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Abstract 

The Expected Value of Information Framework has been proposed as a method for 

identifying when health care technologies should be immediately reimbursed and 

when any reimbursement should be withheld whilst awaiting more evidence.  It 

assesses the value of obtaining additional evidence to inform a current 

reimbursement decision.  This represents the burden of not having the additional 

evidence at the time of the decision.  However, when deciding whether to reimburse 

now or await more evidence, decision makers need to know the value of investing in 

more research to inform a future decision.  Assessing this value requires 

consideration of research costs, research time, and also what happens to patients 

whilst the research is undertaken and after completion.  We describe here a 

development of the calculation of the expected value of sample information that 

assesses the value of investing in further research, including an only-in-research 

strategy and an only-with-research strategy. 
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Introduction 

Institutions responsible for the financing of health care must decide whether or not 

to adopt a new therapy. Such a decision will rest on the expected costs and 

expected benefits of an adoption decision in light of current evidence and the size of 

the available budget. Value of Information Analysis has been proposed as a method 

for informing choices between providing coverage for new therapies and awaiting 

further information to reduce the risk of making the wrong decision.(1-2)   However, 

conventional Expected Value of Sample Information (EVSI) is a measure of the 

burden of decision uncertainty at the point in time when the decision has to be 

made. It is not a measure of the value of investing in research to reduce that 

uncertainty.  

The conduct of further research has consequences in terms of resources invested. 

It also results a delay to a final or revised adoption decision, the consequences of 

which may either be the denial of an effective therapy to patients or the suboptimal 

investment in an inappropriately adopted therapy.  Three important determinants 

of the value of investing in research are therefore missing from the standard EVSI 

model; (i) time that it takes for the research to report, (ii) the uncertainty around 

the time it will take to report (e.g. uncertain recruitment rate into a study) and, (iii) 

the costs and outcomes of patients whilst the research is undertaken and once it 

has reported.  Eckermann and Willan have considered some of these issues but not 

in the context of multi-parameter decision analytic modeling.(3-5)  They take a 

parametric approach which relies on the availability of individual patient data 

which must be considered adequate to inform the decision problem in its entirety. 

McKenna and Claxton considered (i) and (iii) within a decision modeling framework, 

allowing the synthesis of all available sources of evidence, but there is a need to 
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incorporate (ii) into their approach and the consequent significant differences in the 

analytical method.(6)  There is also a need to expand on the limited number of 

worked examples in the literature. 

The standard formulation of EVSI is outlined below. In the methods section of this 

paper we describe a development of the expected value of sample information 

framework that incorporates all these missing factors. The enhanced framework is 

extended to show how it can be used to address questions such as the relative 

value of only-in-research versus only-with-research reimbursement decisions.  

Such conditional decisions are accepted as a variation on an emphatic decision 

whether or not to adopt a new therapy. In the absence of adequate evidence they 

provide an incentive for further research with an opportunity to revise a decision in 

light of future evidence development.(7)  

To differentiate between the conventional EVSI calculation and our new 

specification of the value of investing in further research, we refer to the value of 

investment in further research as the Expected Net Present Value of Sample 

Information (ENPVSI). 

Expected Value of Sample Information: Current method. 

A decision to adopt a new intervention within a portfolio of interventions funded 

from a fixed healthcare budget will result in reallocation of resources from an 

alternative intervention (or standard care).  Such a decision is optimal if the new 

intervention provides greater net benefit (in terms of cost or health gain), given a 

specified willingness-to-pay threshold, than that provided by a displaced 

intervention.  Where this decision relies on uncertain evidence there will be a risk 

of making an incorrect allocation decision.  By definition, an incorrect decision will 
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result in a lower overall net benefit and from this derives the value in reducing this 

decision uncertainty.   

A decision relies on a number of uncertain parameters θ, for which the current 

evidence p(θ) defines a multivariate probability distribution.  The expected value of 

sample information (EVSI) represents the expected payoff from conducting further 

research into a subset of parameters (or single parameter) of interest θI.  The 

conceptual framework within which an EVSI calculation lies applied to the 

healthcare lies is introduced in detail by Claxton.(1)   

The calculation of EVSI relies on the Bayesian updating of the uncertain 

distribution of θI on the basis of an increasing notional sample size for research, 

further informing θI.  The value attributable to the reduction in decision 

uncertainty is calculated by subtracting the expected net benefit with current 

information from the expected net benefit with the information from the notional 

sample.  This is typically calculated as the EVSI per patient.  For a technical guide 

to the calculation of EVSI see Ades et al.(5) 

In order to calculate the total EVSI for a population served by a healthcare budget, 

the accepted method is to multiply the per patient EVSI by the number of patients 

for whom the intervention is indicated.  This should take into account the expected 

time over which the intervention is useful and the reimbursement decision is 

pertinent; a suitable discount rate should also be applied.  As further research 

takes place there will be a number of patients who are directly affected as 

participants in the research sample.  A portion of these may be treated with the 

current standard of care while a proportion will be treated with the intervention(s) 

under investigation.  All others will be treated with the treatment or strategy 

believed optimal at the time the patient presents to the healthcare provider.   
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If there are j alternative interventions with uncertain parameters θ (current 

evidence), the optimal treatment strategy that maximises net benefit (NB) for the 

expected mean of θ achieves: 

                                                        

where   [    ]  ∫          , is the expectation of function f averaged over values 

taken by random variable z. 

 

Now, consider a particular research study that might provide new data relating to a 

subset of parameters of interest θI. The data XθI obtained from a proposed study 

will update our knowledge concerning the parameters of interest θI. It is this 

process of updating the probability distributions p(θ) given new data XθI that makes 

EVSI inherently Bayesian. If parameters are correlated, the additional information 

about θI may additionally tell us something about the complementary set of 

parameters θI
c ,  i.e. θ = (θI , θI

c ).   

 

If we imagine we have obtained data    
, then it is reasonable to make a revised 

decision based on our updated prior information. This will lead us to choose the 

treatment with the highest expected net benefit now given the data. This 

expectation is taken over the joint posterior density of        
  and can be written as, 

       
        

           
  . If    and   

   are independent, then this expectation is 

taken over the prior density of   
 , and the posterior density of     given    

. 



  Page 7 of 37 

 

 

As yet we do not know what the result of the proposed collection of data    
 will be. 

Thus, to calculate the expected value of a decision made after data have been 

collected, we must take an expectation over the density of of    
, giving 

    
[       

        
           

  ]. 

 

Finally, the standard form for the expected value of sample information is the 

difference between the expected value of a decision made after data    
 have been 

collected and expected value of a decision made now, with only current 

information.  That is:  

 

         
[       

        
           

  ]                 

   (1) 

This provides the EVSI for a single patient at a given point in time.  It also makes 

the assumption that the additional information to be obtained from the sample is 

available instantaneously.  The accepted calculation for extrapolating to the EVSI 

for the population for whom the decision is pertinent is given by: 

                ∑
    

      

 

   

 

   (2) 

where N is the number of people taking part in research when obtaining further 

information, T is the time over which the decision is pertinent, It is the disease 
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incidence over time interval t, and r is the discount rate. When calculating the 

population EVSI, the benefit is only assessed over those whose treatment could be 

affected by the additional information (    ). 

 

Methods 

Expected Net Present Value of Sample Information 

In order to inform the decision of whether to invest in research to reduce the 

decision uncertainty, it suffices to assess whether the costs of investing in the 

research over time are justified by the expected present value of the information 

becoming available at an uncertain future point in time, τ. As before, the research 

would provide data    
 and update parameter values from the prior    to the 

posterior      
.  

 

The purpose of a study is to obtain more information about the impact of 

alternative treatments and incurs costs in both a financial and a health sense. The 

health impact can be assessed according to the therapies received between the time 

of the decision to invest in the research and the time when the research reports. By 

the nature of any comparative research, at least some individuals must receive 

treatment(s) determined to be less efficient once the research has reported. This 

holds irrespective of whether or not those individuals were actively involved in the 

research. The value of the research consists of the reduction in the expected cost of 

making the wrong decision based upon current evidence compared to the expected 

cost of making the wrong decision based upon the updated evidence which will be 

available once the research has reported. 
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Both the costs of the research and the value of the research need to be discounted 

to reflect that the new information and any change in the reimbursement decision 

will occur at an uncertain point in the future. Therefore to accurately capture the 

expected net present value of sample information it is necessary to model: 

1. The costs and outcomes of patients involved in the study up to the point of 

the research reporting; 

2. The costs and outcomes of all patients not involved in the research study up 

to the point of the research reporting ; 

3. The costs and outcomes of all patients, both those involved in the study and 

those outside the study after the research has reported and the 

reimbursement decision been made; and 

4. The uncertain timing of the reporting of the research. 

To do this, it is necessary to incorporate a trial simulation model into the standard 

expected value of sample information to represent the uncertain estimate for the 

time for research to take place (τ).  This is likely to depend on a number of 

uncertain factors including the expected effectiveness of each strategy (comparator) 

and the baseline rate of the event of interest where clinical outcomes are time-

dependent, the uncertain time to set up research and an uncertain recruitment 

rate.  It may also incorporate a risk that research will not complete at all. 

 

If we consider a research design comparing standard care with a single intervention 

in a two-arm randomized controlled trial, the assessment of net benefit over time 

needs to consider the per-patient NB in each of four groups of patients, multiplied 

by the number of patients over the relevant time period for each group. The ENPVSI 
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will be the combination of the expected net benefits of these groups of patients 

(Figure 1): 

5. Within research:  

a. Treated with standard care (popNBtrial.1) 

b. Treated with intervention (popNBtrial.2) 

6. Out-with research (popEVSIout) 

a. Treated with standard care  

b. Treated with intervention  

 

Constraints are placed on those patients for whom the disease is incident prior to 

the time research reports, such that the choice of treatment may be constrained by 

inclusion in one arm of the trial. The expected net benefit for the patients in the 

trial may be read-out from the simulated trial result on the basis of the notional 

sample size. 

 

Given that the health impacts of inefficient treatment may only be evident after the 

research has concluded, the expected net benefit for patients out-with the research 

remains uncertain until the research reports. However, these patients have their 

treatment allocated according to the information available before the trial reports – 

that is, subject to the specific decision rules employed by the decision maker at 

time zero. At time zero, the decision maker is not constrained to require that 

patients out-with the trial receive the treatment that is currently deemed cost-

effective. Instead, the decision maker can consider cases in which approval for new 

interventions are given either only in research (OIR) or the intervention is adopted 
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conditional on research taking place (only with research - OWR); the ENVPSI 

framework incorporates both options, alongside the standard assumption that 

patients treated out-with the trial are treated with the option currently considered 

most cost-effective.  

  

The expected net present value of sample information when comparing J 

treatments is given by: 

        ∑            

 

   

                                    

(3) 

where, assuming that    and   
 are independent: 

                        {    
[ 

  
        

           
  ]  ∑

   

      

 

   

} 

           {    
[       

        
          

  ]  [∑
     

      

 

    

 ∑
  

      

 

      

 ]}  

                                  ∑
  

      

 

   

 

nt = number of patients in trial during time interval t, 

j = trial arm or intervention j, 

  = time for further sampling (time for research to report) 

T = time over which decision is pertinent 
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The Monte Carlo sampling algorithm for implementation as a two-level simulation 

is outlined in the appendix. 

 [Figure 1] 

Results 

Exemplar model: A New Treatment for Early Breast Cancer  

We consider the cost effectiveness of a new targeted antibody treatment called 

bevacizumab for triple negative early breast cancer (TNBC).  This is a hypothetical 

decision context which looks at a reimbursement decision to be made at a 

hypothetical time point prior to a phase III trial reporting. TNBC is a subtype of 

breast cancer where the tumor cells are negative for over-expression of three cell-

surface proteins – estrogen receptor, progesterone receptor and human epidermal 

growth factor receptor-2.  Treatment takes place over one year, starting 

immediately after surgical resection of a primary breast cancer, concurrently with 

chemotherapy.  There is a short (3 month) window after surgery during which 

treatment is indicated and the condition can be considered temporarily prevalent.  

After this window there is no further opportunity to treat.  The comparator is 

standard care.   

A time-dependent state transition cohort model is used to estimate incremental 

costs and effects between standard care and the addition of the new drug.  

Parameter uncertainty is examined using probabilistic sensitivity analysis via 

Monte Carlo simulation.  The rationale for model structure, underlying 

assumptions, parameterization and parameter distributions have been discussed 

elsewhere in a similar model assessing trastuzumab for eary breast cancer.(8) The 

model used here is a simplified version adapted to the decision context for 
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illustration only. In particular, as there is not randomised comparison to provide 

an estimate of efficacy of bevacizumab in this context, this (the log-hazard ratio for 

disease free survival) has been derived from discussion with clinical experts. In a 

formal economic evaluation, a structured elicitation exercise would be desirable to 

populate this parameter.  

 

The model is used as the basis to determine the ENPVSI of a proposed randomized 

controlled trial comparing standard care with bevacizumab.  In this hypothetical 

trial design 2000 patients are randomized between two arms.  The primary 

outcome measure (specified in classical terms) is disease free survival whereby 388 

events are required by the pre-specified power calculation.  The proposed trial will 

only inform the hazard ratio for disease free survival and therefore this is the 

parameter of interest    with all other parameters in Table 1 comprising   
 

. 

 

This example has been chosen because the time to trial report is particularly 

important due to the high cost of clinical trials in early breast cancer and the 

particular unmet therapeutic need in TNBC.  As the final analysis of the primary 

outcome is dependent on reaching a pre-defined number of events, its timing is not 

only uncertain but is also dependent on the hazard ratio    and the underlying 

event rate (within   
 ).  It is in fact possible that the trial will not report at all within 

the useful lifetime of the drug; in this case the expected net benefit for all patients 

would default to the case where no research was planned and the ENPVSI would be 

negative. 

Model summary 
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The model consists of five states: 'disease free', 'local recurrence', 'disease free after 

local recurrence', 'distant recurrence' and 'death' (see Figure 2). We calculate mean 

costs and QALYs for a hypothetical cohort of women with triple negative breast 

cancer of average age 50 (n=2000).  The model has an annual cycle and a fifty year 

time horizon, by which point all patients have died. The analysis is undertaken 

from the perspective of the UK National Health Service.  

[Figure 2] 

 

The model parameters are transition probabilities, costs and utilities. The 

specification and evidence base for each parameter is reported in Table 1.  

[Table 1] 

 

Trial simulation model to estimate the time for research to report (τ)  

A clinical trial testing a new adjuvant breast cancer therapy will typically rely on a 

time-dependent primary outcome measure such as progression free survival.  In 

this example τ represents the time between the opening of the trial and the 

reporting of the final event required for analysis. This time interval is calculated 

using a trial simulation model with time-dependency - here a simple time-

dependent state-transition model is used with a cycle length of one month.  The 

model structure is shown in Figure 3.  

 

There are five states in the model: State A contains patients recruited from the 

incident population at monthly intervals. These patients can then transit, by 

randomization to either state B (Control Intervention arm) or State C 
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(Investigational Intervention arm). A certain proportion of patients in both arms will 

be lost to follow-up (State D) and therefore will not provide event data to the study, 

and a certain proportion of patients in both arms will experience outcome events 

(State E).  

[Figure 3] 

 

Monte Carlo simulation is used to sample from uncertain input trial parameters, 

producing as an output the distribution for  , where   is defined as the time from 

commencement of the trial until the trial reports.  Uncertain parameters include: 

the monthly probability of a progression event (p) the hazard ratio for progression 

free survival between a control arm and an intervention arm (HR), a sample size 

(N), a vector of monthly recruitment (xt) and a monthly rate of loss to follow-up (f).  

The distribution of   from this model is shown in figure 4.  

[Table 2]  

[Figure 4]  

 

The Expected Time to Trial Report parameter   is incorporated into the ENPVSI 

calculation for a proposed trial of 2000 patients randomized between two 

treatments (n=1000 in each arm) to generate additional evidence only on the 

effectiveness (hazard ratio) of a new treatment for TNBC, in three frameworks: 

1. The ENPVSI when the new treatment is available to patients outside the trial 

only if it represents the most cost-effective treatment strategy prior to the 

trial commencing;  
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2. The ENPVSI when the new treatment is only available within the trial (only-

in-research); and 

3. The ENPVSI, when the new treatment is adopted for all patients outside of 

the trial regardless of baseline estimates of cost-effectiveness (only-with-

research). 

For comparison the conventional population Expected Value of Sample Information 

is also reported.  

 

These analyses will allow the exploration of (a) the potential impact of using the 

expected net present value of sample information rather than the expected value of 

sample information to assess the value of further research; and (b) the ability of the 

ENPVSI framework to compare the value of only-in-research vs. only-with-research 

approaches to addressing decision uncertainty in the reimbursement setting. 

 

 

 

Model outputs – EVSI vs. ENPVSI 

The expected incremental cost effectiveness ratio at baseline (i.e. based on current 

information) is reported in Table 3. The ICER is around £90,000 and therefore 

beyond the level at which a therapy would normally be approved for funding by 

NICE. However, as a breast cancer therapy likely to be associated with a strong 

patient lobby, it is credible that there would be significant pressure for the 

treatment to be made available, at least within research. 
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[Table 3] 

 

Figure 5 plots the conventional measurement of the expected value of sample 

information, the EVSI; and the ENPVSI.  Note that it is the population value of 

information that is reported, as the concept of individual ENPVSI cannot be 

captured in a single number – whether the individual is involved in the research 

determines how their health is assessed. We can see that for some willingness-to-

pay (WTP) thresholds, the ENPVSI is negative whilst the EVSI does not fall below 

zero. This reflects the fact that research that would not change the decision and so 

has resource implications but no value. 

 

When the ENPVSI is positive, the EVSI is higher indicating that the burden of 

limited information overstates the return on investment in obtaining that 

information. This would be the case even if the cost of the research was zero, as the 

ENPVSI includes the discounted value of information becoming available in the 

future.  

 

Only in research vs. Only with Research 

Figure 6 shows the ENPVSI for the trial when the treatment is only available to 

patients involved in the research (Only in Research) and the ENPVSI when the 

treatment is available to all patients outside of the trial whilst the research is 

completed (Only with Research).  It shows clearly that an OWR approach produces 

negative health benefits until the WTP threshold is around £60,000, whilst the OIR 

produces positive health benefits for WTP thresholds above £45,000.  As the WTP 
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threshold increases beyond the expected ICER, the value of OIR falls rapidly, 

reflecting the greater value attached to the health foregone whilst waiting for the 

research to report; whilst the value of OWR reduces much more slowly. 

[Figure 5] 

[Figure 6] 

 

Discussion 

The Expected Value of Information Framework has been proposed to identify when 

health care technologies should be immediately reimbursed and when 

reimbursement should be withheld whilst awaiting more evidence. The standard 

expected value of information framework assesses the value of having additional 

evidence available to inform a current decision. This can be thought of as the 

burden of not having the additional evidence available at the time of the decision. 

However, the information that decision makers need to decide whether to 

reimburse now or await more evidence is the value of investing in the creation of 

the new evidence to inform a future decision.  Assessing this value requires the 

analysis to incorporate the costs of the research, the time it will take for the 

research to report, what has happened to patients whilst the research is 

undertaken, and what will happen once it has reported. 

 

In this paper we have shown how the standard approach to estimating expected 

value of sample information can be extended to incorporate these factors. This 

suggests that the standard expected value of sample information calculations will 
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overestimate the value of additional research because the EVSI does not fully 

incorporate opportunity costs incurred for those allocated to a sub-optimal 

treatment strategy within the research. 

 

Eckermann and Willan have described a closed form model for estimating expected 

value of information analysis which takes account of how long it takes the research 

to report. Our framework develops these insights for incorporation in a decision 

analytic modeling framework.(5, 9)  

 

We have shown how this framework can be used to examine the relative value of 

OIR and OWR approaches to generate more evidence. Importantly, the analyses will 

allow the explicit quantification of the health gain foregone by patients denied 

access to a therapy until the research is completed (OIR) and health gain foregone 

by other patients when a therapy is reimbursed that is subsequently found to be 

insufficiently effective (OWR). 

 

Our framework incorporates conventional clinical trial simulation modeling into the 

decision analytic cost effectiveness framework; bridging two complementary but 

historically independent approaches to research optimization. Given the increasing 

importance of reimbursement decisions to regulatory trial design 

considerations,(10) this is a potentially important demonstration of the intellectual 

link between these two endeavors.  Predicting the time for research to report has 

always been a high priority and particularly so in the case of expensive Phase III 
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drug trials,.  In the public arena this is a consequence of a desire to minimize the 

delay for patients in accessing new treatments.  In an industry setting, prolonging 

research often means lost revenue.  It therefore seems essential that an estimate of 

the duration of research is incorporated into value of information analysis if it is to 

find real-world applications.  This will be particularly important where the proposed 

research is either large or time consuming, as will often be the case in the context 

of early cancer, where absolute gains may be small and occur over a long time-

horizon. 

 

There are many uncertainties in the evidence base for any decision and the value of 

research to reduce these uncertainties can differ substantially.(11)  Our framework 

suggests that conventional assessments of value of information that do not take 

account of the time it takes for research to report and the costs and outcomes of 

patients whilst the research is completed produce incorrect estimates of the relative 

value of different research studies. In addition, incorporating the differential time 

for different types of research to report will impact on the assessment of the value 

of sequential research designs. Discounting implies that quicker research has a 

higher value, which will also impact upon the residual value of further research on 

other parameters in the decision problem. We hypothesize that efficient sequential 

research designs would incorporate stopping rules for later studies based upon the 

results of earlier studies in the research process; and the optimal ordering of 

studies within sequential designs will depend heavily upon the time it takes for the 

research to report and the (as yet unmodelled) delays whilst studies are 

analysed.(12) 
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The constituent parts of formula (3) rely on the expected net benefit for the patients 

in each group.  The choice of which expectation should be used for each deserves 

some consideration.  Patients allocated to participate in proposed research are 

synonymous with the notional sample size used for Bayesian updating and 

simulation of a likelihood (“data” or    
) and consequent posterior distribution 

p(   over the outer loop of the Monte Carlo algorithm.  It is therefore internally 

consistent to use this data, which can be considered known or observed, as the 

basis for our expected net benefit for within-trial patients (popNBtrial.j).  The 

posterior distribution for    p(     
) should be used for the expected net benefit of 

all other patients (popNBout).  This is true even for those patients who will be treated 

prior to the research reporting (   ) because as soon as we make a decision to 

conduct research, our best estimate of the net benefits for any future patient 

includes the information provided by the research and therefore the posterior 

distribution of  . 

 

A major analytical difference between our approach and that taken by McKenna 

and Claxton is the necessity to move the extrapolation from individual patient EVSI 

to population EVSI for each group of patients into the outer loop of the Monte Carlo 

simulation (outlined in the appendix).(6) Without taking this step, which is a 

central characteristic of ENPVSI as we have defined it, uncertainty around the time 

taken for proposed research would be ignored.  Meaningful differences in value of 

information would result where time for research is partially dependent on prior 

estimates for the effectiveness of an intervention.   

 



  Page 22 of 37 

 

The framework for implementation of ENPVSI outlined here is generalizable to 

instances in which the likelihood for the proposed data is conjugate with their 

independent prior distributions, such that it is possible to specify posterior 

distributions in closed form.   Additional nested simulations would be one way in 

which this requirement could be relaxed but would lead to further substantial 

computational burden. 

 

In this paper we only consider the gold standard method for EVSI calculation as 

specified by Ades et al. whereby an inner Monte Carlo simulation is nested within 

an outer loop.(5)   In doing so, implementation required considerable computer 

processing time.   Our exemplar calculations could only be completed within a 

sensible time-frame by using a high performance parallel processing cluster (ARC1, 

Leeds Node of the White Rose High Performance Computing Grid) implemented 

using the R statistical programming language.(13)   For simple models the 

requirement for an inner loop, with resultant high computational burden, may by 

side-stepped by assumptions of model linearity or multi-linearity.(14) 

 

Our example illustrates the methodological advances proposed by this paper.  We 

have attempted to keep this example simple in order to illustrate our message 

clearly. For practical application there would undoubtedly be a requirement to 

expand on the work presented here. For example, our calculation of τ, the time for 

research to report, does not currently take into account the time for trial set-up 

and analysis. We also do not take the next essential step which would be to 

calculate the Expected Net Benefit of Sampling, which takes account of the costs of 
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research, which will invariably be related to τ, and subtracts these from the EVSI. 

The methods for doing this are clearly described by others.(1, 9) Equally, we do not 

take account of the expected value of perfect implementation, which considers that 

not all research evidence is implemented into clinical practice.(15) 

 

In conclusion, expected value of information and Bayesian decision theory offers an 

explicit framework for rational reimbursement decision making and efficient 

research design.  When applied to specific research designs, consideration of 

treatment allocation to different groups of patients and the time taken for 

information to be obtained will meaningfully influence the calculation of EVSI.  The 

updated framework presented here will require further development to consider 

complex or multi-parameter research design proposals and issues such as 

forecasted prices and the introduction of alternative technologies over the lifetime 

of a new intervention.  
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Tables 

 

Table 1.  Model parameters 

Parameter Mean Distribution Notes Source 

TRANSITION 

PROBABILITIES 

    

Recurrence rate: 

  Log-scale parameter 

  Shape parameter 

 

(
     

     
) 

 

( 
              

             
) 

Gompertz survival distribution.  

Shape and scale parameters are 

drawn from a bivariate normal 

distribution (mean and var-covar 

matrix shown here) 

(16) 

Proportion local 

recurrence 

0.13 Beta(4.4,29.5) Proportion of recurrences that are 

local to the original breast cancer 

primary 

(16) 

Death after distant 

recurrence 

0.6 Beta(37,23) Annual probability of death after a 

distant recurrence 

(16) 

Background mortality Age -

specific 

fixed Life tables (17) 

Effect size 

  Log-hazard ratio 

  Duration of benefit 

 

-0.36 

5 yrs 

 

N(-0.36,0.37)* 

LN(1.6,1.03)* 

 

Hazard ratio for distant recurrence 

 

Expert opinion 

On-treatment toxicity 

  gut perforation 

  haemorrhage 

  arterial thrombosis 

  febrile neutropaenia 

  proteinuria 

  allergic reaction 

  nausea 

  hypertension 

  heart failure 

 

0.005 

0.005 

0.019 

0.008 

0.035 

0.004 

0.021 

0.148 

0.013 

 

Beta(1.8,363) 

Beta(1.8,363) 

Beta(6.9,358) 

Beta(2.92,362) 

Beta(12.8,775) 

Beta(1.46,364) 

Beta(7.67,357) 

Beta(54,311) 

Beta(3,220) 

Additional toxicity incurred by 

bevacizumab  

 

From E2100 trial  

(18) 

COSTS**     

Local recurrence (first 

year) 

£14,409 LN(9.57,0.255)  (19) 

Distant recurrence £11,522 LN(9.35,0.072)  (19) 

Cost of terminal six 

months 

£8,127 LN(9.00,0.112)  (19) 

 

Follow-up  

(Disease free) 

  Clinic 

  Mammogram 

 

 

£296 

£40 

 

 

LN(5.52,0.025) 

LN(3.70,0.192) 

 

 

Annual medical oncology clinic 

Annual mammogram for 5 years 

 

 

(20) 

(20) 

 

Treatment Costs 

  Drug cost 

  Delivery cost 

  MUGA scan (3 monthly) 

 

£46,382 

£154 

£164 

 

fixed 

LN(4.89,0.401) 

LN(5.01,0.206) 

 

1 year, 3-weekly at 15mg/kg (avg. 73kg) 

(assumes 100% relative dose intensity) 

 cardiac multi-gated acquisition scan 

 

BNF 2008 

(20) 

(20) 

Toxicity 

  gut perforation 

  haemorrhage 

  arterial thrombosis 

  febrile neutropaenia 

 

£3,912 

£1,633 

£2,744 

£3,024 

 

LN(8.27,0.463) 

LN(1.83,363) 

LN(6.94,358) 

LN(8.01,0.477) 

 

 

 

(20) 

(20) 

(20) 

(20) 
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  proteinuria 

  allergic reaction 

  nausea 

  hypertension 

  heart failure 

£4.45 

£293 

£910 

£31.68 

£2,339 

LN(1.49,0.400) 

LN(5.68,0.411) 

LN(6.810.523) 

LN(3.46,0.25) 

LN(7.76,0.25) 

(20) 

(20) 

(20) 

(20) 

(21) 

UTILITIES     

Disease free 0.779 Beta(463,131)  (22) 

Local recurrence 0.779 Beta(83,24)  (22) 

Distant recurrence 0.685 Beta(135,62)  (22) 

Discount rate for costs 3.5%    

Discount rate for 

benefits 

3.5%    

  
Table 2.  Transition matrix 

  A  B  C  D  E 

A                 0 0 

B  0       0     

C  0 0                 

D  0 0 0 1 0 

E  0 0 0 0 1 

 
Table 3. Cost-effectiveness output from the exemplar model. 

 Costs (£) QALYs Cost/QALY (ICER) 

Standard care 7,693 10.77  

Intervention 56,311  11.31  

Incremental change 48,619 0.54 89,659 

    

Probability cost-effective 

 WTP* = £20k/QALY 0.06 

 WTP* = £30k/QALY 0.19 

 WTP* = £60k/QALY 0.42 
*WTP = willingness-to-pay threshold  
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Figure Legend 

 

Figure 1:  Diagrammatic presentation of calculation of net benefit from 

sample information.  

Figure 2:  Schematic of TNBC cost effectiveness model 

Figure 3:  Schematic of trial simulation model 

Figure 4:  Expected time to trial report based upon 10,000 simulations.  For 

each simulation in the value of information analysis a time to research 

 reporting is sampled from the distribution τ ( ̅       months).   

Figure 5:  Expected Value of Sample Information and Expected Net Present 

Value of Sample Information for a trial of the effectiveness of a new 

adjuvant treatment in TNBC.  (Note: patients outside the clinical trial 

are treated with the strategy offering the highest NB. For 

WTP < £90,000 per QALY this is standard care, and otherwise the 

intervention.)  

Figure 6: ENPVSI of only with research vs. only in research for a trial of the 

effectiveness of a new adjuvant treatment in TNBC.  It is clear that 

when the new treatment is cost effective (i.e. ICER < WTP) OIR is the 

preferred approach.  When ICER > WTP, OWR is preferred. For ICER   

WTP the difference is small. 
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Figures 

Figure 1: 

 

* this will depend on whether the strategy with the highest net benefit is used 

or whether this is constrained by an only-in-research or only-with-research 

arrangement.  

Figure 2: 
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Figure 6:   
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 Appendix 1:  [suitable for publication as supplemental online material] 

General Monte Carlo sampling algorithm for calculation of population ENPVSI  

Adapted from Ades et al. Medical Decision Making 2004 24;207 

θI = parameters of interest (here assumed independent of   
 ) 

First record the net benefit of an optimal decision based on current information.  Then define 

a proposed piece of research from which data XθI will be collected to inform θI. 

 

A1. For i =1,2... N simulations 

B1. Draw a sample θI(i)  from the prior (baseline) distribution of θI . 

B2. Draw a sample XθI (i) from the distribution of the sufficient statistic XθI |  θI(i)   

arising from a new study of defined size. 

B3. Calculate posterior (updated) expected net benefits for each strategy j, using an 

inner Monte Carlo simulation loop using the posterior distribution θI(i) |XθI(i) 

B4. Calculate expected net benefits for each strategy j given the likelihood XθI (i), 

evaluated at its mean, using an inner Monte Carlo simulation loop.   

B5. Find the strategy j maximizing expected net benefit for simulation i based on B3. 

B6. Draw a sample from the distribution of time to trial reporting (τ) using  XθI (i) . 

B7. Using the expected net benefit given the mean of the likelihood XθI (i) (B4.) 

allocate net benefit to patients allocated to trial arms for each strategy j for each time interval 

up to τ, discounted.   

B8. Using the posterior expected net benefits (B3.) record the population net benefit 

for patients not in trial for time intervals prior to time τ who receive the optimal strategy j 

given a decision based on the prior expected net benefits up to time τ, discounted.   

B9. Record the population net benefit for the optimal strategy j given a decision 

based on the posterior expected net benefits using the discounted population for 

each time interval after the trial has reported. 

B10. Record the sum of the expected net benefits over all groups in B7, B8 and B9. 

A2. Find the average of the population expected net benefits (B10), over the N simulations. 

This is the population expected value of a decision based on sample information. 

A3. Subtract from this the population expected value of a decision based on current 

information to give the ENPVSI. 
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