The
University
o Of

= -n,‘-_“ u}:_.'!?- Bhe&i{“:ld.

This is a repository copy of Parametric Methods of Analysing Linear and Nonlinear
Systems.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/77050/

Monograph:

Billings, S.A. (1987) Parametric Methods of Analysing Linear and Nonlinear Systems.
Research Report. Acse Report 318 . Dept of Automatic Control and System Engineering.
University of Sheffield

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

\ White Rose o
| university consortium eprints@whiterose.ac.uk
WA Universiies of Leeds, Sheffield & York https://eprints.whiterose.ac.uk/



mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

PARAMETRIC METHODS OF ANALYSING

LINEAR AND NONLINEAR SYSTEMS

S A Billings, BEng,PhD,CEng,MIEE,
AFIMA,MInstMC

5

Research Report No 318

August 1987

Invited Lecture on the short course
"Vibration Analysis and Identification
of Nonlinear Structures', Heriot-Watt
University, 16-18 Sept 1987

@ 629§ (s) ]



“r

PARAMETRIC METHODS OF ANALYSING

LINEAR AND NONLINEAR SYSTEMS

S A Billings
Department of Control Engineering

University of Sheffield
Mappin Street, Sheffield S1 3JD

I



L Introduction

Parameter estimation methods for linear systems are now a
well established branch of control theory and the present study
is an attempt to provide a brief introduction to these methodé,
to show how they can be extended to nonlinear systems and to

demonstrate the application of the algorithms to real systems.

2. Liriear Systems

Parameter estimation provides a means of estimating the
parameters of a model of a process directly from the process input
and output sequences. The basic approach is illustrated in Fig.l
where the measured inputs to the process are also inputs to the
mathematical model. The outputs y of this model depend on the

structure assumed and on the values of the parameters B.

noise
disturbances
Input u
. output
——i Process, P Y
e prediction
. - errors
Mathematical
model
A predicted
y = 9(u,8) outputs y
Fig.l

By comparing y with the measured plant outputs y prediction errors
€ = y-y can be defined which depend on the unknown parameters B.
Some suitable scalar function of € can then be proposed as a cost

function and the best values of B can then be estimated.



2.1. System Models

2.1.1, Difference Equations

A general single-input single-output linear system can be

represented by the differential equation

n m
d'y dy du
L+ ... = = q ==+ ...
Pyttt T Prar TR T, gt
dt
du
v v + qou(t) (1)
Assuming zero initial conditions the operator S = é%-can be introduced
to yield the system transfer function
fgy = qmsm .ot qqs tq
y o u(s) (2)
pns F e T pls+p0
_ —=SA B(s)
or y(s) =e N u(s)

where a time delay A has been introduced to make the description
slightly more genmeral. Almost all parameter estimation techniques
are implemented digitally so ‘the model of the process which is

identified is the Z-transform of the system transfer function after

a ZOH has been inserted.
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z_x(b z_1+b z_2+...+b z—n)

y(k) = T u(k)

_ ot B(z 1)

Az 33

u(k) (3)

where n is the process model order, and & is the system time delay.

The system time delay is accommodated by shifting the output sequence

back % steps to give the model

Multiplying out and interpreting z

—1
yo = 22 )

Alz )

1 as the delay operator

z_Ju(t) = u(t—j) gives

y(k) = blu(k"1)+...+bnu(k_n)~aly(k—l)...-any(k"n) (5)

This is called a difference equation. Notice that the impulse

response can be obtained directly from eqn (5) by setting u(0) = 1,

u(k)

= 0 for k>0,
If a set of sampled inputs and outputs of length N are available
u(l),u(2),...u(N)

yil) sy (2) guenyN)

then eqn (5) can be expressed as

or

y (n+l) ~y(@) ... =y(1) | u(n) ... u(l) a, )
|
y(n+2) |= -y(n+l) ... -y(2) i u(n+l) u(2) a,
: : : i : : ;
y(N) [ -y (N-1) ~y{N-n) | u(N-1) u(N-n) a_
bl
b2
b
n
J




2.1.2. Noise Models

The data sequences will normally contain additive noise and
. . ; -1 ;
this 1s represented by a rational transfer function N(z ) driven

by an uncorrelated white noise sequence £(k).

— -1
____E(.kb) N(z ™)
i j;
S B JC B
y(k)
u(k) +
Fig.3

The most general noise model is an AutoRegressive Moving Average

(ARMA) model
-1 -m
-1 l+c.z "—-...+c 2z
N D) = e gy - LT W ®
D(z ) l+d.z "-...+d =z
1 m
Special cases of this model are:-
(a) e(k) = C(z_l)g(k) - Moving Average (MA) model (di =0 %1i)
(b) e(k) = gik%if- - AutoRegressive (AR) model (ci = 0% i)
D(z )
Expanding the AR model
e(k+m) = g(k+m) - dle(k+m—1) . dme(k)
e(k+l) -e (m) ee. —e(1) ”dl , lE (m+1) )
: ) d2 " : (8)
e (N) ELY ba ~8 (W0 : &
d
m

or e=-Ef+g

which is very similar to the process model.



2.1.3. The ARMAX model

The ARMAX model is a combination of the difference equation

model eqn (5) and a MA noise model

_l == i
azHy @) = Bz Tt + ez HE® 9)
AR control or MA
eXogenous
variable

2.3. Properties of Estimates

If é'is an estimate the bias of é is defined as

b[8] = £[8] - & (10
where E[-] represents the expectation operator. Ideally the
estimates should be unbiased b[é] = 0 so that E[é] = B or at least
asymptotically unbiased

Lt b[g] =0

N-o0

If é is scalar the variance of é is defined as

var[B] =E[B - E[ED?]

When the estimate is unbiased E[B} = B and
var[g] = &[( - B)Z] ' (11)

~

When B is a vector the covariance is defined as
2 = A 7
Cov(B) = E[(B - B)(B - B) | (12)
Notice that the mean squared error can be expressed as

E[( - 8% = Var(B) + bias’(B)

2.4, Parameter Estimation Algorithms

2.4.1, Simple Least Squares

Consider initially the idealised process shown below
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y&) = 2 (2 Dul) + e £
Alz 7)
y() (1+ayz .. .ba 2 ) = (b2 T+..4b_z Hu@rE®)  (13)

giving
y0) = x B +E@E) = [y mylen),uleD)e] (3] + €00
a
n
!
b
ol

or for N measurements
Y = ¢B+E
The least squares estimate is obtained by minimising the sum of

squares of the model errors

N
=1 ] G@ - x '®)’
m=1
=3 (v - 48 (1-98) (14)
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Computing —— and setting this to zero yields the simple least squares

agT
estimate
b= (b7 Loy (15)

To check if the estimate is unbiased substitute Y = ¢B+£ into the
estimate eqn (15)

8= (80 e (4840
or ¢ 0(B-B) = ¢'€ (16)
taking expected value

E[¢ ¢(8-8)] = E[¢"] = 0
hence E[é] = B and the estimate is unbiased. Since the additive
noise on the model is zero mean and white

E[ggT] = o’1
and therefore ‘
L") o ee 0 (o ) ]

"' i 17)

Cov(B)

0

An estimate of 02 the variance of the sequence £(k) can be calculated

as

E=7Y - ¢B

2w| /o) (18)

Q
il

N
2

)

k=1

2.4.2. Least Squares with Correlated Noise

Consider the more realistic situation where the plant output is

corrupted by additive noise that is non-white



E(k) - i %(2_1]
+
- B, ly | y - y (k)
u(k) A
Fig.5
B C
y(k) = g uk) + 5 &k) (19)
Multiplying out to make the wodel linear—in-the-parameters
AC
Ay (k) = Bu(k) + i;jg(k) (20)
= Bu(k) + eik)
or in matrix form
Y= ¢B + e
Analysing the bias of the estimate yields
ok @ T ;
E[(67¢) (B-B)] = E[¢e] # O
because ¢ = [7153] where y(k) is a function of e(k) which is non-

white.  Thus E[é] # B and the estimate will be biased.

There are numerous least squares based algorithms which have
been developed to overcome this problem but only the extended least
squares (ELS) method will be described in the present analysis.

Consider the ARMAX model of eqn (20) and set C' = AC/D to give

-1 -1 -1
A(z T)y(k) = B(z Du(k) + C'(z ")&(k) (21)
Assuming initially that £(k) is measurable, eqn (21) can be expressed

as



(k) = kaB + E(K)

where
X, = [y (1), oy Gen) ule1), o cueon) 6 (ke1) Lo E (k)
BT _ [ai’_..an,bl,...bn,ci,...c&] (22)

However, &£(k) is unknown so define ka as

ﬁkT = [}Y(k”l),----y(k-n),u(k~l),...u(k—n),é(k—l),...é(kwﬁ)]
(23)
or for N measurements
Y =498 + &
where ¥ is defined as
% T
n+l
¥ : (24)
o T |

N

and é(k) is the residual sequence or prediction error defined by

) = y() - X B (25)

This leads to the following algorithm which is known as extended

least squares.

(a) Compute the ordinary least squares estimate eqn (15) to provide

start values
(b) Estimate the prediction errors egn (25)
(¢) Compute the extended least squares estimate
T .1 T
Ba%s = (Py) VY (26)

(d) Go to (b) and repeat until convergence.
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Providing the algorithm converges the estimate Bogs shou’d
be unbiased because £ in eqn (23) will be a zero mean white noise

sequence.

2.4.4. Maximum Likelihood and Prediction Error Methods

Suppose that P(X:8 ...) 1s a probability density function

1°%
of known form for the random variable X, a function which contains
several unknown parameters 61,82... If an experiment is performed
in which X takes particular values (XI’X2°"Xn) the probability
density function becomes a function of the unknown parameters only

and a likelihood function can be defined

L(Bl,ez...,xl,xz...xn) = P(xl,xz...xn; 81,92...) (27)

The likelihood function thus describes the probability that the
parameters caused the measurementsto occur, Maximising L(-) gives
an estimate of the parameters which most likely caused the measurements
to occur - Maximum Likelihood Estimates.

To apply maximum likelihood to the ARMAX model eqn (9) the
central limit theorem is invoked so that the probability density
function of the residuals E(k)‘is Gaussian and hence of a known form.

Maximum likelihood estimates have minimum variance, are
asymptotically unbiased, asymptotically efficient, consistent and
asymptotically normal.

The idea of estimating the coefficients in a model to minimise
the error between the predicted and measured outputs leads to a
unification of parameter estimation algorithms called prediction

error methods. Consider the ARMAX model eqn (9)

— y(k) = % u(k) + £(k)
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A B
or y(k) = [1 - E} y(k) + [51 u(k) + £(k) (28)

It can be shown that the optimal predictor is

ﬁ(k[k—l:ﬁ) = [1 - %ﬂ y(k) + [g} u(k) (29)

and the prediction errors or innovations are defined as

e(k) = y(k) - y(k|k-1;8) (30)

The principle of prediction error identification methods is to choose
the parameter vector so that the prediction errors become small.

Two cost functions are normally used

JI(B) = trace (WRN(B)); W = positive definite (31)
JZ(B) = log det(RN(B)) (32)
where
1 N T
R((B) =% 1 e(k;B)e (k;B) (33)
k=1

Minimisation of Jl or J2 leads to a prediction error estimate of B.
It can be shown that under weak assumptions, the PE estimates are
consistent and asymptoticallf Gaussian distributed.

If the noise on the model is white Gaussian then the simple
least squares, maximum likelihood and prediction error estimates
will all be equal. If the noise is coloured but Gaussian then the
maximum likelihood and prediction error estimates will be equal.
Many of the asymptotic properties which hold for maximum likelihood

estimates also apply to prediction error estimates even though no

probabilistic knowledge is assumed.



Notice that all the algorithms discussed above can be
implemented in recursive form so that the estimates are updated

each time a new measurement becomes available.

2.4.5. Model Validation

Once a model has been estimated it must be validated to ensure
that it is a representative description of the system.  Numerous
model validity tests are available and at the very least the
experimenter should check that:-

(a) the predicted output of the model indicates that the model

is a reasonable fit
(b) the autocorrelation of the residuals £(k) or prediction errors

is an impulse at the origin
(c) the cross correlation between the input and the residuals is

Zero.

2.4.6. Frequency Domain Estimation

Classical spectral analysis uses the FFT in conjunction with
the formula

Suy(jm) = H(jm)Suu(m) + Sue(jm) (34)

to estimate the system frequency response H(jw). Whilst this approach
is widely used the performance is poor for short data lengths and
leakage distorts the spectrum and masks weak signals. Autoregressive
and maximum entropy based methods were introduced to overcome this
problem when estimating the power spectrum of a signal but are not
appropriate for the cross spectrum estimate Suy(m) required in eqn

(34). However, once the coefficients in the model
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=] s L
“EE )y + S pao (35)

Az 7) D(z )

y(k) =z

have been estimated using any one of the parameter estimation methods
described above the system frequency response H(jw) can be readily
computed. To achieve this objective discard the estimated noise
model in eqn (35) to leave

1

-2B(z )

A(z~l)

yk) = z u(k) (36)

and substitute z = erT, T = sampling interval, to yield the frequency

response estimate directly

z~2 B(z_l)

- (37)
A(z 1)

Eu) =

jwT
Z=EJw

Notice that the estimates based on eqn (34) involve averaging,
windowing and smoothing with the assumption that Sue(jw) will tend

to zero for a large enough sample. In contrast to this the
parametric approach using eqn (37) is based on estimation in the

time domain and allows the estimation of the system frequency response
without any noise. The noise, the right hand term in eqn (35) is
discarded, not averaged out, before estimating the frequency response
using eqn (37) and it might be anticipated that this will result in
smoother frequency response estimates particularly for short record

lengths.

To illustrate these ideas the system Sl
-1 -2 -1
. 1+0.3
o = 229228 () ¢ 2R e ) (38)

.58 0,72 1+0.62
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was simulated to generate 500 data pairs whenever u(k) was a 6th
order prbs and £(k) was a random signal uniformly distributed
between -1.0 and 1.0. A least squares based estimator using a

tenth order AR noise model produced the estimated process model

1.0122 40,4884z 2

x(k) = =3 —
1-1.498z "+0.698z

uk) (39)

2

The choice of model order and time delay were identified using loss

function analysis, pole-zero cancellation, autocorrelation of the

residuals and cross-correlation between the input and residual

tests. The system frequency response was computed by substituting
juT | ; .

z = e inta eqn (39). Estimates of the spectra using eqn (34)

were obtained by padding the 500 data pairs with twelve zeros,

applying a Hamming window and smoothing the estimates. A comparison

of the estimates 1s shown below.

" F°T
Youi 40— GLS

in

Theoretical

Fig.6
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Notice that the parametric estimate tends to be much more
accurate for higher frequencies and this becomes more evident for
lower S/N ratios and shorter record lengths. Numerous simulated

examples and applications to real data have produced similar results.

B Nonlinear Systems

Parameter estimation methods for nonlinear systems where the
structural form of the describing differential equations are known
are now well established. When little a priori information is
available and the process is treated as a black-box, the usual
approach is to expand the input/output using a suitable model
representation. Whilst the Volterra or Wiener series approach is
widely documented this almost always leads to a model with an
enormous number of parameters even for simple nonlinear systems.
The NARMAX (Nonlinear ARMAX) model was introduced to overcome this

problem and results relating to this model will be described below.

3.1. The NARMAX Model

If a system is linear then it is finitely realizable and can be

represented by the linear difference equation model

n n
u
x(k) = % (a.x(k-1)) + z (b.u(k-1)) (40)
. i . i
i=1 1=1
if the Hankel matrix of the system has finite rank. When the system

is nonlinear a similar representation can be derived by utilizing
results from differential geometry to yield the nonlinear difference

equation model

yk) = F*[x(k—l),...x(k-—nx),u(k--l),...u(k—nu)] (41)



where F*[-] is some nonlinear function of u(+) and x(-). The model

of eqn (41) can be shown to exist whenever

(a) the state-space of the Nerode realization does not have
infinite dimensions (i.e. we exclude distributed parameter
systems), and

(b) the line=rized system around the origin has a Hankel matrix

of maximum rank (i.e. a linearized model would exist if the

system were operated close to an equilibrium point).

Equation (41) represents the single-input single-output case
but the results have been extended to include multivariable systems.
The Hammerstein, Wiener, bilinear, Volterra and other well known
nonlinear models can be shown to be special cases of eqn (41).

An equivalent representation for nonlinear stochastic systems
can be derived by considering input-output maps based on conditional
probability density functions to yield the model

y(k) = F[y(k—l),...y(k-ny),u(k»l),...u(k-nu),e(k—l),...

...E(k—ns)] + e(k) (42)
where (k) is the prediction error. This model is referred to as
the Nonlinear AutoRegressive Moving Average model with eXogenous
inputs or NARMAX model.

A NARMAX model with first order dynamics expanded as a second

order polynomial nonlinearity would for example be represented as

x(k) = F,[x(k-1),u(k-1)]

Clx(k 1)+C2u(k 1)+Cllx (k—1)+012x(k Dulk 1)+022u (k-1)
(43)
Assuming that the output measurements are corrupted by additive noise

yk) = x(k) + e(k)



gives the input—output model

glic) = Cly(k—1)+02u(k—1)+clly2(k—1)+C12y(k-1)u(k~l)

+C22u2(k—1)+e(k)—cle(k—l)—2clly(k—1)e(k—1)

+Clle2 (k—l)—Clze(k—l)UCk—l) (44)

Because the NARMAX model maps the past input and output into the
present output multiplicative noise terms are induced in the model
even though the noise was additive at the output. In general the
noise may enter the system internally and because the system is
nonlinear it will not always be possible to translate it to be

additive at the output as in the example shown below.

e(k) noise

B(z—l) .

] “-"—:-i—" . i f(') [ B -1

u@ | AT | o+ y(k) = fgx(z yu (k) +e (k)
linear nonlinear

Fig.7
This situation will again result in multiplicative noise terms in
the NARMAX model with the added complication that the noise source
and the prediction error will not in general be equal. Since most
of the parameter estimation techniques derived for linear systems
assume that the noise is independent of the input, biased estimates

results when they are applied to nonlinear systems eqn (42).
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The recursive extended least squares (RELS) algorithm can
however be readily adapted to the NARMAX model, by defining the
following vectors

T

*k

[y (k=1 ,u(k-1) 3% (k1) ,y (k=1)u(k-1) ,u’ k-1) , € (k~1)

s(k—l)y(k-l),u(k—l)e(k~1),€2(k—1)]

i D s
T -
e(k+1) = y(e+l) - x , B (45)
for the model of eqn (44) for example. With these definitions the

standard RELS algorithm can be applied to yield unbiased parameter
estimates. The development of recursive maximum likelihood and
instrumental variable algorithms for the NARMAX model is not quite
so straightforward.

The direct application of an offline maximum likelihood algorithm
is not possible because in general the prediction errors will not have
a Gaussian distribution. However, by considering the loss function

N
3,(8) =  log, det } e(kiB)e (k;8) (46)
¢ k=1 .

it can be shown that the prediction error estimates obtained by
minimising eqn (46) have very similar asymptotic properties to the
maximum likelihood estimates even when e(k) is non—gaussiaﬁ; A
prediction error algorithm has been developed for the NARMAX model
based on this result.

Notice that the determination of the model structure or which
variables to include in the NARMAX model is vital if a parsimonious
representation of the system is to be identified. Simply increasing

the order of the dynamic terms (ny,nu,ne) in eqn (42) and the order



of the polynomial expansion to achieve the desired prediction
accuracy will in general result in an excessively complex model
and numerical ill-conditioned computations. Consequently all the
parameter estimation algorithms derived for the NARMAX have been
augmented with a stepwise regression algorithm, a likelihood ratio
test and other tests to detect the model structure or significant
terms in the model prior to final estimation.

These results have recently been extended to include a new
orthogonal estimation algorithm for the NARMAX model. This
algorithm allows each coefficient in the model to be estimated
recursively and quite independently of the other terms in the model
because of the orthogonal property which holds for any input and
automatically shows the contribution that each term makes to the
output variance.

Alternative model expansions are being investigated, and
algorithms based on a rational model expansion of F(*) in eqn (42)
rather than a polynomial expansion and other globally valid non-
linear difference equations have been derived. The approximation
of nonlinear systems by fitting a series of locally linear models
and patching these together to form a nonlinear description have
also been studied. Unfortunately whilst this appears initially to
be an attractive approach it often produces input dependent
mdels which are not representative of the system for inputs other

than those used in the identification experiment.

3.1.1. Nonlinear model wvalidation

hichever model formulation or identification algorithm is
implemented it is important to test that the identified model does

adequately describe the data set. When the system is nonlinear the
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residuals &£ (k) should be unpredictable from all linear and nonlinear

combinations of past inputs and outputs and this condition will hold

iff
bpe (1) = 8(0) ¢u2,£(v) = 0 ¥1
(bug(T) = B ¢u2|€2("[) = 0¥ 1
¢€gu('r) = E[E(k)E(k-1-Du(k-1-1)] =0 1 >0 47)

Notice that for nonlinear systems the traditional linear tests
¢£€(T) and ¢ug(r) are not sufficient.

Experience has shown that when using a prediction error algorithm
the tests in both eqn (47) often give the experimenter a great deal
of information regarding the deficiencies in the fitted model and
can indicate which terms should be included in the model to improve

the fit.

3.1.2. Experiment design for nonlinear systems

The design of input sequences appropriaté for the identification
of nonlinear systems has been studied in some detail. The analysis
has shown that the common choice of a binary input sequence if used
in nonlinear system identification can lead to disastrous results.
Binary sequences not only do not maximise the determinant of the
average information matrix but they also almost always make it
singular so that even identifiability is lost. The input excitation
for nonlinear systems must excite all the dynamic modes over the
complete amplitude range of interest. The first requirement
specifies the spectral density of the input, the second the probability
density function.

The design of inputs for nonlinear systems when the only

constraint is on the input is complex but the following rules can



be derived from information theoretic arguments
(i) for a power or anplitude constraint on the input, the
input should be an independent sequence
(ii) for a power constraint on the input the input should
be Gaussian
(iii) for an amplitude constraint on the input the input
should be uniformly distributed
(iv) for a multivariable system the inputs should be mutually
independent.
The design of inputs when there are constraints on the output
has been investigated but the analytical solution to such problems
seems to be intractable, Some practical guidelines that can be

followed can however be formulated.

3.1.3. An example

To illustrate some of the ideas associated with parameter
estimation based on the NARMAX model consider the identification
of a model relating the input volume flow rate u(t) and the level

of liquid y(t) in the interconnected tanks illustrated below.

')
3

y(t)
hz(t)

e o
Qw(t)

Fig.8. Interconnected Tanks
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A zero mean Gaussian signal was useqd Lo periush the input u(t)
and 1000 data pairs were recorded by sampling the input and output
at 9.6 secs.

In the early stages of any identification procedure it is
important to establish if the process under test evhibits nonlinear
characteristics which will warrant a nonlinear model, This can
readily be achieved using a simple correlation test. If the third
order moments of the input are zero and all even ovder moments
exist (a sine wave, gaussian or ternary sequence would for example

satisfy the properties) then the process is linear iff

TRCE E[(y (k) -%) (y (k+1)=9) 2] = 0 v 1 (48)

Yy
¢ 2(T) for the liquid level system is illustrated below and

1 1

yy
clearly shows that, as expected, the liquid level system is highly

nonlinear.

G
Y'Y
_ L L ___T
:::;,:::;.f——uf”"””f— T 10

Fig.9. Nonlinear detection test
Initially a linear model was fitted to the data using a maximum
likelihood algorithm to give the representation
y (k) = 0.746y (k=1)+0.340y (k~2)~0.122y (k-3)
+0.471u(k-1)-0.174u(k-2)-0.040u(k~-3)
+e(k)+0.423e (k~1)+0.038¢e (k-2) (49)
A comparison of the process and linear model predicted output is

illustrated in Fig.10. The model validity tests eqn (47), for



+1 @

- -1 a

+1 8

FHIEE!
i—e——-m 28

this model are illustrated in Fig.1ll.

Notice that although ¢£€(T)

and ¢UE(T) indicate linear adequacy for the model eqn (49), ¢ 91 (1)
u

and ¢ ,,
u2 g2

3

(1) are well outside the 957 confidence bands indicating

that nonlinear terms should be included in the model description.

SE 0

3

Fig.1l0. Process and Predicted output-best linear model

*1 3 ErlED

o am— —— | :a

CHI(E(ET) )

Fig.11l. Model Validation -
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The effect of introducing nonlinear terms into the model was
therefore investigated and a prediction error algorithm yielded the
NARMAX model representation

y(k) = 0.436y(k-1)+0.681y(k-2)~0.149y(k-3)

+0.396u(k-1)+0.014u(k-2)-0.071u(k-3)
0, 3515 (k-1 uifk=1)=0.034y" (k=2)
—0.135y(k~2)u(k—2)m0.O27y3(kL2)~O.108y2(k—2)u(k-2)

mO.O99u3(k~2)+€(k)+O.3443(k~1)—0.201€(k—2) (50)

The model validity tests for the model of eqn (50) are illustrated
in Fig.13 and these together with the comparison of the NARMAX model
predicted and process output Fig.l2 show the considerable improvement
in the prediction capabilities of the estimated NARMAX model eqn (50)

compared with the best linear model egn (49).
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Fig.12. Process and Predicted output for
the estimated NARMAX model
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Numerous other simulated and industrial processes have been
identified using these techniques including a heat exchanger, a
6996 bhp diesel generator and a turbo-charged lorry engine. In
all cases the fitted model contained typically six to ten process
model terms, a considerable reduction compared to the thousands of
terms required to describe the same systems by Volterra or Wiener

series.

3.2. Spectral Analysis for Nonlinear Systems

The application of linear spectral estimation procedures to
data generated from nonlinear systems can introduce significant
errors., For example, estimation of the frequency response function
for a system represented by the model

2li) = gpthel) + Bulksidy * s le-1 (51)

where u(k) is a signal ﬁhose third order moments are zero (eg zero
mean Gaussian or sine wave inputs) yields

i Gy = g
17 O)

uu e -4

(52)

The estimate of the frequency response function is therefore completely
independent of ¢ the nonlinear term in eqn (51) showing the limitations
of linear methods when applied to nonlinear systems.

Efforts to resolve these problems have in the past concentrated
on functional series methods and higher order spectra. Introducing

the Volterra series
n

x(0) = L [ o fh (ruryeit) Tou(eer)dr, (53)
n=l -e % R

and taking the Fourier transform of the kernels defines the generalised
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transfer functions
2§ g = weed A S i
Hn(wl’w2’ wn) {m I n(Tl’TZ Tn)

exp[—J(wlT1+...+wnTn)J dTl...dTn (54)

If the system were linear only the first term, the standard
convolution integral, would exist in eqn (53) and eqn (54) would
yield Hl(jw) which is the linear frequency response function. When
the system is nonlinear there is no single function which characterizes
the frequency response behaviour and generalised frequency response
functions of the form of eqn (54) must be evaluated up to order n
the degree of nonlinearity. Traditionally multidimensional FFT
based algorithms have been used to estimate the generalized transfer
functions but unfortunately all the algorithms require excessive
data lengths, make unreaiistic assumptions about the system, require
special inputs (eg Gaussian white), and produce results which are
input dependent.

Virtually all of these restrictions can be avoided by fitting a
NARMAX model and using the probing or harmonic input method to
compute the Hn(ml,wz,...wn) fuﬁctions. This approach represents
an extension of the parametric linear frequency response estimation
scheme of section 2.4.6.

To illustrate the ideas involved consider the nonlinear
Hammerstein model S, illustrated in Fig.l4 where the noise e(t) was

2
N(0,0.08) the input was N(0,1.0) and 1000 data pairs were considered.
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e(k)
2 -1 + ¥
| 0.5u(k)+u” (k) - ”“z—“““:l- Q =
i =
(k) 1-0.9z < (k) (i)

Fig.1l4. System S2

From Fig.1l4 the true system model can be expressed as a NARMAX

model
x(k) = 0.9x(k-1) + 0.5u(k-1) + u’ (k-1)
y(k) = x(k) + e(k) (55)
The application of the nonlinear detection test ¢ ' '2(1) eqn
¥y

(48) clearly showed the system was nonlinear and the orthogonal
estimation algorithm identified the following model structure and

parameters

y(k) = 0.001582+0.8997y (k-1)+0.5007u(k-1)
+1.001u% (k-1) +e (k) -0. 874e (k-1) (56)

The algorithm estimated that tﬁe terms in eqn (56) contributed 99.954%
to the variation in y(k) thus indicating why all other higher order
dynamic and nonlinear terms were deleted from the model.

Note that the Volterra series representation for this system
would require the estimation of about 500 parameters.

The generalized transfer functions defined by eqn (54) can now
be computed. Probing eqn (56) with a single exponential u(k) = ejwkT

ignoring the almost zero constant term are the noise terms and

setting T = 1 yields
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Hl(jm)ejm“ = 0.8997H1(jw)eJM(k“1)+O.5007ejw(k_1)
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+1.00]e (57

Equating coefficients of eka yields the first order frequency

response function

’ 0.5007
Hl(Jm) g (58)
e1%-0.8997
jmlk jwzk
Probing with the input u(k) = e +e and equating coefficients
j(wl+w2)T
of e yields in a similar manner the second order generalized
transfer function
L.y 1.001
Hz(le,sz) = j(ml+w2) (59)
e -0.8997

Both Hl(jw) and Hz(jwl,jmz) are plotted in Fig.15 below.
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Linearizing the estimated model eqn (56) about different

operating points yields the evolution of the linearized spectra

illustrated in Fig.l16.
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As a second example consider the system 83
" ; 4 3
¥ + 20y + 10y + 3x10 uy = u (60)

This can be simulated and a NARMAX representation estimated to yield

the estimates of Hl(Jw), HZ(Jml,sz), HS(Jml,sz,jNB) illustrated

below.
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The system harmonics Hl(jm)g b (jw,jw) (lst harmonic) and
HB(jw,jw,jw) (2nd harmonic) can be plotted on one graph as
illustrated in Fig.20.

g  0230e+027 0480403 T

1 b
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L\1\ £.000¢4 00
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——— . .
T lst Harmonic

'énd Harmonic
Fig.20. Harmonics
Inspection of Fig.20 shows that there is a resonant peak around
S5Hz for the second harmonic and around 8Hz for the first harmonic.
This can be verified by injecting an 8Hz sine wave into the

estimated NARMAX model to illustrate for example how the system

would respond to this input, Fig.Z21.

90020 A f
Output f r
ey
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Fig.21

The advantages of the parametric approach based on the NARMAX

model are therefore:-

(a) Hi(jml,jwz...) can be easily computed for all i

(b) Because the method is based on estimating a NARMAX model it



is not input dependent, works ior sensible record lengths and
often results in a small parameter set

(c) The evolution of the linearized spectra can be computed

(d) The frequency response functicns can be decomposed to show
the contribution of H1(°), HZ(--), harmonics etc

(e) Once identified the system can be simulated in the iime or

frequency domain to show the response to any input.
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