnIII ions (Fig. 8). The Jahn-Teller

elongations of the MnIII centres are aligned approximately75

perpendicular to the plane of the disk, imparting a highly

anisotropic magnetic structure to the molecule as a whole.

Unusually, Mn12 derivatives can adopt one of two different

isomeric structures with different SMM properties. This is

characterised by the effective energy barrier to the reorientation80

of their magnetisation in an alternating magnetic field (Ueff),

which is ca. 60 K in one isomer (the high-temperature or slow-

relaxing form) and ca. 40 K in the other (the low-temperature or

fast-relaxing form).67 The isomers differ in the orientation of the

Jahn-Teller elongation in one MnIII ion, which is perpendicular to85

the plane of the disk in the slow-relaxing isomer, but lies within

the disk in the fast-relaxing form (Fig. 8). This makes the

magnetic structure of the fast-relaxing molecule less anisotropic,

thus lowering Ueff and reducing its effectiveness as an SMM.

In a small number of cases, both isomers of the same Mn1290

derivative can be obtained in pure form.68 In one such example,

[Mn12O12(O2CCH2tBu)16(H2O)4]·CH2Cl2·MeNO2 (Fig. 8), placing

crystals of the fast-relaxing isomer under hydrostatic pressure

converts it into the slow-relaxing form. This conversion occurs

gradually as the pressure is raised, from ambient to 1.4 GPa.69
95

A very different phenomenon is shown by some copper(II)

complexes of nitronyl nitroxide (NITR) radical ligands. Adducts

of type [Cu(hfac)2L
R] (hfacH = 1,1,1,5,5,5-hexafluoro-



Fig. 8 The fast-relaxing (top) and slow-relaxing (bottom) isomers in
differently solvated crystals of [Mn12O12(O2CCH2tBu)16(H2O)4]. Methyl
groups and H atoms have been omitted for clarity. Colour code: C, white;
MnIII, green; MnIV, orange; O, red. The Jahn-Teller-elongated MnIII–O5

bonds are emphasised, and indicated in pale green. The isomers differ in
the orientation of the Jahn-Teller distortion in the highlighted manganese
ion.68

acetylacetone, and LR is a 1-alkylpyrazol-4-yl-nitronyl nitroxide)

have been particularly well studied. These are 1D coordination10

polymers with bridging LR ligands, which can be obtained in

“head-to-tail” or “head-to-head” isomeric forms.

15

The “head-to-head” isomers contain alternating

[Cu(hfac)2(pyrazole)2] and [Cu(hfac)2(NITR)2] centres (Fig. 9).

In the latter, the NITR radical donors coordinate to the copper

axial sites, affording six-coordinate centres with a JahnTeller

elongation along the Cu–O{NITR} bonds at room temperature.20

This structure affords weak ferromagnetic coupling between the

metal and ligand spins in the [Cu(hfac)2(NITR)2] units, leading to

a magnetic moment of eff ≈ 2.5 BM per copper ion. Many of

these materials undergo a magnetic transition on cooling,

associated with a reduction in eff to 1.8 BM per copper ion (Fig.25

10).70,71 This reflects a temperature-dependent reorientation of the

Jahn-Teller elongation in the [Cu(hfac)2(NITR)2] centres, to lie

along one of the two unique equatorial O{hfac}–Cu–O{hfac}

axes. This structural change in turn switches the Cu/NITR

coupling, from weakly ferromagnetic to strongly30

antiferromagnetic, leading to the observed reduction in eff at low

temperature (Fig. 10). Comparable magnetic switching related to

a pressure-dependent Jahn-Teller rearrangement is seen in

catena-[CuF2(OH2)2(-pyrazine)] (see above).42,49

Although different in origin, these transitions resemble more35

conventional transition metal spin-crossover switching72 in

exhibiting properties like thermal hysteresis71 and light-induced

spin-state trapping.73 Crystallographic order/ disorder transitions

involving lattice solvent are important in propagating these

cooperative phenomena through the bulk materials.70 Although40

most work has been done on the [Cu(hfac)2L
R] system,

comparable magnetic transitions have also been observed in some

copper(II) complexes of other nitroxyl radical derivatives.74

45

Fig. 9 Crystal structure of the head-to-head [Cu(hfac)2L
Bu]·C7H8 coordination polymer.71 The hfac– ligands are de-emphasised for clarity, and H atoms and

solvent molecules have been omitted. Colour code: C, white; Cu, green; F, cyan; N, blue; O, red.



Fig. 10 Temperature dependence of the effective magnetic moment of
[Cu(hfac)2L

Bu]·½C7H16, showing the Jahn-Teller-induced magnetic
transition near 150 K. Modified with permission from ref. 70. Copyright5

2008, American Chemical Society.

Jahn-Teller Distortions in Conducting and Magnetic

Materials10

Superconductivity depends on the interaction between electron

spins and lattice vibrations, which can promote strong pairing

between electrons of opposite spin. If this coupling is strong

enough, these electron pairs can be considered to be discrete

particles in their own right with zero overall spin, which are15

termed Cooper pairs. These Cooper pairs can migrate through a

solid lattice much more readily than isolated electrons, giving rise

to superconducting properties¶.75

The most important classes of high-temperature

superconductors are cuprate materials, which can retain their20

superconducting properties at temperatures up to 130 K.76,77 A

variety of such materials are known with varying elemental

compositions and stoichiometries, but their lattices all contain

CuO2 sheets which are integral to their function (Fig. 11). These

CuO2 layers contain tetragonal copper(II) centres, with one or two25

longer Cu…O distances to axial oxide ion donors.77

Dynamic Jahn-Teller distortions occur in the CuO2 layers,77

which are coupled to Cu–O vibrations (c.f. Fig. 3) and cause

substantial changes to the local electron distribution (Schemes 1

and 3). This efficiently couples electronic structure to lattice30

vibrations, providing an alternative mechanism for electron

pairing in cuprate superconductors that remains efficient at higher

temperatures. Although the more detailed mechanism of

superconductivity in these materials remains unclear, Jahn-Teller

distortions in the cuprate layers are an important part of the35

process, and explain why these are still the most efficient

superconductors known.75

Another important class of magnetic materials are the manganites

[Ln1–xAx]n+1MnnO3n+1 (Ln3+ = a lanthanide ion, A2+ = a group 2

metal). These are derived from the LaMnO3 perovskite structure40

but have differing ratios of octahedral manganese(III) and

manganese(IV), depending on the level of divalent cation doping

x and the oxide stoichiometry n.79 Differing compositions lead to

strong changes in the conductivity and magnetic behaviour of

these compounds, which partly arise because of the Jahn-Teller45

character of the manganese oxidation states. Manganese(III)

(high-spin d4) is strongly Jahn-Teller active and has an

anisotropic distribution of electrons (there is one eg electron,

whose orbital occupancy is determined by the direction and form

of the Jahn-Teller distortion). Thus, magnetic coupling between a50

manganese(III) site and its nearest neighbour metal ions depends

on its Jahn-Teller state, and is strongly directional. In contrast,

manganese (IV) (d3) is not Jahn-Teller active, and has an

isotropic spin distribution with one unpaired electron in each

orbital of the t2g subshell. Thus, varying the manganese(III):(IV)55

ratio in manganite prevoskites does not simply change their

electron population, but has a much stronger effect on their

electronic structure and magnetic ordering.79

60

Fig. 11 Crystal structure of La1.85Sr0.15CuO4, a superconductor with Tc =
38 K. Jahn-Teller disorder within the superconducting CuO2 layers has
been directly observed in this material.78 The CuO2 layers are highlighted,65

while the other atoms are de-emphasised for clarity. Colour code: Cu,
green; La/Sr, cyan; O, red.

Manganite perovskites are particularly known as examplars of the70

colossal magnetoresistance phenomenon, where the electrical

resistance of a material increases by orders of magnitude inside a

magnetic field at high temperatures.80 Although its detailed

mechanism is still under study, colossal magnetoresistance

involves an interplay between three different types of transition,75

which can occur concurrently or independently in different

materials. These are: magnetic ordering; charge ordering,

between phases containing delocalised and localised

manganese(III) and (IV) sites; and orbital ordering, involving a

freezing out of Jahn-Teller disorder at the manganese(III)80

centres.81

Conclusions

Jahn-Teller phenomena in metal complexes continue to be

discovered and developed, for new combinations of metal ion and

coordination geometry.9,13,60,63,82 Temperature- and pressure-85

induced quenching or switching of Jahn-Teller distortions is now

well-established in a limited number of copper(II) compounds,42-

47,49,50,54,70-74 which can lead to functional materials with



switchable magnetic moments or low-temperature magnetic

ordering.49,70-74 The Jahn-Teller structure of copper(II)

compounds with tridentate ligands can also be manipulated by

molecular design, or by doping into an undistorted host lattice.52-

55 Many of these studies have involved compounds with a trans-5

[CuX4Y2] coordination geometry, which seems to give rise to a

particularly plastic electronic structure. Other copper(II)

complexes with trans-[CuX4Y2] ligation may also display novel

Jahn-Teller structures or switching properties.

Important classes of magnetic and superconducting ceramics also10

contain Jahn-Teller ions. The functions of these materials are

intimately connected to their Jahn-Teller distortions, which

provide an efficient mechanism for coupling their electronic

structures to lattice vibrations.78,81 Comparable effects can also be

seen at the molecular level in some single molecule magnets,15

which depend on the strong magnetic anisotropy of the Jahn-

Teller-distorted manganese(III) ion.67-69
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∫ Strictly speaking, the electronic configuration of structure A (Scheme 4)
should be written as {dy2–z2}1 rather than {dx2–y2}1, because the structural
elongation occurs along the molecular x-axis, rather than the unique40

symmetry axis z.

¶ Quantum mechanical particles with integer spin, including s = 0, are
bosons. Bosons have very different physics from half-integer spin
particles (fermions), including individual electrons. In particular, bosons45

are described by delocalised wavefunctions, that are not centred on
specific atoms or bonds. This allows Cooper pairs (which have effectively
zero spin) to migrate freely through a lattice, without having to move
between energy levels in a conduction band.
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Table S1 Six-coordinate copper(II) compounds that have show unusual crystallographic coordination geometries, and the techniques used to
demonstrate their true structure as a disordered (pseudo)-Jahn-Teller elongated octahedron. Only compounds for which these additional experiments
have been done are included in the table.

Crystallographic Cu site symmetry
and apparent structural distortion
from an ideal octahedral geometry

Ref. Technique Ref.

-M2Pb[Cu(NO2)6] Th, undistorted 1-3 TLS analysis 4
(M+ = K+, Rb+, Cs+, Tl+)a VT powder and single crystal EPR 5

EXAFS 6

-M2Pb[Cu(NO2)6] D2h, tetragonal compression 4, 7-9 TLS analysis 4
(M+ = K+, Rb+, Cs+, Tl+)a VT powder and single crystal EPR 5, 10-12

Single crystal UV/vis 12
EXAFS 6

K2CuF4 D4h, tetragonal compression 14 UV/vis and MCD measurements 15
Susceptibility measurements 16
Correction of incorrect space group 17

-Cu2(OH)3Cl, [Cu(3-OH)6] site Ci, tetragonal compression 18 Reformulation of compound as
Cu3(Cu1–xZnx)(OH)6Cl2 (x >0.5)

19

[NH4]2[Cu(OH2)6][SO4]2 Ci, small rhombic elongation 20 VT crystallography 21-24
VT powder and single crystal EPR 21, 23
Comparative UV/vis and EPR spectra
of other M2[Cu(OH2)6][SO4]2 salts

25, 26

[Cu(pyO)6]X2 (X– = BF4
–, ClO4

–, NO3
–)b S6, trigonal distortion 27-30 VT crystallography 30

VT powder and single crystal EPR 29, 31
EXAFS 32

[Cu(en)3]SO4 D3, trigonal distortion 34 VT powder and single crystal EPR 35
EXAFS 6
VT crystallography 36

[Cu(dien)2][NO3]2
c C1, rhombical compression 37 VT crystallography and TLS analysis 38

Single crystal UV/vis and EPR 39

[Cu(terpy)2]Br2.3H2O, high-T phased C1, rhombic compression 42 VT powder and single crystal EPR 42, 43

[Cu(terpy)2][PF6]2, high-T phased S4, tetragonal compression 44 VT powder and single crystal EPR 42

[Cu(terpy)2][BF4]2
d C1, rhombic compression 45 TLS analysis and VT powder EPR 45

[Cu(1,1’’-dioxoterpy)2][ClO4]2 S4, tetragonal compression 47 TLS analysis 47

[Cu(1-bpp)2][BF4]2 C1, small rhombic elongation 48 VT crystallography and TLS analysis 49-51
VT powder and single crystal EPR 50

-[Cu(1-bppMes)2][ClO4]2.2CH3NO2 C1, small rhombic elongation 52 TLS analysis and VT powder EPR 52

[Cu(3-btz)6(Cu{CNtBu})4] S4, tetragonal compression 53 VT powder EPR 53

[Cu(tach)2][NO3]2
e C2h, small tetragonal compression 54 VT powder and single crystal EPR 54

[Cu(thch)2][CH3C6H4SO3-4]2 Ci, rhombic compression 55 VT crystallography 55

[H3NC6H4Cl-3]8[CuCl6]Cl4 Ci, tetragonal compression 56 VT crystallography 57
EXAFS 58
VT powder and single crystal EPR 59
Single crystal UV/vis 59
EPR of Cu-doped Cd(II) analogue 60

[Cu(ompa)3][ClO4]2 D3, trigonal distortion 61 VT powder EPR 62
Single crystal EPR 63

trans-[Cu(O2CCH2OCH3)2(OH2)2] Ci, rhombic compression 64 VT crystallography 65

[Cu(HC{PPh2O}3)2][ClO4]2 Ci, tetragonal compression 66 EXAFS 67
VT crystallography and powder EPR 68

cis-[Cu(vanillinate)(OH2)2] C2v,tetragonal compression 69 VT crystallography and TLS analysis 70

trans-[Cu(O2NO)2(tmbim)2] Ci, rhombic compression 71 TLS analysis 71

[Cu([9]aneS3)2][BF4]2 Ci, small tetragonal elongation 72 VT crystallography 73
VT powder EPR and powder UV/vis 73, 74
EPR of Cu-doped Fe(II) analogue 73



Table S1 continued.

Crystallographic Cu site symmetry
and apparent structural distortion
from an ideal octahedral geometry

Ref. Technique Ref.

[Cu([9]aneN3)2][Cu(CN)3].2H2O
f C1, small rhombic elongation 752 VT crystallography 75

VT powder and single crystal EPR 74, 75
Powder UV/vis 74

[Cu(MeTRI)2][BF4]2 D3, trigonal distortion 78 TLS analysis 78

[Cu(NMe3sar)][ClO4]4 S6, trigonal distortion 79 VT powder EPR 79
EPR of Cu-doped Zn analogue 79

cis-[Cu(ONO)(bipy)2]NO3
g C1, small rhombic elongation 80 VT crystallography 80

cis-[Cu(hat)2(OH2)2][ClO4]2 VT powder EPR 82

[Cu(-dpp)(OH2)2]n[BF4]2n.2nH2O
h C1, small rhombic elongation 83 VT crystallography 83

[CuTp2] (molecule B)i Ci, small rhombic elongation 85 TLS analysis 85, 86
VT crystallography and powder EPR 86

[Cu(tpm)2][NO3]2 C3v, trigonal distortion 87 EXAFS 87

[Cu(tpp)2]Br2.8H2O Ci, tetragonal compression 88 VT powder and single crystal EPR 88

aThe -phase of the same compounds exhibits a crystallographically ordered rhombically elongated octahedral Cu(II) centre.13 bThe solvated forms of

these materials, [Cu(pyO)6][NO3]2.2H2O has a typical, static Jahn-Teller elongated geometry at 293 K.33 cThe salts [Cu(dien)2]Br2
40 and

[Cu(dien)2]Cl[ClO4]
41 have a typical, static pseudo-Jahn-Teller elongated geometry at 293 K. dThe salt [Cu(terpy)2][NO3]2 has a typical, static pseudo-

Jahn-Teller elongated geometry at 298 K.46 eThe salt [Cu(tach)2][ClO4]2 has a typical, static Jahn-Teller elongated geometry at 293 K.52 fThe salts

[Cu([9]aneN3)2][ClO4]2
76 and [Cu([9]aneN3)2]Cl2

77 have a very similar, small rhombic elongated geometry at 293 K and so are also probably disordered

although this was not studied. In contrast, [Cu([9]aneN3)2][CF3SO4]2.H2O has a static Jahn-Teller elongation in the crystal.77 gSeveral other fluxional

complexes of type [Cu(X)(bipy)2]Y, [Cu(X)(phen)2]Y or [Cu(X)(bipyam)2]Y (X– = NO2
– or MeCO2

–; Y– = NO3
–, BF4

–, ClO4
–, PF6

– etc.) have also been

studied by VT crystallography.81 hThe isomorphous ClO4
– salt of the same compound also probably contains fluxional Cu centres, although this was not

studied.84 iThere are two independent molecules in the crystal structure of this compound. The other molecule has a static Jahn-Teller elongated

structure.
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