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Reiter’s properties (P1) and (P2)

for locally compact quantum groups
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Abstract

A locally compact group G is amenable if and only if it has Reiter’s property (Pp)

for p = 1 or, equivalently, all p ∈ [1,∞), i.e., there is a net (mα)α of non-negative

norm one functions in Lp(G) such that limα supx∈K ‖Lx−1mα −mα‖p = 0 for each

compact subset K ⊂ G (Lx−1mα stands for the left translate of mα by x−1). We

extend the definitions of properties (P1) and (P2) from locally compact groups to

locally compact quantum groups in the sense of J. Kustermans and S. Vaes. We show

that a locally compact quantum group has (P1) if and only if it is amenable and that

it has (P2) if and only if its dual quantum group is co-amenable. As a consequence,

(P2) implies (P1).

Keywords : amenability, co-amenability, Leptin’s theorem, locally compact quantum groups, oper-

ator spaces, Reiter’s property (P1), Reiter’s property (P2).
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46L89, 47L25, 47L50, 81R15, 81R50.

Introduction

A locally compact group G is said to be amenable if there is an invariant mean on L∞(G),

i.e., a state M of the von Neumann algebra L∞(G) such that

〈Lxφ,M〉 = 〈φ,M〉 (φ ∈ L∞(G), x ∈ G).

(If f is any function on G and x ∈ G, we denote by Lxf the left translate of f by x, i.e.,

(Lxf)(y) := f(xy) for y ∈ G.) Approximating M in the weak∗ topology of L∞(G)∗ by

normal states, i.e., non-negative, norm one functions in L1(G) and then passing to convex

combinations, we obtain a net (mα)α of such functions in L1(G) that is asymptotically

invariant in the sense that

lim
α

‖Lx−1mα −mα‖1 = 0 (x ∈ G). (1)
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On the other hand, whenever we have a net (mα)α of non-negative norm one functions

in L1(G) satisfying (1), then each of its weak∗ accumulation points in L∞(G)∗ is a left

invariant mean, so that G is amenable.

Even though it is not obvious, the net (mα)α can be chosen for amenable G in such

a way that the convergence in (1) is uniform in x on each compact subset of G ([Pie,

Proposition 6.12]), a condition called Reiter’s property (P1) in the literature. More gen-

erally, one can define Reiter’s property (Pp) for any p ∈ [1,∞) ([R–St, Definition 8.3.1]),

but as it turns out, the properties (Pp) are all equivalent ([R–St, Theorem 8.3.2]). In

[Run 1]—see Secton 1 below—, the equivalence of amenability, (P1), and (P2) was used

to prove Leptin’s theorem ([Lep]): G is amenable if and only if A(G), Eymard’s Fourier

algebra ([Eym]), has a bounded approximate identity.

Leptin’s theorem assumes a very natural form in the language of Kac algebras (see

[E–S 2]). In this language—using the terminology of [B–T]—, Leptin’s theorem reads as:

a locally compact group G, if viewed as a Kac algebra, is amenable if and only if its Kac

algebraic dual is co-amenable. Hence, it is only natural to ask whether Leptin’s theorem

holds true for arbitrary Kac algebras: a Kac algebra is amenable if and only if its dual is

co-amenable. In [Voi], D. V. Voiculescu showed that, indeed, the co-amenability of a Kac

algebra implies the amenability of its dual. In [E–S 1], it was claimed that the converse

is also true, but the proof given in [E–S 1] contains an error. Ultimately, Z.-J. Ruan was

able to salvage the result at least for discrete Kac algebras ([Rua]) whereas the general

case remains open.

Recently, J. Kustermans and S. Vaes introduced a surprisingly simple system of axioms

for what they call locally compact quantum groups ([K–V 2] and [K–V 3]): those axioms

cover the Kac algebras (and therefore all locally compact groups), allow for the develop-

ment of a Pontryagin type duality theory, but also seem to cover all known examples of

C∗-algebraic quantum groups, such as Woronowicz’s SUq(2) ([Wor]). For a detailed ex-

position on the history of locally compact quantum groups—with many references to the

original literature—, we refer to the introduction of [K–V 2] and to [Vai]. Of course, the

question whether amenability is dual to co-amenability— so that Leptin’s theorem holds

true for locally compact quantum groups— is a natural one, and—as for Kac algebras—it

is only known to be true in the discrete case ([Tom]).

The problem to prove Leptin’s theorem for general locally compact quantum groups

appears to be formidable. R. Tomatsu’s proof in the discrete case (see [Tom]) makes heavy

use of the particular structure of discrete quantum groups (as does Ruan’s argument in

the discrete Kac algebra case) and does not appear to be adaptable to the general locally

compact situation.

The present paper grew out the attempt to extend the proof of Leptin’s theorem from

[Run 1] to locally compact quantum groups. The problems arising with such an endeavor
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are numerous. How can Reiter’s properties (P1) and (P2) be formulated? How do (P1)

and (P2) relate to amenability and co-amenability, respectively? Finally, are (P1) and

(P2) equivalent?

We proceed as follows. The first two sections are mostly expository. We recall the

definition of Reiter’s properties and reformulate them in a way that will later allow us to

extend them to a quantum group setting. Then we give a brief overview of locally compact

quantum groups (with references to the original literature). With these preparations, we

then define property (P1) for quantum groups and show that (P1) and amenability are

indeed equivalent; both the definition of (P1) and the proof of the equivalence result rely

heavily on the theory of operator spaces ([E–R], [Pis], and [Pau]). We then go on and

define (P2) for quantum groups, and we show that (P2) is equivalent, not just to the

amenability of the quantum group, but to the co-amenability of its dual (again, both the

definition and the result are steeped in operator space theory). As a consequence, (P2)

implies (P1) whereas the converse remains open.

1 Leptin’s theorem through (P1) and (P2)

The original proof of Leptin’s theorem, as given in [Lep], relied on Følner type conditions,

for which it is difficult to see how—if at all—they can be transferred to the context of

general locally compact quantum groups. In [Run 1], an alternative proof—making use

of properties (P1) and (P2) instead—was attempted, but the argument given in [Run 1]

was incomplete.

We begin this section with recalling Reiter’s properties (Pp) for p ∈ [1,∞) ([R–St,

Definition 8.3.1]):

Definition 1.1. Let G be a locally compact group, and let p ∈ [1,∞). We say that G

has Reiter’s property (Pp) if there is a net (mα)α of non-negative norm one functions in

Lp(G) such that

lim
α

sup
x∈K

‖Lx−1mα −mα‖p = 0

for all compact K ⊂ G.

Remarks. 1. It is not difficult to see that G has (Pp) for all p ∈ [1,∞) if and only if it

has (P1) ([R–St, Theorem 8.3.2]).

2. By [Pie, Proposition 6.12], (P1) is equivalent to amenability.

We now indicate how the argument in [Run 1] can be repaired:

Proof of Leptin’s theorem via properties (P1) and (P2). Let G be a locally compact group,

and suppose that G is amenable, i.e., has Reiter’s property (P1) and thus, equivalently,
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(P2). This means that is a net (ξα)α∈A of non-negative norm one functions in L2(G) such

that

lim
α

sup
x∈K

‖Lx−1ξα − ξα‖2 = 0

for all compact sets K ⊂ G. For α ∈ A, define

eα : G→ C, x 7→ 〈Lx−1ξα, ξα〉.

Then (eα)α is a net in A(G) converging to 1 uniformly on all compact subsets of G. By

[G–L, Theorem B2], this is enough for (eα)α to be a bounded approximate identity for

A(G).

The converse implication of Leptin’s theorem is easier to prove (and has long been

known to extend to locally compact quantum groups; see [B–T]).

We conclude this section with a recasting of Definition 1.1 that will enable us later to

extend it from locally compact groups to quantum groups (at least for p = 1, 2).

Let G be a locally compact group, let p ∈ [1,∞), and let g ∈ Lp(G). Then

L•(g) : G→ Lp(G), x 7→ Lx−1g

is a bounded, continuous function with values in Lp(G). Let f ∈ C0(G), and define

fL•(g) : G→ Lp(G) pointwise, i.e., (fL•(g))(x) := f(x)Lx−1g for x ∈ G. Since f ∈ C0(G),

fL•(g) also vanishes at infinity and thus lies in C0(G,L
p(G)) ∼= C0(G)⊗λLp(G) (following

[E–R], we denote the injective Banach space tensor product by ⊗λ).

Let (mα)α be a bounded net in Lp(G). Then it is straightforward to verify that

lim
α

sup
x∈K

‖Lx−1mα −mα‖p = 0

holds for each compact K ⊂ G if and only if

lim
α

‖fL•(mα) − f ⊗mα‖C0(G)⊗λLp(G) = 0

is true for all f ∈ C0(G).

In view of this, Definition 1.1 and the following are equivalent:

Definition 1.2. Let G be a locally compact group, and let p ∈ [1,∞). We say that G

has Reiter’s property (Pp) if there is a net (mα)α of non-negative norm one functions in

Lp(G) such that

lim
α

‖fL•(mα) − f ⊗mα‖C0(G)⊗λLp(G) = 0

for all f ∈ C0(G).

4



2 Locally compact quantum groups—an overview

In this section, we give a brief overview of locally compact quantum groups—as introduced

by J. Kustermans and S. Vaes in [K–V 2] and [K–V 3]—with an emphasis on the von

Neumann algebraic approach. For details, we refer to [K–V 2], [K–V 3], and [vDa].

As a (von Neumann algebraic) locally compact quantum group is a Hopf–von Neumann

algebra with additional structure, we begin with recalling the definition of a Hopf–von

Neumann algebra (⊗̄ denotes the W ∗-tensor product):

Definition 2.1. A Hopf–von Neumann algebra is a pair (M,Γ), where M is a von Neu-

mann algebra and Γ : M → M⊗̄M is a co-multiplication, i.e., a normal, unital, and

injective ∗-homomorphism satisfying (id ⊗ Γ) ◦ Γ = (Γ ⊗ id) ◦ Γ.

Example. For a locally compact group G, define ΓG : L∞(G) → L∞(G×G) by letting

(ΓGφ)(x, y) := φ(xy) (φ ∈ L∞(G), x, y ∈ G).

Then (L∞(G),ΓG) is a Hopf–von Neumann algebra.

Remark. Given a Hopf–von Neumann algebra (M,Γ), one can define a product ∗ on M∗,

the unique predual of M, turning it into a Banach algebra:

〈f ∗ g, x〉 := 〈f ⊗ g,Γx〉 (f, g ∈ M∗, x ∈ M). (2)

If G is a locally compact group, then applying (2) to (L∞(G),ΓG) yields the usual con-

volution product on L1(G).

To define the additional structure that turns a Hopf–von Neumann algebra into a

locally compact quantum group, we recall some basic facts about weights (see [Tak 2], for

instance).

Let M be a von Neumann algebra, and let M+ denote its positive elements. A weight

on M is an additive map φ : M+ → [0,∞] such that φ(tx) = tφ(x) for t ∈ [0,∞) and

x ∈ M+. We let

M+
φ := {x ∈ M

+ : φ(x) <∞}, Mφ := the linear span of M+
φ ,

and

Nφ := {x ∈ M : x∗x ∈ Mφ}.

Then φ extends to a linear map on Mφ, and Nφ is a left ideal of M. Using the GNS-

construction ([Tak 2, p. 42]), we obtain a representation πφ of M on some Hilbert space

Hφ; we denote the canonical map from Nφ into Hφ by Λφ. Moreover, we call φ semifinite

if Mφ is w∗-dense in M, faithful if φ(x) = 0 for x ∈ M+ implies that x = 0, and normal

if supα φ(xα) = φ (supα xα) for each bounded, increasing net (xα)α in M+. If φ is faithful

and normal, then the corresponding representation πφ is faithful and normal, too ([Tak 2,

Proposition VII.1.4]).
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Definition 2.2. A (von Neumann algebraic) locally compact quantum group is a Hopf–von

Neumann algebra (M,Γ) such that:

(a) there is a normal, semifinite, faithful weight φ on M—a left Haar weight—which is

left invariant, i.e., satisfies

φ((f ⊗ id)(Γx)) = 〈f, 1〉φ(x) (f ∈ M∗, x ∈ Mφ);

(b) there is a normal, semifinite, faithful weight ψ on M—a right Haar weight—which is

right invariant, i.e., satisfies

ψ((id ⊗ f)(Γx)) = 〈f, 1〉ψ(x) (f ∈ M∗, x ∈ Mψ).

Example. Let G be a locally compact group. Then the Hopf–von Neumann algebra

(L∞(G),ΓG) is a locally compact quantum group: φ and ψ can be chosen as left and

right Haar measure, respectively.

Remarks. 1. Even though only the existence of a left and a right Haar weight, respec-

tively, is presumed, both weights are actually unique up to a positive scalar multiple

(see [K–V 2] and [K–V 3]). In order to make notation not too cumbersome, we shall

thus simply write (M,Γ) for a locally compact quantum group whose left and right

Haar weight will always be denoted by φ and ψ, respectively.

2. As discussed in [K–V 2] and [K–V 3], locally compact quantum groups can equiv-

alently be described in C∗-algebraic terms. The C∗-algebraic definition ([K–V 2,

Definition 4.1]), however, is technically more involved, so that we shall not go into

the details.

Definition 2.3. Let (M,Γ) be a locally compact quantum group. The multiplicative

unitary of (M,Γ) is the unique operator W ∈ B(Hφ⊗̃2Hφ), where ⊗̃2 stands for the

Hilbert space tensor product, satisfying

W ∗(Λφ(x) ⊗ Λφ(y)) = (Λφ ⊗ Λφ)((Γy)(x⊗ 1)) (x, y ∈ Nφ).

Example. For a locally compact group G, the multiplicative unitary WG of (L∞(G),ΓG)

is given by

(WGξ)(x, y) = ξ(x, x−1y) (ξ ∈ L2(G×G), x, y ∈ G).

Remarks. 1. Using the left invariance of φ, it is easy to see that W ∗ is an isometry

whereas it is considerably more difficult to show that W is indeed a unitary operator

([K–V 2, Theorem 3.16]).
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2. The unitary W lies in M⊗̄B(Hφ) and implements the co-multiplication via

Γx = W ∗(1 ⊗ x)W (x ∈ M)

(see the discussion following [K–V 3, Theorem 1.2]).

3. The definition of W is made via the GNS-construction arising from φ, so that one

may want—in order to avoid confusion—rather speak of a left multiplicative unitary.

Indeed, one can define a right multiplicative unitary in a similar fashion in terms of

ψ: in [J–N–R], for instance, the right multiplicative unitary is used instead of the left

one. It seems to be more or less a matter of taste with which of two multiplicative

unitaries one prefers to work.

To emphasize the parallels between locally compact quantum groups and groups, we

shall use the following notation (which was suggested by Z.-J. Ruan and is also used in

[Run 2] and [J–N–R]). We use the symbol G for a von Neumann algebraic, locally compact

quantum group (M,Γ) and write: L∞(G) for M, L1(G) for M∗, and L2(G) for Hφ. If

L∞(G) = L∞(G) for a locally compact group G and Γ = ΓG, we say that G actually is a

locally compact group, which is the case precisely if L∞(G) is abelian (this follows from

[B–S, Théorème 2.2]).

Given a locally compact quantum group G with multiplicative unitary W , we set

C0(G) := {(id ⊗ ω)(W ) : ω ∈ B(L2(G))∗}
‖·‖

It is relatively easy to see that C0(G) is a closed subalgebra of B(L2(G)), but—which is

much harder to show—it is even a C∗-subalgebra. Restricting Γ to C0(G) then yields a

reduced C∗-algebraic quantum group in the sense of [K–V 2, Definition 4.1] (see [K–V 3,

Proposition 1.6]). If G is a locally compact group G, then C0(G) just has the usual

meaning: the continuous function on G vanishing at infinity. Consequently, we write

M(G) for C0(G)∗. Like L1(G), the dual space M(G) has a canonical product induced by

Γ, turning it into a Banach algebra ([K–V 2, p. 913]) containing L1(G) as a closed ideal

([K–V 2, p. 914]).

Given a locally compact quantum group G with multiplicative unitary W , the left

regular representation of G is the map

λ2 : L1(G) → B(L2(G)), f 7→ (f ⊗ id)(W ). (3)

Since W ∈ L∞(G)⊗̄B(L2(G)), it is clear that λ2 is well defined, and it is easy to see that

λ2 is a contractive algebra homomorphism.

Example. For a locally compact group G, we have

(λ2(f)ξ)(y) =

∫

G

f(x)ξ(x−1y) dx (f ∈ L1(G), ξ ∈ L2(G))
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for almost all y ∈ G, i.e., λ2 according to (3) is just the usual left regular representation

of L1(G) on L2(G).

Locally compact quantum groups allow for the development of a duality theory that

extends Pontryagin duality for locally compact abelian groups.

For a locally compact quantum group G, set

L∞(Ĝ) := λ2(L2(G))
σ-strongly∗

;

it can be shown that L∞(Ĝ) is a von Neumann algebra. Let σ denote the flip map on

L2(G)⊗̃2L
2(G), i.e., σ(ξ ⊗ η) = η ⊗ ξ for ξ, η ∈ L2(G). Set Ŵ := σW ∗σ. Then

Γ̂ : L∞(Ĝ) → L∞(Ĝ)⊗̄L∞(Ĝ), x 7→ Ŵ ∗(1 ⊗ x)Ŵ

is a co-multiplication. One can also define a left Haar weight φ̂ and a right Haar weight ψ̂

for (L∞(Ĝ), Γ̂) turning it into a locally compact quantum group again, the dual quantum

group of G, which we denote by Ĝ, and whose multiplicative unitary is Ŵ as defined

above. Finally, a Pontryagin duality theorem holds, i.e.,
ˆ̂
G = G. For the details of this

duality, we refer again to [K–V 2] and [K–V 3].

Example. Let G be a locally compact group. Since L∞(Ĝ) is the σ-strong∗ closure of

λ2(L
1(G)), it equals VN(G), the group von Neumann algebra of G. Further, the co-

multiplication Γ̂G : VN(G) → VN(G)⊗̄VN(G) is given by

Γ̂G(λ(x)) = λ(x) ⊗ λ(x) (x ∈ G).

Consequently, the product ∗ according to (2) on VN(G)∗ is the usual pointwise product

on A(G), so that L1(Ĝ) = A(G). The Plancherel weight on VN(G) ([Tak 2, Definition

VII.3.2]) is both a left and a right Haar weight for (VN(G), Γ̂G). Finally note that C0(Ĝ) is

the reduced group C∗-algebra of G, so that M(Ĝ) is the reduced Fourier–Stieltjes algebra

from [Eym].

3 (P1) for locally compact quantum groups

With an eye on Definition 1.2, we shall, in this section, formulate a version of property (P1)

for locally compact quantum groups. To this end, we require the framework of operator

space theory, as laid out in the monographs [E–R], [Pau], and [Pis]. We shall mostly

follow [E–R] in our choice of notation; in particular, for two operator spaces E and F , we

denote the completely bounded operators from E to F by CB(E,F ), we write ‖ · ‖cb for

the cb-norm, and we use ⊗̌ for the injective tensor product of operator spaces. (Note that,

if A and B are C∗-algebras, then A⊗̌B is just the spatial tensor product of C∗-algebras.)

We begin with an elementary lemma:
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Lemma 3.1. Let H and K be Hilbert spaces, and let A,B ∈ B(K)⊗̌K(H), where K(H)

denotes the compact operators on H. Then the map

B(H) → B(K)⊗̌K(H), x 7→ A(1 ⊗ x)B (4)

is completely bounded and belongs to the cb-norm closure of the finite rank operators in

CB(B(H),B(K)⊗̌K(H)).

Proof. The complete boundedness of (4) is clear.

To see that (4) is a norm limit of finite rank operators in CB(B(H),B(K)⊗̌K(H)), first

note that it is enough to suppose that A = S ⊗ K and B = T ⊗ L with S, T ∈ B(K)

and K,L ∈ K(H). Let (Kn)
∞
n=1 and (Ln)

∞
n=1 be finite rank operators on H such that

K = limn→∞Kn and L = limn→∞Ln in the norm topology of B(H). For each n ∈ N, the

operator

B(H) → B(K)⊗̌K(H), x 7→ (S ⊗Kn)(1 ⊗ x)(T ⊗ Ln)

has finite rank, and it is immediate that these operators converge to (4) in ‖ · ‖cb.

Let G be a locally compact quantum group, and let g ∈ L1(G). We define

(Γ|g) : L∞(G) → L∞(G), x 7→ (id ⊗ g)(Γx).

It is immediate that (Γ|g) is a weak∗-weak∗ continuous, completely bounded map.

For our next result—which will enable us to formulate property (P1) for locally com-

pact quantum groups—, we use the following conventions:

• if A is any algebra, and a and b are any elements of A, then Ma,b denotes the

two-sided multiplication map on A given by Ma,bx := axb for x ∈ A;

• for any C∗-algebra A, its multiplier algebra ([Tak 1, Definition III.6.22]) is denoted

by M(A);

• if M is a von Neumann algebra on a Hilbert space H and ξ and η are vectors in H,

we write ωξ,η for the vector functional given by 〈ωξ,η, x〉 = 〈xξ, η〉 for x ∈ M.

We also recall that, if E and F are operator spaces, then the closure of the finite rank

operators in CB(E,F ) can be canonically identified with F ⊗̌E∗ ([E–R, Proposition 8.1.2]).

Proposition 3.2. Let G be a locally compact quantum group, let g ∈ L1(G), and let

a, b ∈ C0(G). Then Ma,b ◦ (Γ|g) is a completely bounded operator from L∞(G) to C0(G)

that lies in the cb-norm closure of the finite rank operators in CB(L∞(G), C0(G)) and can

be identified with an element of C0(G)⊗̌L1(G).
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Proof. Since L∞(G) on L2(G) is in standard form ([Tak 2, Definition IX.1.13]), there

are ξ, η ∈ L2(G) such that g = ωξ,η (this follows from [Tak 2, Lemma IX.1.6]). Choose

K,L ∈ K(L2(G)) such that Lξ = ξ and K∗η = η (clearly, rank one operators will do).

Let W ∈ B(L2(G)⊗̃2L
2(G)) be the multiplicative unitary of G. By [K–V 2, Proposi-

tion 3.21 and pp. 913–914]—with the appropriate identifications made—, we have W ∈

M(C0(G)⊗̌K(L2(G))), so that (a ⊗K)W ∗,W (b ⊗ L) ∈ C0(G)⊗̌K(L2(G)). From Lemma

3.1, we conclude that

L∞(G) → B(L2(G))⊗̌K(L2(G)), x 7→ (a⊗K)W ∗(1 ⊗ x)W (b⊗ L) (5)

is a norm limit of finite rank operators in CB(L∞(G),B(L2(G))⊗̌K(L2(G))). It is straight-

forward that (5) actually lies in CB(L∞(G), C0(G)⊗̌K(L2(G))).

Let ξ′, η′ ∈ L2(G), and note that, for x ∈ L∞(G), we have

〈((Ma,b ◦ (Γ|g))x)ξ′, η′〉 = 〈a(id ⊗ g)(W ∗(1 ⊗ x)W )bξ′, η′〉

= 〈(a⊗ 1)W ∗(1 ⊗ x)W (b⊗ 1)(ξ′ ⊗ ξ), η′ ⊗ η〉

= 〈(a⊗ 1)W ∗(1 ⊗ x)W (b⊗ 1)(ξ′ ⊗ Lξ), η′ ⊗K∗η〉

= 〈(a⊗K)W ∗(1 ⊗ x)W (b⊗ L)(ξ′ ⊗ ξ), η′ ⊗ η〉

= 〈(id ⊗ g)((a ⊗K)W ∗(1 ⊗ x)W (b⊗ L))ξ′, η′〉.

Since ξ′, η′ ∈ L2(G) were arbitrary, this means that

(Ma,b ◦ (Γ|g))x = (id ⊗ g)((a ⊗K)W ∗(1 ⊗ x)W (b⊗ L)) (x ∈ L∞(G)),

i.e., Ma,b ◦ (Γ|g) is the composition of (5) with the Tomiyama slice map id ⊗ g and thus

is a norm limit of finite rank operators in CB(L∞(G), C0(G)).

By [E–R, Proposition 8.1.2], Ma,b ◦ (Γ|g) can be canonically identified with an element

of C0(G)⊗̌L∞(G)∗. In order to prove that Ma,b ◦ (Γ|g) actually lies in C0(G)⊗̌L1(G), we

show that (Ma,b ◦ (Γ|g))∗ : M(G) → L∞(G)∗ attains its values in L1(G). For µ ∈ M(G)

and x ∈ L∞(G), we have

〈(Ma,b ◦ (Γ|g))∗µ, x〉 = 〈(Ma,b ◦ (Γ|g))x, µ〉

= 〈(a⊗ 1)(Γx)(b ⊗ 1), µ ⊗ g〉

= 〈Γx, bµa⊗ g〉

= 〈bµa ∗ g, x〉,

so that

(Ma,b ◦ (Γ|g))∗µ = bµa ∗ g. (6)

(We denote the canonical module actions of a C∗-algebra on its dual by juxtaposition.)

Since L1(G) is an ideal in M(G), it follows from (6) that (Ma,b ◦ (Γ|g))∗M(G) ⊂ L1(G),

so that Ma,b ◦ (Γ|g) is canonically represented by an element of C0(G)⊗̌L1(G).
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Let G be a locally compact group, let g ∈ L1(G), and let a, b ∈ C0(G). Then Ma,b ◦

(Γ|g) ∈ C0(G)⊗̌L1(G) = C0(G)⊗λL1(G) is nothing but abL•(g) in the notation of Section

1, as a routine verification shows.

With Definition 1.2 in mind, we can thus extend property (P1) from locally compact

groups to locally compact quantum groups:

Definition 3.3. A locally compact quantum group G is said to have Reiter’s property

(P1) if there is a net (mα)α of states in L1(G) such that

lim
α

‖Ma,b ◦ (Γ|mα) − ab⊗mα‖C0(G)⊗̌L1(G) = 0

for all a, b ∈ C0(G).

4 Amenability and (P1)

Recall the definition of an amenable, locally compact quantum group:

Definition 4.1. A locally compact quantum group G is called amenable if it has a left

invariant mean, i.e., a state M on L∞(G) such that

〈(f ⊗ id)(Γx),M〉 = 〈f, 1〉〈x,M〉 (f ∈ L1(G), x ∈ L∞(G)). (7)

Remarks. 1. Our use of the term amenable is the same as in [B–T], but there is no

general consensus in the literature about terminology: an amenable, locally compact

quantum group according to Definition 4.1 is called Voiculescu amenable in [Rua]

and weakly amenable in [D–Q–V].

2. There is an element of asymmetry in Definition 4.1: a state M on L∞(G) is called

a right invariant mean if

〈(id ⊗ f)(Γx),M〉 = 〈f, 1〉〈x,M〉 (f ∈ L1(G), x ∈ L∞(G)) (8)

holds and an invariant mean if both (7) and (8) are satisfied. So, G is amenable if and

only if there is a left invariant mean on L∞(G). However, by [D–Q–V, Proposition

3], the amenability of G already implies the existence of an invariant mean.

3. The standard approximation argument (see [E–S 1], for instance) immediately yields

that G is amenable if and only if there is a net (mα)α of states in L1(G) such that

lim
α

‖f ∗mα − 〈f, 1〉mα‖ = 0 (f ∈ L1(G)). (9)

4. If G is a locally compact group, then a state M as in Definition 4.1 is topologically

left invariant in the sense of [Pie, Definition 4.3]. By [Pie, Theorem 4.19], this means

that G is amenable in the sense of Definition 4.1 if and only if it is amenable in the

classical sense.
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It is easy to see that (P1) implies amenability:

Proposition 4.2. Let G be a locally compact quantum group with Reiter’s property (P1).

Then G is amenable.

Proof. Let (mα)α be a net as in Definition 3.3, and let f ∈ L1(G). By Cohen’s factorization

theorem ([Dal, Corollary 2.9.26]), there are a, b ∈ C0(G) and g ∈ L1(G) such that f = bga.

For any Banach space E, we denote its closed unit ball by Ball(E).

We then have:

‖f ∗mα − 〈1, f〉mα‖ = sup{|〈f ⊗mα,Γx− 1 ⊗ x〉| : x ∈ Ball(L∞(G))}

= sup{|〈bga ⊗mα,Γx− 1 ⊗ x〉| : x ∈ Ball(L∞(G))}

= sup{|〈g ⊗mα, (a⊗ 1)(Γx)(b ⊗ 1) − ab⊗ x〉| : x ∈ Ball(L∞(G))}

= sup{|〈g, (Ma,b ◦ (Γ|mα))x− 〈mα, x〉ag〉| : x ∈ Ball(L∞(G))}

≤ ‖g‖ sup{‖(Ma,b ◦ (Γ|mα))x− 〈mα, x〉ab‖ : x ∈ Ball(L∞(G))}

≤ ‖g‖‖Ma,b ◦ (Γ|mα) − ab⊗mα‖C0(G)⊗̌L1(G)

α
−→ 0.

It is clear that any weak∗ accumulation point of (mα)α in L∞(G)∗ is a left invariant

mean.

For the converse of Proposition 4.2, we require a few preparations.

Let E be an operator space; deviating from [E–R], but for the sake of notational

clarity, we denote, for n ∈ N, the n-th matrix level of E by Mn(E). A matricial subset of

E is a sequence S = (Sn)
∞
n=1 with Sn ⊂ Mn(E) for n ∈ N. We use the usual set theoretic

symbols for matricial points and subsets termwise, e.g., if S = (Sn)
∞
n=1 and T = (Tn)

∞
n=1

are matricial subsets of E, then S ∪ T is defined as (Sn ∪ Tn)
∞
n=1.

Given two operator spaces E and F , n ∈ N, and a linear map T : E → F , we write

(again, not following [E–R]) T (n) : Mn(E) → Mn(F ) for the n-th amplification of T .

Definition 4.3. Let E and F be operator spaces, let (Tα)α be a net in CB(E,F ), let

T ∈ CB(E,F ), and let S = (Sn)
∞
n=1 be a matricial subset of E. We say that (Tα)α

converges to T completely uniformly on S if

lim
α

sup
n∈N

sup
{∥

∥

∥
T (n)
α x− T (n)x

∥

∥

∥

n
: x ∈ Sn

}

→ 0.

Lemma 4.4. Let E1, . . . , Em, E, and F be operator spaces, and let Sj ∈ CB(Ej , E) for

j = 1, . . . ,m lie in the cb-norm closure of the finite rank operators. Let

Kj :=
(

S
(n)
j (Ball(Mn(Ej)))

)∞

n=1
(j = 1, . . . ,m),

and set K := K1 ∪ · · · ∪ Km. Then every norm bounded net (Tα)α in CB(E,F ) that

converges to T ∈ CB(E,F ) pointwise on E converges to T completely uniformly on K.
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Proof. Suppose without loss of generality that m = 1.

The completely uniform convergence of (Tα)α to T on K1 amounts to ‖TαS1 −

TS1‖cb → 0. Since (Tα)α is norm bounded in CB(E,F ) and since S1 is a norm limit

of finite rank operators in CB(E1, E), there is no loss of generality to suppose that S1 is

a finite rank operator.

Let E0 be a finite-dimensional subspace of E with S1E1 ⊂ E0. Since dimE0 < ∞,

the identity map idE0
: E0 → maxE0 is completely bounded ([Pau, Theorem 14.3(ii)]).

Hence, we have the (Banach space) isomorphisms

CB(E0, F ) ∼= CB(maxE0, F ) ∼= B(E0, F ),

where the last isomorphism holds by the definition of maxE and is, in fact, isometric

([E–R, (3.3.9)]). Since the unit ball of E0 is compact, and since (Tα)α is norm bounded

in B(E0, F ), we conclude that Tα|E0
→ T |E0

in the norm topology of B(E0, F ) and thus

of CB(E0, F ). Finally, note that

‖TαS1 − TS1‖cb ≤
1

max{‖S1‖cb, 1}
‖Tα|E0

− T |E0
‖cb → 0,

which completes the proof.

Remark. Let E and F be Banach spaces, let (Tα)α be a norm bounded net in B(E,F ),

and let T ∈ B(E,F ) be such that Tα → T pointwise on E. Then it is elementary (and

was used in the proof of Lemma 4.4) that Tα → T uniformly on all compact subsets of E.

Lemma 4.4 is a fairly crude attempt to adapt this fact to an operator space setting. One

major obstacle to establishing a more satsifactory operator space variant is the apparent

difficulty of finding a proper notion of compactness suited for operator spaces (see [Web]

and [Yew]).

We can now prove the first main result of this paper:

Theorem 4.5. Let G be a locally compact quantum group. Then the following are equiv-

alent:

(i) G is amenable;

(ii) G has Reiter’s property (P1).

Proof. As (ii) =⇒ (i) is Proposition 4.2, all we need to prove is (i) =⇒ (ii).

Let a1, b1, . . . , aν , bν ∈ C0(G), and let ǫ > 0. We need to show that there is a state

m ∈ L1(G) such that

‖Maj ,bj ◦ (Γ|m) − ajbj ⊗m‖C0(G)⊗̌L1(G) < ǫ (j = 1, . . . , ν). (10)
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Since G is amenable, there is a net (mα)α∈A of states in L1(G) such that (9) holds.

For α ∈ A, define

Tα : L1(G) → L1(G), f 7→ f ∗mα − 〈f, 1〉mα.

The net (Tα)α lies in CB(L1(G)), is norm bounded, and converges to 0 pointwise on L1(G)

by (9).

Let m0 ∈ L1(G) be an arbitrary state. For j = 1, . . . , ν, let the matricial subset

Kj = (Kj,n)
∞
n=1 of L1(G) be defined through

Kj,n := {[bjµk,laj ∗m0] : [µk,l] ∈ Ball(Mn(M(G)))} (n ∈ N).

For j = 1, . . . , ν, let Sj ∈ CB(M(G), L1(G)) be defined as (Maj ,bj ◦ (Γ|m0))
∗. By Propo-

sition 3.2, this means that Sj belongs to the norm closure of the finite rank operators in

CB(M(G), L1(G)). A simple calculation shows that

Sjµ = bjµaj ∗m0 (j = 1, . . . , ν, µ ∈M(G)),

so that

Kj,n = S
(n)
j (Ball(Mn(M(G)))) (j = 1, . . . , ν, n ∈ N).

Invoking Lemma 4.4—with K1, . . . ,Kν as just defined—as well as (9), we obtain αǫ ∈ A

such that

sup
n∈N

sup
{
∥

∥

∥
T (n)
αǫ
f
∥

∥

∥
: f ∈ K1,n ∪ · · · ∪Kν,n

}

<
ǫ

2

as well as

‖m0 ∗mαǫ −mαǫ‖ <
1

max{‖a1b1‖, . . . , ‖aνbν‖, 1}

ǫ

2
.

Set m := m0 ∗mαǫ .

To see that (10) holds, first note that

‖Maj ,bj ◦ (Γ|m) − ajbj ⊗m‖ ≤ ‖Maj ,bj ◦ (Γ|m) − ajbj ⊗mαǫ‖ + ‖ajbj ⊗mαǫ − ajbj ⊗m‖

= ‖Maj ,bj ◦ (Γ|m) − ajbj ⊗mαǫ‖ + ‖ajbj‖‖m−mαǫ‖

< ‖Maj ,bj ◦ (Γ|m) − ajbj ⊗mαǫ‖ +
ǫ

2
(j = 1, . . . , ν).

In order to establish (10), it is thus enough to show that

‖Maj ,bj ◦ (Γ|m) − ajbj ⊗mαǫ‖ <
ǫ

2
(j = 1, . . . , ν). (11)

With j ∈ {1, . . . , ν} fixed, note that

‖Maj ,bj ◦ (Γ|m) − ajbj ⊗mαǫ‖

= sup
n∈N

sup{‖[(Maj ,bj ◦ (Γ|m))xk,l − ajbj〈mαǫ , xk,l〉]‖n : [xk,l] ∈ Ball(Mn(L
∞(G)))}. (12)
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Let 〈〈·, ·〉〉 denote the matrix duality of [E–R]. By [E–R, (3.2.4)], the second supremum

of the right hand side of (12) is then computed as

sup{‖〈〈[(Maj ,bj ◦ (Γ|m))xk,l − 〈mαǫ , xk,l〉ajbj ], [µκ,λ]〉〉‖n2 :

[xk,l] ∈ Ball(Mn(L
∞(G))), [µκ,λ] ∈ Ball(Mn(M(G)))}. (13)

For x ∈ L∞(G) and µ ∈M(G), we have

〈(Maj ,bj ◦ (Γ|m))x− 〈mαǫ , x〉ajbj , µ〉

= 〈Γx, bjµaj ⊗m〉 − 〈1 ⊗ x, bjµaj ⊗mαǫ〉

= 〈Γx, bjµaj ⊗ (m0 ∗mαǫ)〉 − 〈1 ⊗ x, bjµaj ⊗mαǫ〉

= 〈(id ⊗ Γ)(Γx), bjµaj ⊗m0 ⊗mαǫ〉 − 〈1 ⊗ x, bjµaj ⊗mαǫ〉

= 〈(Γ ⊗ id)(Γx), bjµaj ⊗m0 ⊗mαǫ〉 − 〈1 ⊗ x, bjµaj ⊗mαǫ〉

= 〈(Γ ⊗ id)(Γx) − Γ1 ⊗ x, bjµaj ⊗m0 ⊗mαǫ〉

= 〈Γx− 1 ⊗ x, (bjµaj ∗m0) ⊗mαǫ〉

= 〈(bjµaj ∗m0) ∗mαǫ − 〈bjµaj ∗m0, 1〉mα,ǫ, x〉.

Again from [E–R, (3.2.4)], we therefore conclude that (13) equals

sup{‖[(bjµκ,λaj ∗m0) ∗mαǫ − 〈bjµκ,λaj ∗m0, 1〉mαǫ ]‖n : [µκ,λ] ∈ Ball(Mn(M(G)))}.

We thus have

‖Maj ,bj ◦ (Γ|m) − ajbj ⊗mαǫ‖

= sup
n∈N

sup{‖[(bjµκ,λaj ∗m0) ∗mαǫ − 〈bjµκ,λaj ∗m0, 1〉mαǫ ]‖n : [µκ,λ] ∈ Ball(Mn(M(G)))}

≤ sup
n∈N

sup{‖[fκ,λ ∗mαǫ − 〈fκ,λ, 1〉mαǫ ]‖n : [fκ,λ] ∈ Kj,n}

= sup
n∈N

sup {‖[Tαǫfκ,λ]‖n : [fκ,λ] ∈ Kj,n}

<
ǫ

2
, by the choice of αǫ,

for j = 1, . . . , ν, i.e., (11) holds.

5 (P2) and co-amenability

We finally turn to defining Reiter’s property (P2) for locally compact quantum groups.

Following [E–R], we denote the column and row operator space over a Hilbert space

H by Hc and Hr, respectively. Given T ∈ B(H)⊗̄B(H) and ξ ∈ H, we have a linear map

(T |ξ) : H → B(H), η 7→ (id ⊗ ωξ,η)(T ),
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where H denotes the complex conjugate Hilbert space of H. From the definition of row

Hilbert space, it is routine to verify that (T |ξ) ∈ CB
(

Hr,B(H)
)

. By [E–R, p. 59], we can

canonically identity Hr with H∗
c , and thus view (T |ξ) as an operator in CB(H∗

c ,B(H)).

We have the following L2-analog of Proposition 3.2:

Proposition 5.1. Let G be a locally compact quantum group with multiplicative unitary

W , let ξ ∈ L2(G), and let a, b ∈ C0(G). Then Ma,b ◦ (W |ξ) is a completely bounded

operator from L2(G)∗c to C0(G) that lies in the cb-norm closure of the finite rank operators

in CB(L2(G)∗c , C0(G)) and can be identified with an element of C0(G)⊗̌L2(G)c.

Proof. Choose L ∈ K(L2(G)) with Lξ = ξ, so that (a⊗ 1)W (b ⊗ L) ∈ C0(G)⊗̌K(L2(G)).

By the definition of L2(G)c, the linear map

Tξ : K(L2(G)) → L2(G)c, K 7→ Kξ

is completely bounded, so that

(id ⊗ Tξ)((a⊗ 1)W (b⊗ L)) ∈ C0(G)⊗̌L2(G)c.

Embedding C0(G)⊗̌L2(G)c canonically into CB(L2(G)∗c , C0(G)), we see that

(id ⊗ Tξ)((a ⊗ 1)W (b⊗ L))η = (id ⊗ ωξ,η)((a ⊗ 1)W (b⊗ L))

= Ma,b ◦ (id ⊗ ωLξ,η)(W )

= Ma,b ◦ (id ⊗ ωξ,η)(W )

= (Ma,b ◦ (W |ξ))η (η ∈ H),

which completes the proof.

Let G be a locally compact group, let a, b ∈ C0(G), and let ξ ∈ L2(G). Then it is

easily checked that Ma,b ◦ (W |ξ) = abL•(ξ). With this in mind, we define:

Definition 5.2. Let G be a locally compact quantum group with multiplicative unitary

W . We say that G has Reiter’s property (P2) if there is a net (ξα)α of unit vectors in

L2(G) such that

lim
α

‖Ma,b ◦ (W |ξα) − ab⊗ ξα‖C0(G)⊗̌L2(G)c
= 0

for all a, b ∈ C0(G).

Remarks. 1. Let G be a locally compact group with (P2) in the sense of Definition 1.2,

and let (ξα)α be a net in L2(G) as required by that definition; then (ξα)α clearly

satisfies Definition 5.2. On the other hand, if G has property (P2) in the sense

of Definition 5.2 and if (ξα)α is a corresponding net of unit vectors in L2(G), then

(|ξα|)α, where the modulus is taken pointwise almost everywhere, satisfies Definition

1.1.
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2. Since L∞(G) is in standard form on L2(G) ([Tak 2, Definition IX.1.13]), there is

a canonical self-dual cone L2(G)+ in L2(G) that provides a notion of positivity in

L2(G). We could thus have required the net (ξα)α in Definition 5.2 to be from

L2(G)+. The reason why we haven’t done this is Theorem 5.4 below: we do not

know if it remains true with this additional requirement. (Unlike in the group case,

we cannot conclude that, if a net as in Definition 5.2 exists, then it can always be

found in L2(G)+; see also the remark immediately after the proof of Theorem 5.4.)

For our second main result, recall the definition of a co-amenable, locally compact

quantum group:

Definition 5.3. A locally compact quantum group G is called co-amenable if the Banach

algebra L1(G) has a bounded approximate identity.

Remarks. 1. There are several descriptions of co-amenability equivalent to Definition

5.3: see [B–T, Theorem 3.1]. In particular, G is co-amenable if and only if there is

a net (ξα)α of unit vectors in L2(G) such that

‖W (ξα ⊗ η) − ξα ⊗ η‖ → 0 (η ∈ L2(G)).

2. If Ĝ is co-amenable ([B–T, Theorem 3.2]), then G is amenable whereas the converse

is unknown unless G is discrete ([Tom]) or a group ([Lep]).

Theorem 5.4. Let G be a locally compact quantum group. Then the following are equiv-

alent:

(i) G has (P2);

(ii) Ĝ is co-amenable.

Proof. (i) =⇒ (ii): Let (ξα)α be a net as required by Definition 5.2. We claim that

‖Ŵ (ξα ⊗ η) − ξα ⊗ η‖ → 0 (η ∈ L2(G))

or rather—equivalently by the definition of Ŵ—

‖W (η ⊗ ξα) − η ⊗ ξα‖ → 0 (η ∈ L2(G)). (14)

Let η ∈ L2(G) be a unit vector, and use Cohen’s factorization theorem ([Dal, Corollary

2.9.26]) to obtain a ∈ C0(G) and ζ ∈ L2(G) such that η = aζ. By Definition 5.2,

‖Ma∗,a ◦ (W |ξα) − a∗a⊗ ξα‖C0(G)⊗̌L2(G)c
→ 0

holds. By the definition of column Hilbert space, the map

Tζ : C0(G) → L2(G)c, b 7→ bζ
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lies in CB(C0(G), L2(G)c) with ‖Tζ‖cb ≤ ‖ζ‖. Since L2(G)c⊗̌L
2(G)c = (L2(G)⊗̃2L

2(G))c

([E–R, Proposition 9.3.5]), it follows that

‖(a∗ ⊗ 1)W (η ⊗ ξα) − a∗η ⊗ ξα‖L2(G)⊗̃2L2(G)

= ‖(a∗ ⊗ 1)W (η ⊗ ξα) − a∗η ⊗ ξα‖L2(G)c⊗̌L2(G)c

= ‖(Tζ ⊗ id)(Ma∗,a ◦ (W |ξα) − a∗a⊗ ξα)‖L2(G)c⊗̌L2(G)c

≤ ‖ζ‖‖Ma∗ ,a ◦ (W |ξα) − a∗a⊗ ξα‖C0(G)⊗̌L2(G)c

→ 0

and thus

1 = lim
α
〈η ⊗ ξα, η ⊗ ξα〉

= lim
α
〈aζ ⊗ ξα, η ⊗ ξα〉

= lim
α
〈ζ ⊗ ξα, a

∗η ⊗ ξα〉

= lim
α
〈ζ ⊗ ξα, (a

∗ ⊗ 1)W (η ⊗ ξα)〉

= lim
α
〈aζ ⊗ ξα,W (η ⊗ ξα)〉

= lim
α
〈η ⊗ ξα,W (η ⊗ ξα)〉,

which means that (14) holds.

(ii) =⇒ (i): Let a1, b1, . . . , aν , bν ∈ C0(G), and let ǫ > 0. It is enough to show that

there is a vector ξ ∈ Ball(L2(G)) with ‖ξ‖ ≥ 1 − ǫ such that

‖Maj ,bj ◦ (W |ξ) − ajbj ⊗ ξ‖C0(G)⊗̌L2(G)c
< ǫ (j = 1, . . . , ν). (15)

Since Ĝ is co-amenable, there is a net (ξα)α∈A of unit vectors in L2(G) such that (14)

holds; it follows easily from (14) that

‖λ2(f)ξα − 〈f, 1〉ξα‖ → 0 (f ∈ L1(G)). (16)

For α ∈ A, define

Tα : L1(G) → L2(G), f 7→ λ2(f)ξα − 〈f, 1〉ξα.

The net (Tα)α lies in CB(L1(G), L2(G)c), is norm bounded, and converges to 0 pointwise

on L1(G) by (16).

Let m0 ∈ L1(G) be an arbitrary state, and define, for j = 1, . . . , ν, matricial subsets

Kj = (Kj,n)
∞
n=1 of L1(G) just as in the proof of Theorem 4.5. By Lemma 4.4 and (16),

there is αǫ ∈ A such that

sup
n∈N

sup
{∥

∥

∥
T (n)
αǫ
f
∥

∥

∥
: f ∈ K1,n ∪ · · · ∪Kν,n

}

<
ǫ

2
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as well as

‖λ2(m0)ξαǫ − ξαǫ‖ <
1

max{‖a1b1‖, . . . , ‖aνbν‖, 1}

ǫ

2
. (17)

Set ξ := λ2(m0)ξαǫ . It is clear that ‖ξ‖ ≤ 1, and by (17), we also have ‖ξ‖ > 1− ǫ
2 > 1−ǫ.

To prove (15) holds, first note that

‖Maj ,bj ◦ (W |ξ) − ajbj ⊗ ξ‖ ≤ ‖Maj ,bj ◦ (W |ξ) − ajbj ⊗ ξαǫ‖ + ‖ajbj ⊗ ξαǫ − ajbj ⊗ ξ‖

= ‖Maj ,bj ◦ (W |ξ) − ajbj ⊗ ξαǫ‖ + ‖ajbj‖‖ξ − ξαǫ‖

< ‖Maj ,bj ◦ (W |ξ) − ajbj ⊗ ξαǫ‖ +
ǫ

2
(j = 1, . . . , ν),

so that it is sufficient to show that

‖Maj ,bj ◦ (W |ξ) − ajbj ⊗ ξαǫ‖ <
ǫ

2
(j = 1, . . . , ν). (18)

With j ∈ {1, . . . , ν} fixed, observe that

‖Maj ,bj ◦ (W |ξ) − ajbj ⊗ ξαǫ‖

= sup
n∈N

sup{‖[(Maj ,bj ◦ (W |ξ))ηk,l − 〈ξαǫ , ηk,l〉ajbj]‖n : [ηk,l] ∈ Ball(Mn(L
2(G)∗c))} (19)

and that the second supremum of the right hand side of (19) is

sup{‖〈〈[(Maj ,bj ◦ (W |ξ))ηk,l − 〈ξαǫ , ηk,l〉ajbj ], [µκ,λ]〉〉‖n2 :

[ηk,l] ∈ Ball(Mn(L
2(G)∗c)), [µκ,λ] ∈ Ball(Mn(M(G)))}. (20)

Then note that, for η ∈ L2(G)∗ and µ ∈M(G), we have

〈(Maj ,bj ◦ (W |ξ))η − 〈ξαǫ , η〉ajbj , µ〉

= 〈λ2(bjµaj)ξ − 〈bjµaj, 1〉ξαǫ , η〉

= 〈λ2(bjµaj ∗m0)ξαǫ − 〈bjµaj ∗m0, 1〉ξαǫ , η〉,

so that (20) can also be computed as

sup{‖[λ2(bjµκ,λaj ∗m0)ξαǫ − 〈bjµκ,λaj ∗m0, 1〉ξαǫ ]‖n : [µκ,λ] ∈ Ball(Mn(M(G)))}.

We conclude that

‖Maj ,bj ◦ (W |ξ) − ajbj ⊗ ξαǫ‖

= sup
n∈N

sup{‖[λ2(bjµκ,λaj ∗m0)ξαǫ − 〈bjµκ,λaj ∗m0, 1〉ξαǫ ]‖n : [µκ,λ] ∈ Ball(Mn(M(G)))}

≤ sup
n∈N

sup{‖[λ2(fκ,λ)ξαǫ − 〈fκ,λ, 1〉ξαǫ ]‖n : [fκ,λ] ∈ Kj,n}

= sup
n∈N

sup {‖[Tαǫfκ,λ]‖n : [fκ,λ] ∈ Kj,n}

<
ǫ

2

for j = 1, . . . , ν, so that (18) holds.
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Remark. In the proof of (ii) =⇒ (i), we could have chosen the net (ξα)α satisfying (14)

from L2(Ĝ)+. This, however, does not mean that the resulting net satisfying Definition

5.2 belongs to L2(G)+. First of all, even though L2(G) = L2(Ĝ) holds by the definition of

Ĝ, there is no need for L2(G)+ and L2(Ĝ)+ to coincide (or even be related). Furthermore,

even if we could pick a net (ξα)α from L2(G)+ such that (14) holds, then it is not clear

that the resulting net for Definition 5.2 would lie in L2(G)+ as well.

Combining Theorem 4.5 and 5.4 and [B–T, Theorem 3.2], we obtain:

Corollary 5.5. Let G be a locally compact quantum group with (P2). Then G has (P1).

Remarks. 1. We believe that (P1) and (P2) are, in fact, equivalent, which—in view

of Theorems 4.5 and 5.4—would immediately yield Leptin’s theorem for locally

compact quantum groups. For a locally compact group G, the implication from

(P1) to (P2) is a straightforward consequence of the elementary inequality

‖f − g‖2
2 ≤ ‖f2 − g2‖1 (f, g ∈ L2(G)+). (21)

There is a non-commutative variant of (21) for von Neumann algebras in standard

form ([Tak 2, Theorem IX.1.2(iv)]), however, in order to get from (P1) to (P2) in the

group case, we have to apply (21) to L2-valued, continuous functions on G. We thus

believe that, in order to derive (P2) from (P1) in a general quantum group context,

an operator valued version of [Tak 2, Theorem IX.1.2(iv)] is necessary, e.g., in the

framework of C∗-valued weights (see [K–V 1] and [Kus, Section 1], for instance).

2. We have not dealt with property (Pp) for locally compact quantum groups for any

p ∈ [1,∞) other than 1 or 2. For any von Neumann algebra M and p ∈ (1,∞), there

is a unique so-called non-commutative Lp-space Lp(M) (see [Haa], [Izu], and [Ter]

for various constructions). For a locally compact quantum group G, one might thus

define Lp(G) as Lp(L∞(G)). However, it seems to be unclear, at least for now, how

L1(G) could be made to act on Lp(G) in a satisfactory manner that would enable

us to even define (Pp) for arbitrary p. For a locally compact group G, B. E. Forrest,

H. H. Lee, and E. Samei recently equipped Lp(Ĝ) with an L1(Ĝ)-, i.e., A(G)-,

module structure ([F–L–S]), and a related, but not entirely identical construction

was carried out by the first named author in [Daw]. Both in [F–L–S] and [Daw], the

non-commutative Lp-spaces are obtained through complex interpolation, following

[Izu]. It remains to be seen whether the constructions from [F–L–S] or [Daw] can be

extended to general locally compact quantum groups and whether they can be used

to define, in a meaningful way, property (Pp) for locally compact quantum groups

for arbitrary p.
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