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Abstract Agent-based methods are one approach for modelling complex social
systems but one issue with these models is the large number of parameters that re-
quire estimation. This chapter examines the effect of using a genetic algorithm
(GA) for the parameter estimation of an agent-based model (ABM) of burglary.
One of the main issues encountered in the implementation was the computation
time required to run the algorithm. Nevertheless a set of preliminary results were
obtained, which indicated that visibility is the most important parameter in the de-
cision of whether to burgle a house while accessibility was the least important.
Such tools may eventually provide the means to gain a greater understanding of
the factors that determine criminological behaviour.
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1 Introduction

Social systems are incredibly complex due to the large number of interacting ele-
ments and many underlying processes that are simply not understood. Moreover,
these processes are generally non-linear such that small changes in system param-
eters can have large effects on the outcomes of the system as a whole. Complex
systems are also characterised by self-organisation whereby spontaneous behav-
iours emerge through the interactions of the individuals and the feedbacks in the
system, e.g. the flocking behaviour of birds or the movements of financial markets
(Cilliers, 1998). Agent-based models (ABMs) have been developed as one tech-
nique for modelling complex systems where the individuals or ‘agents’ of the sys-
tem are explicitly represented in these models. Agents are independent entities that
are capable of interacting with each other and with their environment. The agents



make assessments of their situation over time (or during each iteration of the mod-
el) and then make decisions in response to these assessments (Bonabeau, 2002).
By providing realistic environments and rules that are based on observed and ex-
pected patterns of human behaviour, it is possible to create models that can simu-
late real world systems (Moss and Edmonds, 2005).

Classic examples of ABMs are the Sugarscape model of Epstein and Axtell
(1996), which simulates wealth accumulation through sugar harvesting in a simple
environment, and Schelling’s (1971) model of segregation, which has been simu-
lated by a number of researchers in the past using an ABM approach (see e.g.
Omer, 2005 and Crooks, 2008). ABMs are now being applied in a variety of dif-
ferent domains, e.g. ecology (Grimm and Railsback, 2005), economics (Tesfatsion
and Judd, 2006) and more recently, criminology (Malleson 2009; 2010a, b, c).

Although ABMs represent a way to capture complexity in social systems, they
have issues related to parsimony, i.e. they contain a potentially large number of
parameters. Some parameters can be determined through expert knowledge or can
be derived from field measurements or social surveys. However, many others are
unknown and therefore require a method to determine their values. The need to
calibrate a model is not limited to ABMs and many different methods of search
and optimisation are available. However, classical search methods are not effec-
tive in finding large numbers of parameters so other methods such as genetic algo-
rithms (GAs) are needed.

Despite the fact that GAs are well suited to high dimensional parameter esti-
mation, there are not many examples of the use of GAs in the development of geo-
spatial ABMs. GAs have been used to calibrate cellular automata models of urban
land use (e.g. Goldstein, 2004; Li et al., 2007; Shan et al., 2008), which might be
considered as pre-cursors to ABMs but which are still used today for studying ur-
ban form and land use change. One of the most notable examples is the work by
Heppenstall et al. (2007), who used a GA to calibrate the parameters of an agent-
based retail petrol market model. In the model, the market petrol retailers, i.e. the
petrol stations, compete for customers within localised, overlapping areas and
were therefore represented by agents. Knowledge was embedded in each agent re-
garding the initial starting price, production costs, and the prices of those stations
within their immediate neighbourhood. A series of rules were then applied to each
agent in order to effect petrol price adjustments. A GA was used to optimise eight
parameters in the model such as the size of the neighbourhood and the production
costs. By running the GA several times and examining the variation in the parame-
ters, it was possible to compare which parameters were close in value to those
originally determined by the modeller using knowledge of petrol markets and



which parameters varied considerably between runs and therefore had little effect
on the overall results of the simulations.

More recently, Stonedahl (2011) undertook a comprehensive evaluation of
GAs for parameter estimation of ABMs in a number of applied areas including ar-
chaeology and viral marketing, which showed that GAs can be effective tools for
uncovering and further investigating interesting behaviours in these applied areas.
However, the research also recommended experimentation with further applica-
tions as well as a consideration of multi-objective optimisation problems. The aim
of this chapter is to provide an example of single-objective GA parameter estima-
tion in another application area, i.e. crime. An ABM of burglary, which has been
previously developed and applied to the city of Leeds in the United Kingdom
(Malleson et al., 2010a, b, c), is used to examine the use of a GA for parameter es-
timation. The chapter begins with on overview of basic crime theory and previous
modelling research, including why ABMs are well suited to modelling criminal
behaviour. This is followed by a brief overview of optimisation methods and the
basic mechanism of a GA. The ABM of burglary is then described including the
parameters to be optimised and the GA experimental settings. This is followed by
the results of some preliminary experiments and initial reflections upon this meth-
od for parameter estimation. The chapter concludes with plans for further research
in this area.

2 Theoretical Background

Individual acquisitive crimes are the result of the convergence of a huge number
of factors. These include, but are not limited to:

* The motivation of the offender;

* The behaviour of other people including the victim(s);

¢ The influence of the surrounding physical environment;

* Wider social factors such as levels of community cohesion.

Each of these elements are also extremely complex in their own right. The motiva-
tion/behaviour of the offender and other people depends on a wealth of complex
psychological characteristics and life experiences as well as factors such as daily
routines and transport networks that put people in a particular place at a particular
time. The physical environment contains a broad range of ‘cues’ that might en-
courage or deter crime (such as high hedges that block visibility, burglar alarms,
building security, etc.) -- identifying these cues and their impact on offenders is
non-trivial. Wider social factors also have a direct influence such as determining



how comfortable an offender feels in a particular area (i.e. whether or not they
stand out) as well as broader effects that influence where people travel to within a
city.

Although the system is clearly complex in the scientific sense of the word, oc-
currences of crime are not random. Crime patterns can remain stable over long pe-
riods of time and a large body of literature has evolved to explain them. This sec-
tion will outline some of the most relevant criminological findings which form the
basis of ABMs of crime as introduced in section 3. As well as demonstrating that
the model closely reflects the reality of the real-world crime system, it will make
clear why the ability of agent-based modelling to account for the behaviour and
interactions of numerous individuals makes it the most suitable methodology for
modelling acquisitive crime and burglary in particular.

2.1 The Spatial Scale of Crime Analysis

Over time, research that seeks to understand the spatial patterns of crime has been
moving progressively towards the use of smaller and smaller geographies. In their
seminal work on juvenile delinquency, Shaw and McKay (1942) used the census
tract (an American administrative zone of approximately one square mile). This is
roughly the unit of analysis that most modern crime research has continued to use
(Weisburd et al., 2009), with the exception of some more recent studies that work
at smaller census area boundaries of approximately 100-200 households. Howev-
er, modern environmental criminology theories and recent empirical research
(Weisburd et al., 2004; Andresen and Malleson, 2011) suggest that even the
smallest areal units of analysis (such as census output areas of less than 1000 peo-
ple) hide important intra-area crime patterns. As a result of these discoveries, a
movement in Environmental Criminology began which focused on the ‘micro-
places’ in which crime occurs (Eck and Weisburd, 1995). For example, burglars
choose individual homes based on their individual characteristics (Rengert and
Wasilchick, 1985) so it cannot normally be assumed that a community or neigh-
bourhood is homogeneous with respect to burglary risk. Similarly, recent work on
repeat-victimisation (e.g. Johnson et al. 2007) has identified extremely tight spa-
tio-temporal clustering around individual burglary victims. These findings are par-
ticularly relevant as most crime modelling research uses aggregate data that hide
these important micro-level patterns (see section 2.3 for more details).



2.2 Environmental Criminology Theories

The movement in crime research towards using individual-level geographies also
resonates with the major theories in Environmental Criminology. As this section
will illustrate, these theories focus specifically on the spatio-temporal behaviour of
the individual(s) involved in crime events and the intricacies of the immediate sur-
rounding physical environment.

Routine activity theory (Cohen and Felson, 1979) explores the interactions be-
tween victims, offenders and other people who might influence an individual
crime event (e.g. passers-by, police, etc.). For the crime to occur, the theory stipu-
lates that an offender must meet a victim at a time and place with an absence of
others who might prevent the crime. This convergence depends on the routine ac-
tivities of the people involved. For example, a burglar might come into contact
with a vulnerable house (the potential victim), but might not be able to commis-
sion a crime if the routine activities of the residents or neighbours mean that they
are in the area at the same time and will notice a crime taking place.

The geometric theory of crime (Brantingham and Brantingham, 1981) shares
many similarities with routine activities theory, but focuses more explicitly on the
interdependencies between a person’s knowledge of the environment, i.e. their
awareness space, and criminal opportunities. The theory considers how the routes
used to travel around a city influence a person’s awareness space and hence the
spatio-temporal locations in which offenders are likely to commit a crime. Bur-
glars do not search for targets at random; instead they are likely to search near im-
portant ‘nodes’ such as friends’ houses, schools, work places, or places of leisure
(Brantingham and Brantingham, 1993). Thus house vulnerability to burglary is
less relevant if the house itself is not within the awareness space of a person who
might attempt to burgle it.

The final theory that the model logic attempts to replicate is the rational choice
perspective (Clarke and Cornish, 1985). This suggests that the offender’s decision
to offend is a cost-benefit analysis weighing up potential rewards of a successful
crime with the risks of being apprehended. Thus a crime will only be committed if
it is perceived as profitable. It is important to view the concept of rationality as
‘bounded’, such that a decision that might appear to be optimal to one person (in a
specific situation with their own thoughts and motivations) might be blindingly ir-
rational to another.

Although they describe different elements of the crime system, the theories
largely agree on the mechanisms that lead to the spatio-temporal patterns of crime.
A factor that is particularly relevant to crime modelling is that in each theory the



emphasis is on the individual-level nature of crime occurrences. The crime system
is driven by the behaviour and interactions of individual people situated in a high-
ly detailed local environment. Aggregating such a system (either spatially or tem-
porally) will hide important lower-level dynamics that ultimately explain why
crime takes place in the places that it does.

2.3 Traditional Crime Models

Traditionally, quantitative crime models have used area-based crime data in re-
gression style modelling (see e.g Brantingham and Brantingham, 1998).
Kongmuang (2006) provides a comprehensive review of the methods employed,
where a number of common characteristics can be identified. For example, model
accuracy is usually estimated through the Akaike Information Criterion (AIC) or a
goodness-of-fit statistic such as R*. Other drawbacks are outlined below although
we do recognise that there are also many advantages of statistical methods which
are not discussed further in this chapter.

Firstly, statistical models generally utilise simple functional relationships, e.g.
they cannot adequately capture the evolution of individuals through time and the
effect this has on their behaviour. In contrast, ABMs can represent these complex
real world interactions including the intricate personal trajectories and histories of
individuals. Statistical techniques generally aim to reduce variables to enhance
explanation at a cost to predictive power, so cannot account for the complexity of
the environmental backcloth and the non-linear human-human or human-
environment interactions that drive the system.

Secondly, the use of spatially aggregated data -- to represent crimes, de-
mographics, the environment, etc. -- hides important lower-level relationships be-
tween crime, individuals and the environment. Similarly, it is not possible to cap-
ture important features of the physical environment such as accurate travel times,
impassable barriers or road-network layout unless individual environment objects
(roads, buildings, parks, etc.) are accounted for explicitly.

Finally, linear models may be “computationally convenient” (Eck and Liu,
2008), but they cannot represent the dynamics of complex systems. Complex sys-
tems are driven by the behaviour of and interactions between the individual com-
ponents of the system. These fundamental drivers of the system are lost when the
underlying data are aggregated.



In general, the dynamics that drive the crime system (as with other social sys-
tems) are not captured directly in aggregate models. This makes it difficult both to
explore criminology theory -- which inherently focuses on the spatio-temporal be-
haviour of individual people -- and to make crime forecasts at the same time.
ABMs, however, provide an alternative approach by allowing these individual en-
tities to be modelled directly. In this manner, it is possible to capture the true rich-
ness of the system and much more closely reflect an individual’s unique circum-
stances and behavioural characteristics.

3 Agent-Based Models (ABMs) of Crime

ABMs have a number of clear advantages over other modelling and analysis tech-
niques when it comes to understanding crime. Crime tends to be the result of indi-
viduals acting on the basis of their history and current environment, either alone or
in collaboration. ABMs, unlike other techniques, take as their starting point unique
individuals (‘agents’) with their own history and decision making capacities, and
these individuals are placed in a complicated environment to discover the resultant
behaviour. As in a real crime system, agents will both respond to and adjust the
current environment (e.g. agents may cause an area’s attractiveness to housebuy-
ers to fall). The agents in ABMs can interact and collaborate in group behaviour
and decision making. However, there is also no reason why larger, aggregate
groupings and decision making (e.g. government policy groups) cannot also be
represented and respond to the system. In short, ABMs represent social systems in
the way we intuitively understand social systems ourselves.

This does not, of course, necessarily make such models better ways of under-
standing such systems. However, in practice there are considerable advantages to
matching our understanding of reality as closely as possible. Firstly, ABMs allow
for the direct representation of decision making using rulesets that act at the indi-
vidual level. This means that the errors associated with representing behaviour are
less likely than, for example, if such behaviours were represented as aggregate
mathematics. The concentration on rulesets and behaviour also means that ABMs
can act as a framework for the representation and testing of qualitative social theo-
ry described at the individual level, something much harder to achieve with math-
ematical or statistical representations. ABMs act as a framework for understanding
emergence, that is, how behaviour at the individual level can generate complex
patterns at some larger scale (like crime hotspots). Secondly, agents can have an
individual history. Statistical techniques are limited in their ability to track how
life-events and the environment interact. While it is possible to run statistical mi-



crosimulations that look at the results of such interactions, after multiple events
and with low populations, these techniques become problematic. With ABM, in-
dividuals carry their history with them, either implicitly or explicitly, and this his-
tory can be analysed to see how it affects their decision making. Finally, ABMs
can represent a wide range of environments, from the very abstract, to the ex-
tremely realistic. This allows us to explore and understand the effects of the envi-
ronment on behaviour at a very detailed level. For example, it is possible to look
at the effect that a specific change in a public transport route might have on crimi-
nal opportunity. Moreover, once an ABM is set up, a wide variety of different
analyses and scenarios can be run without adjusting the underlying model, unlike
many other techniques, where the model must be specifically designed from the
ground up to answer a single research question.

Given these advantages, it is somewhat surprising how slowly the development
of ABM of crime has progressed. Nevertheless, the last ten years or so has seen an
increased interest in the technique, and a number of groups are building ABMs of
crime of various levels of detail. In general, most current ABMs of crime attempt
to replicate the major components of the criminal system to some degree: offender
motivation and decision-making, offender behaviour and movements, victimhood
and guardianship. However, given the complexity of the system, it should come as
no surprise that most concentrate on building realism in one of these components
rather than all of them. In addition, the realism of the environment within the
model varies a great deal, not least because of the broad division in agent-based
modellers between those who believe ABM should be utilised as abstract ‘thought
experiments’ to explore key theoretical behaviours and ideas, and those who be-
lieve that it is possible to build a more detailed model of the real world for explo-
ration and prediction (see, for example, Di Paolo et al., 2000, for arguments for
the former).

Malleson et al. (in press) give a full review of ABMs used to model crimes
that have a predictable geographical component (that is, crimes like burglary and
street theft, as opposed to crimes like domestic violence and fraud, on which geog-
raphy have less obvious effects). However, notable models at the more abstract
end of the scale include Winoto (2003); van Baal (2004); Brantingham and Bran-
tingham (2004; Brantingham ef al. 2005a;b; 2008); Dray et al. (2008a), and Wang
et al. (2008), while more realistic models have been attempted by Liu et al.
(2005), Melo et al. (2005), Birks (2005; 2007, Birks et al. 2008, 2012) Malleson et
al., (2009; Malleson, 2006); Groff (2006; 2007a;b; Groff and Mazerolle, 2008),
and Malleson (2010; Malleson et al. 2010a; b; ¢), and on social, but not geograph-
ical realism, Hayslett-McCall ez al. (2008). In addition, the technique is seeing a
growing use in modelling crimes where geography is secondary to social organisa-



tion, e.g. gang crime and civil violence (Lustick 2006; Huddleston et al. 2008;
Bhavnani ef al. 2008; Cherif et al. 2009; Egesdal ef al. 2010). Some of the ethical
issues facing agent-based modellers of crime are explored by Evans (2012).

4 Optimisation of Complex Models

We now consider the specific issue of parameter estimation in ABMs using meth-
ods of optimisation, which are techniques that search a problem space for the best
solution possible given the complexity of the problem, the computational re-
sources available and the objectives or constraints of the problem (Goldberg,
1989). Mathematically this involves finding what are referred to as a set of deci-
sion variables that minimise or maximise one or more objective functions (i.e. a
function specific to the problem which determines how good the solution is) sub-
ject to satisfying a set of constraints. For example, the decision variables may be
the quantity of material that flows between a set of different distribution points
where the objectives are to minimise the distance travelled while maximising the
profit subject to certain routes not being allowed due to direction of flow or exces-
sive gradients. Some problems may have a single optimal solution where the main
challenge is finding the global optimum in a solution space characterised by mul-
tiple local minima (or maxima depending upon the way the problem is formulated)
without having to fully search the whole parameter space. In contrast, in more
complex problems or in those with multiple objectives, there is no single solution
that simultaneously optimises all conflicting objectives. The result is a set of alter-
native optimal or feasible solutions of similar fitness that represent trade-offs be-
tween the different objectives. Optimisation provides the mechanism to find this
set of solutions, which are called Pareto optimal solutions. Other methods, such as
multi-criteria decision making, are then needed to further evaluate the solutions
that are identified during the optimisation process. Many real world problems are
characterised by the need to take conflicting multiple objectives into account. In
hydrology, for example, multi-objective optimisation methods are used extensive-
ly for calibrating physical and conceptual hydrological models (Yapo et al., 1998;
Vrugt et al., 2003; Efstratiadis and Koutsoyiannis, 2009).

Optimisation can be divided into the following seven steps: identify the pa-
rameters in the problem or model; choose the design variables (or those which re-
quire optimisation) from this set of parameters; outline any constraints which must
be taken into account during the optimisation; choose appropriate objective func-
tions, i.e. methods of evaluating the solution or model performance; set the allow-
able range for the decision variables; choose an appropriate optimisation algo-
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rithm; and run the algorithm to obtain the results (Deb, 2001).The next section
deals specifically with step 6, i.e. different methods of optimisation.

4.1 Methods of Optimisation

A number of different optimisation methods have been developed in the past to
handle problems involving single and multiple objectives. Classical (or conven-
tional) optimisation methods were developed using differential calculus. They in-
volve finding an analytical solution on functions that are continuous and differen-
tiable, e.g. the simplex method (Maros and Mitra, 1996). These are referred to as
strong methods and are deterministic. On the other end of the spectrum are weak
classical methods, which involve a random or stratified random sampling of the
search space in order to find the solution, which are inefficient methods. These
classical methods have a number of disadvantages (Goldberg, 1989; Deb, 2001).
For example, the convergence of an optimal solution depends upon the initial so-
lution and they are not efficient for problems with discrete rather than continuous
search spaces. Moreover, they are not efficient in solving non-linear, complex
problems with large search spaces and many conflicting objectives and they can-
not be parallelized efficiently since they use a single search path to obtain the op-
timal solution. For this reason, a set of intermediate methods have been developed
that contain a stochastic element and which use more effective search strategies to
avoid being trapped in local minima, e.g. simulated annealing, tabu search and
evolutionary methods such as genetic algorithms (GAs). The focus of this research
is on GAs, which are described in more detail in the sections that follow.

4.2 Genetic Algorithms (GAs)

GAs are intrinsically suited to optimisation when the fitness landscape is complex,
changes over time or has many local optima. Through inherent parallelism, they
are able to simultaneously explore numerous potential solutions (Holland, 1992;
Mitchell, 1998; Goldberg, 1989). Within a GA, data are represented as binary
strings or the individuals that make up the population. These individuals are also
referred to as chromosomes where each chromosome is comprised of genes (or the
variables in the string). Through the evaluation of the fitness of one string, a GA is
also simultaneously sampling each of the many other spaces to which it belongs.
Over several fitness evaluations, the GA builds up an increasingly accurate value
of the average fitness of each of these spaces. Through the evaluation of a small
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number of individuals, a much larger group is being evaluated implicitly. By this
mechanism, a GA can ‘home in’ on the space with the highest-fitness individuals.
This combination of parallelism, along with the other major components of a GA
which produce the evolution of fitter solutions, i.e. selection, mutation and crosso-
ver, make this approach a very powerful and efficient tool.

GAs follow the same basic set of steps as outlined in Figure 1. A population is
first initialised and the objective functions are then set. The fitness of each indi-
vidual is assessed and on the basis of this, the fittest in the population are selected
for reproduction via crossover. This continues over many generations or iterations
until predefined criteria are satisfied, e.g. a certain threshold value for the objec-
tive function has been reached. For a more detailed overviews of GAs, the reader
is referred to Goldberg (1989), Davis (1991), Michalewicz (1992), Béck and
Schwefel (1993) and Eiben and Smith (2003). For an overview of GAs in the con-
text of geographical optimisation, Xiao (2008) provides an excellent introduction.

Calculate the

I . Assess the
Inmahs_e objective values fitness of each
Population of the individual
individuals

Selection of
the fittest
individuals for
reproduction

Creation of new
individuals via
crossover and

mutation

Fig. 1. The basic operation of a GA (adapted from Weise, 2009).

The following sections will briefly outline the main generic parameters and pro-
cesses that all GAs share.

4.2.1 Initial population

At the start of an optimization, the GA requires a set of initial solutions. There are
two ways of forming this initial population. The first involves randomly generat-
ing solutions while the second uses some expert knowledge about the problem or
another method to generate this initial population. The advantage of the second
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method is that the GA starts with a set of approximately known solutions and
therefore may converge to an optimal solution faster than the first method. The
disadvantage is that genetic diversity may be restricted and limit the ability of the
GA to generate optimal solutions that might only be arrived at through a random
starting position.

4.2.2 Representation

Most of the problems suitable for GAs involve identification of a set of parameters
that need to be represented in such a way as to allow evolutionary operators to be
effectively applied. As GAs are robust, there is little need to rigorously identify
the ‘best’ representation for a particular problem (Goldberg, 1989). There are two
broad methods that can be used for representation: binary alphabets (Holland,
1975) and real numbers (Davis, 1991; Beasley et al., 1993; Michalewicz and Jani-
kow, 1991; Michaelewicz, 1992). There is no single ‘correct’ coding method for
encoding a problem; the mode of representation is dependent on the problem.
However, the coding sequence must adequately represent the problem to ensure
that the optimal solution is available to the algorithm and be bounded by an allow-
able range for the parameters.

4.2.3 Fitness and Selection

In order to evolve better performing solutions, the fittest members of the popula-
tion are selected and randomly exposed to mutation and recombination (as de-
scribed below). This produces offspring for the next generation. The least fit solu-
tions die out through natural selection as they are replaced by new recombined,
fitter, individuals. Evaluation of the fitness of the individuals involves some form
of comparison between observed and model data, or a test to see if a particular so-
lution meets pre-defined criteria or constraints. In this work, the Standardised
Root Mean Square Error (SRMSE - Knudsen and Fotheringham, 1986) is used to
estimate the difference between real crime data and the model results.

There are number of possible ways for selection to take place and Table 1 de-
scribes the main parental selection schemes that recur within the literature.
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Table 1. Description of several of the most common forms of parental selection

Selection Description
Type
Ranking The population is sorted from best to worst. The number of copies that an indi-

vidual receives is given by an assignment function and is proportional to the
rank assignment of an individual.

Tournament A random number of individuals are selected from the population. The best in-
dividual from this group is chosen as a parent for the next generation. This pro-
cess is repeated until the mating pool is filled.

Roulette Individuals are mapped to contiguous segments of a line, such that each indi-

Wheel vidual’s segment is equal in size to its fitness. A random number is generated
and the individual whose segment spans the random number is selected. This
process is repeated until the desired number of individuals is obtained.

Truncation Truncation sorts individuals according to their fitness (from best to worst). Only
the best individuals are selected to be parents.

4.2.4 Selection pressure

Along with the selection method, the selective pressure parameter is critical. This
parameter measures the probability of the best individual being selected compared
to the average probability of selection and drives the algorithm towards a solution.
The value for this parameter should be carefully selected as too much selective
pressure can lower the diversity within the population resulting in sub-optimal so-
lutions. Conversely if the selection pressure is too low, the population remains too
diverse and the optimal solution is not found.

4.2.5 Recombination/Crossover

The main reproductive genetic operator is recombination (also known as crosso-
ver). This is the process by which new individuals are produced by combining the
information from two parent chromosomes. The resulting offspring inherits com-
ponents from both parents (Figure 2). This allows the EA to explore new areas in
the search space. Without recombination, the offspring are simply duplicates of
the parents, which does not provide the opportunity to improve the fitness of the
population.
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Parent 1
GT3T13] 271 ]3] [B]5]2]3] Child 1
»[13]1]3] [2]1]1]2] [3]5]2]3]

Clrfr]s][2]1]1]2] [3]2]2]3]

Parent 2
Fig. 2. Representation of recombination between two parents to produce an offspring

There are several methods of recombination available; the suitability of the
method is dependent on the types of genes or variables stored in the chromosome.
The three most common approaches are intermediate, line and extended line re-
combination methods. In intermediate recombination, the variable values of the
offspring are randomly chosen from between the values of the parents. Normally
values of up to 25% outside this range can be used, which has been chosen to en-
sure that statistically a space covered by the recombination does not decrease in
size with time leading to a loss in diversity. The position of the variable chosen on
the line determines how much each parent contributes to the offspring and is cho-
sen uniformly at random for each gene. Line recombination is similar to interme-
diate recombination except that the same random number is used for selecting the
value of every gene in a chromosome. Extended line recombination is different
from the above techniques in that the variable range is not limited to a range
around the parents. The probability of any particular value being taken is not uni-
form but varies with a high probability near the parents and a low probability far
away from the parents. The probability distribution can also be chosen to favour
the fitter parent. The value controlling the amount of the parent that is used is gen-
erated randomly and then used for selecting the value of subsequent genes.

4.2.6 Mutation

The process of recombination can produce a very large number of new individu-
als. However, if the GA is moving towards an optimal solution (and hence a
smaller population pool), it is possible that the available solutions are suboptimal.
Through the alteration of one or more parts of the chromosome, mutation intro-
duces diversity into the selected population which can potentially breed fitter solu-
tions (Figure 3). The mutation rate is generally a random probability determined
by initial experimentation.
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Mutation

Fig. 3. Illustrating the mechanism of mutation

The literature offers no strict guidelines for the selection of the size of the mu-
tation step. The optimal step-size depends on the research problem and may even
vary during the optimisation process. Small mutation steps are acknowledged in
the literature as being successful, especially when the individual is already well
adapted. However, large mutation steps can, when successful, produce good re-
sults very quickly. A good mutation operator should therefore produce small step-
sizes with a high probability and large step-sizes with a low probability.

In the next section, the ABM burglary model is introduced along with the set-
tings of the GA for parameter estimation.

5 The Agent-Based Burglary Model

The model utilised here attempts to provide a detailed burglary model at the city
scale that includes a) detailed offender drivers, decision making, and behaviour; b)
realistic victim distributions and attributes, including daily variations in household
occupancy; and c) a realistic environment including a full transport network and
reasonable levels of guardianship, including community guardianship. A full ODD
protocol (Grimm and Railsback, 2005; Grimm et al., 2006) description of the
model can be found in Malleson et al. (in prep), while a detailed description of the
model design and data preparation is given in Malleson (2010). The full model us-
es the PECS framework (Schmidt, 2000; 2002; Urban 2000) for internal offender
decision making can be found in Malleson et al. (2010b). However, to simplify the
model for the application of the GA, a simpler behavioural framework was im-
plemented, the details of which are outlined below. Calibration and validation of
the model were carried out manually in the past; details can be found in Malleson
et al. (2010c). Here, we briefly describe the model in sufficient detail (using a
simplification of the ODD protocol) to understand the broad model workings and
how the parameters that will be calibrated fit into the model.
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5.1 Purpose of the Model

The motivation behind the model is to simulate the spatio-temporal locations of
burglaries at the city scale and, ultimately, to provide a framework for modelling
and testing our understanding of the criminal system. The model runs for a fixed
length of simulated time -- sufficient to reach dynamic equilibrium -- so does not
predict the actual number of crimes. Instead, we focus here on the values of the
behavioural parameters that drive the behaviour of the agents to determine what
these tell us about the behaviour of burglars in the real world.

There is no notion of the processes that lead to someone ‘becoming’ a burglar;
each agent has only one purpose which is to commit burglary. In addition, there is
no notion of punishment or capture — offenders are not removed from the system,
nor are their drivers adjusted by any kind of punishment. Although variables such
as community guardianship help to determine whether a property is chosen for a
crime, a chosen target is always successfully victimised. There is also no commu-
nication between agents; all offenders are currently lone individuals without a
shared understanding.

The model generates a spatial distribution of crimes, taking into account a va-
riety of offender behaviours, environmental factors, and victim and guardian at-
tributes.

5.2 Data and the Study Area

The study area for this research covers 1,700 hectares in the city of Leeds, UK.
The area contains some of the most deprived neighbourhoods in the country and
was earmarked for an ambitious urban renewal scheme which makes it an ideal
candidate for predictive crime modelling. Figure 4 illustrates the data used to rep-
resent the study area in the simulation.

* Communities are generated using the Output Area geography (a census area
boundary containing approximately 100 houses) and classified using the Output
Area Classification (OAC: Vickers and Rees, 2007). This allows community
types to be compared quantitatively.

* The home locations of offenders were estimated from police recorded crime da-
ta on convicted burglars.
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* Roads and buildings are established from Ordnance Survey MasterMap data
(the Integrated Transport Network and Topographic Area data sets respective-
ly)

* Expected data are required to validate the model. The data used here are the
number of burglaries per Output Area that occurred in 2001. This year was
chosen because it corresponds closely with the timing of the UK census from
which community demographics are estimated. As mentioned in section 4.2.3,
the SRMSE is used to compare model results to expected data at the output ar-
ea level.

Communities and Offenders =~

Expected Crime Counts

o Bl
s W9

Communities @ Offender Homes

- 1 - Blue Collar Communities D Study Area Boundary
2- City Living [ simuiation Boundary
3 - Countryside

[ 4 - Prospering Suburbs
[ 5- Constrained by Circumstances
6 - Typical Traits

~

- Multicultural

© Crown Copyright/database right 2012. An Ordnance Survey/EDINA supplied sen(ke

Fig. 4. Datasets used in the ABM of burglary

Finally, a buffer zone is used to reduce the boundary effects in the results. Thus all
burglaries that occur outside the study area boundary are discounted when simu-
lated burglaries are compared to real data.
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5.3 State Variables and Scales

5.3.1 The Agents

The model is comprised of agents representing offenders. Victims and guardians
are represented through environmental variables, e.g. the estimated level of com-
munity cohesion. Each offender agent is assigned a home building (and associated
community) at model initialisation. This location, derived from real offender data,
is where the agent lives. The main agent variable, which changes during the model
run, is the burglary motive. This variable increases over time and determines
whether or not a burglar will choose to target an individual house; more details
follow in section 5.3.3. Once a burglary has been committed, this level falls to ze-
rO.

5.3.2 The Environment

Objects within the environment build up a substrate in which the agents act. There
are three types of objects:

* Roads are used to restrict the possible spatial locations of the agents. In the full
version of the model, roads can be used to simulate different transport speeds
and routes (e.g. a car driver moving faster along a major road) but in this sim-
plified version all agents move at a constant speed of 4 miles per hour (a fast
walking pace).

* Buildings represent the houses in which agents live and also represent the po-
tential victims of burglary. Their spatial locations and attributes have been es-
tablished from the Ordnance Survey MasterMap geographic data product.

* Communities represent the neighbourhoods in which the houses are located.
They will influence whether or not a burglar chooses a particular house and al-
so determine where an offender starts their search.

Section 5.2 outlined the data sources that have been used to generate these lay-
ers while Table 2 summarises the fixed attributes for the buildings and communi-
ties. As section 5.3.3 will illustrate, these will influence an agent’s burglary deci-
sion about where to look for victims and which individual building to target.
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Table 2. Parameters associated with communities and buildings

Parameter Description

(abbreviation)

COMMUNITIES

Attractiveness A measure of the abundance of valuable goods that is likely to be found
(ATT) in houses within the community. This measure was calculated from fac-

tors such as the percentage of full time students and the percentage of
houses with more than two cars.

Social Type A vector containing the 41 different OAC variables. This can be used to
(SocT) compare the Euclidean difference between two communities.

Collective Effica- A measure of the cohesion of the community, calculated from a combina-
cy (CE) tion of deprivation, residential stability and ethnic heterogeneity.
BUILDINGS

Accessibility An estimate of how easy a building is to enter based on its spatial proper-
(ACC) ties. Houses with many exposed walls are assumed to contain a larger

number of doors or windows to provide access to a burglar.

Visibility (VIS) A measure of how visible a building is to its neighbours and to passers-
by. This is calculated from the size of any attached garden and the num-
ber of additional buildings within a buffer zone.

5.3.3 Process Overview and Scheduling

The model is initialised with data that allocates offenders to households, attributes
to buildings and transport components, and initialises the state variables of the of-
fenders. Offenders start with nothing in their awareness space. At each time step,
all offenders decide on actions determined by their internal states. The sequence of
offenders is random.

In its full implementation, the model uses an advanced behavioural framework
to equip the agents with realistic daily behaviour including sleeping, using sub-
stances and socialising. However, the focus of this work is to better understand the
relationship between the behavioural parameters and simulated burglary locations
so the behaviour of the agents has been simplified by removing non-burglary ac-
tivities. Therefore, activities such as socialising or using substances will not have
an influence on the final locations of the burglaries. As mentioned previously,
each agent is driven by a single ‘burglary motive’, which increases over time until
a burglary is committed. A burglar’s behaviour schedule is as follows:
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1. At 09:00 simulated time, the agent chooses a community to travel to in search
of a burglary target. The following formula is used to assign the likelihood, L,
of choosing each community, a, relative to their current location, ¢, and their
home community, 4:

L =wil*(1/dist(c,a)) + w2*Attract(h,a) + w3*SocialDiff(4,a) (1
+ w4*PrevSucc(a)

where dist(c,a) represents the distance (travel time) from their current location to
the target community, Attract(h,a) represents the relative attractiveness of the
community compared to the agent’s home area, SocialDiff(4,a) returns the simi-
larity of the target community and the agent’s home (where similar communities
are favourable) and PrevSucc(a) returns the number of times an agent has had a
successful burglary in the past. Importantly, the weights wl to w4 can be used to
assign an importance to each factor -- if a weight is large then the parameter will
have a greater influence on the agent’s behaviour. Roulette-wheel-selection is
used to randomly choose a community from all of those available such that those
with a greater likelihood value have a greater chance of being chosen.

2. On the way to their destination, the agent observes each house that they pass
and a ‘risk’ for burglary is calculated as follows:

R=WwS5* CE+w6*ACC + w7*VIS) /| (w5 + w6 + w7) 2)

where CE is the perceived collective efficacy of the surrounding area, ACC repre-
sents the accessibility of the target building (how easy it is to enter) and VIS repre-
sents the visibility of the building to neighbours and passers-by (where high visi-
bility increases the risks). If this risk value is lower than the agent’s current
burglary motive, then the agent might commit a burglary - the probability of actu-
ally committing a burglary increases exponentially as the difference between risk
and motive increases. Again, weights applied to each parameter determine how
much of an influence each factor will have over the agent’s decision.

If the burglary is successful, then the agent travels home. In this manner the
model has been configured to allow for a variation in offending behaviour (the
same agent will not always choose the same house) but agents will, on average,
always commit one burglary per day.

3. If the agent reaches their chosen destination without committing a burglary,
then they repeat the process. This continues until a victim has been found.
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6 Exploring the Dynamics of Criminal Behaviour

The model outlined in section 5 is an advanced ABM that attempts to closely rep-
resent criminological theory and the experiences of crime-reduction experts in the
field. There are 7 different variables that determine where burglar agents will start
searching for targets and which houses, in particular, they will actually victimise.
Although some experimentation with changing the parameters can be undertaken
manually through trial-and-error, the number of combinations that can be tested,
even with 7 parameters, is limited. Thus, the GA provides a more comprehensive
approach to more intelligently explore the entire 7-dimension parameter space.
This can help to determine which parameters have the most substantial influence
on the model, and the values may eventually inform our understanding of the be-
haviour of burglars in the real world.

A set of preliminary experiments have been undertaken here using a GA to
find the values of the 7 parameters. A population of 20 individuals was used and
the GA was tracked over three iterations. The fitness of each model configuration
(or ‘chromosome’) is provided in Figure 5, which is plotted against the iteration
number. As would be expected, the GA is able to identify which model configura-
tions result in the lowest error and, hence, which should be used to generate the
configurations in the next iteration. Accordingly the model error decreases with
each subsequent iteration. Figure 5 also highlights some clustering of fitness val-
ues after the initial (random) population undergoes an evolution. This illustrates
that the algorithm is fine-tuning the ABM in different parts of the parameter space
that have the lowest error.

Table 3 provides the values for each of the parameters for the models with the
lowest error after each iteration. The GA appears to converge very quickly to an
optimal configuration, which is found after the first iteration and does not change
substantially over the next few iterations, although a marginally different configu-
ration is found in iteration 3. This implies that the algorithm has found a global
maximum. Alternatively, the model may need to run many more generations, but
as discussed in the next section, the computational load in using a GA for parame-
ter estimation of this ABM was too high to allow for further experimentation at
this stage.
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Fig. 5. Fitness of all the chromosomes by GA iteration
Table 3. Values of the parameters after each iteration
Iteration Fitness wl w2 w3 w4 w5 w6 w7
0 1.372 0.719 0.668 0.736 0.683 0.541 0.291 0.984
1 1.362 0.719 0.668 0.736 0.683 0.541 0.291 0.984
2 1.372 0.719 0.668 0.736 0.683 0.541 0.291 0.984
3 1.365 0.689 0.717 0.781 0.727 0.510 0.241 1.000

The weights: w1l = distance; w2 = attractiveness; w3 = SocialDifference; w4 = PreviousSuccess;
w5 = CollectiveEfficacy; w6 = Accessibility; w7 = Visibility
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Figure 6 illustrates the change in parameter value for these best models. Inter-
estingly, the Visibility parameter is consistently assigned a high value, which im-
plies it is an important factor in the agent’s decision compared to other variables.
Conversely, Accessibility appears to have only a marginal importance. Explana-
tions for these findings will be discussed in the following section.
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Fig. 6. Parameter values for the best model after each GA iteration

To review the results spatially, Figure 7 presents maps of the burglary counts
generated by the three best model configurations after GA iterations one (‘Model
1), two (‘Model 2°) and three (“Model 3”). The results are presented in two forms.
The maps on the left hand side of Figure 7 present results that have been spatially
aggregated to the geography of the communities (i.e. each community has a count
of burglaries that were committed during the model run) and the maps on the right
hand side of Figure 7 present point density estimates produced using the Kernel
Density Algorithm (KDE). The use of KDE arguably presents a more accurate
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picture of the underlying point patterns and is commonly used by police analysts
(Chainey and Ratcliffe, 2005).

Model 1 \

Model 2 _\/

%

This work is based on data provided through EDINA UKBORDERS with the support of the ESRC
and JISC and uses boundary material which is copyright of the Crown.
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Fig. 7. Results from the three best model iterations after 1, 2 and 3 iterations

The model results show consistently high numbers of burglaries on the western
side of the study area, which matches the general pattern exhibited by the ob-
served data. Interestingly, these larger scale patterns are similar regardless of the
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differences in configuration, which suggests that small changes to any of the
agents’ behavioural parameters have little effect on the model results. Some small
differences can be seen in the centre of the study area where some small hotspots
are picked up differentially between the three models. Any discrepancies are likely
to be a result of the probabilistic nature of the model (recall that with sufficient
computing power each model would have been run a large number of times to cal-
culate an average error value) although there would be scope to investigate what
might be generating these differences, e.g. the slight decrease in the distance, col-
lective efficacy and accessibility parameters in ‘Model 3’ and a slight increase in
all the others. However, it is encouraging that small parameter changes have little
effect on the model results because, were this not the case, it would be more diffi-
cult to be confident in the robustness of the results. This represents another con-
siderable advantage of the application of an optimisation algorithm to this model.

7 Discussion and Conclusions

This paper presented some very preliminary attempts at using a GA to estimate the
parameters of an ABM of burglary. These initial findings indicated that the weight
associated with the visibility parameter was consistently high. This means that
with the models that closely matched the observed crime data, the agents were
more likely to burgle houses that were well hidden from their neighbours and
passersby. In the ABM used here, this feature was estimated by combining the
physical size of a house’s garden with a measure of its isolation (i.e. the number of
other properties in the immediate surrounding area). Conversely, the accessibility
parameter was consistently the least important. This parameter is calculated by es-
timating the number of exposed walls in each building such that detached houses
are at a greater risk of being burgled than semi-detached houses or terraces be-
cause there are likely to be a larger number of entry points. Why this building fea-
ture appears to be less important, however, is less clear. One of the next steps will
be to explore these geographical parameters is more detail.

However, one major issue with the GA approach as utilised in this example
was the large amount of computational time required to run the model, even with
only three iterations per GA run. The ABM itself is extremely computationally
expensive. Even after some simplifications from the original configuration (Mal-
leson et al., 2010b), a single model run still required approximately 10 hours to
complete on a normal desktop machine. The results discussed here were generated
with the use of a 16-core Intel Xeon E5-2670 (“Sandy Bridge”) virtual machine
provided through Amazon Web Services (Expdsito ef al. 2013), but even with this
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hardware, each GA iteration -- with a population of only 20 chromosomes -- re-
quired approximately 20 hours to complete. An associated side effect of the com-
putation time is that it is not feasible to run each individual model configuration
multiple times, which would be preferable because it would give a more compre-
hensive assessment of the model error (the simulation is probabilistic so each run
will lead to slightly different results). Future work will port the model to more
powerful computer systems and run a GA with a larger population for a larger
number of iterations and with multiple runs per model configuration. Only then
will it be possible to more exhaustively examine the behaviour of the parameters
in relation to burglar behaviour in a real-world setting.

The implications of using such an approach when scaling up an ABM to a
much larger area, with larger numbers of individuals and with a much larger num-
ber of parameters is clearly evident from these preliminary experiments. Ambi-
tious ABM projects such as modelling the entire economy of the United States
(Farmer and Foley, 2009) will clearly face major computational challenges in the
future. But without methods like GAs, the task of parameter estimation would
render such modelling approaches infeasible.
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