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Abstract

The optimal control problem for a bilinear distributed parameter system
subject to a quadratic cost functional is solved. It is shown that the

optimal control is given by a convergent power series in the state with
tensor coefficients.
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Introduction

In a recent paper, Banks and Yew [i] have obtained a class of suboptimal
controls for a bilinear system

x = Ax + uBx
where u is a scalar, x belongs to a Hilbert space and A and B are

bounded operators, subject to the quadratic cost
& 2
J=<x, 65y + [ Kx, M + ru} de.
o

The feedback turns out to be a power series in x with tensor
coefficients. The convergence of this series was not proved, however,
and so we proposed truncated versions of the series as suboptimal
controls. In this paper we wish to provide the missing convergence
proof and also generalise the results to the case where A is an

unbounded operator, which generates a semigroup.

In section 2, we shall present the essential tensor theory for the
development of the optimal control and then in section 3 we shall
prove the convergence of the series derived in Banks and Yew [3].
Finally, in section 4, we shall give an example of a system in which
A is self-adjoint and has compact resolvent which will enable us to
obtain representations of the tensor coefficients of the feedback

control series in terms of the spectrum of A.

We shall see that, in contrast to the linear-quadratic regulator
problem, the optimal feedback control is only defined for states
satisfying a certain bound, which depends on the horizon time. 1In
other words, we must make the hoéizon time dependent on the initial

states,

Tensor Theory in Hilbert Space

We shall first briefly review the theory of tensors defined in a
Hilbert space (Greub [5]). If E and F are vector spaces and G is

any vector space, then the tensor product of E and F is the pair



i P v

(ERF ®) where EQF is a vector space and ® is a bilinear mapping with
the universal property: if ¢ is any bilinear mapping then there exists

a unique linear mapping £: E®F » G such that the diagram

ExF 3 G

&)

ER®F

commutes, If H is a Hilbert space than we define, by induction, the
vector space I-li = HRee++@H (i copies of H), Then we can make Hi into

a Hilbert space by defining
1
<X1®I--l® Xi’ y1®o-lo®yi>Hi = 1‘5 ’yJ
Let H be the graded Hilbert space ®i=1 (@iH) =®i=1Hi'
consisting of sequences h = {hl’ h2,'---} (hisHi) such that
2,1/2 '
10 g

[In]| = <F
i=1

Next, denote by {(H) the space of bounded linear operators on the
Hilbert space H, Then if P EZ(Hi), C eX () we define the operator
PC eZ,(Hi) by
(PC) (x1®----&xi) = P(Cx1®x2®-'--Sxi)+P(x1®_Cx2®----@xi)
+..--+P(xfmx2@....gcxi)
(and by extension by linearity to all of Hi). Moreover, we define the

E
adjoint operator P of P in the usual way:

1 ! _

<P (x® 00 ®x,), (7@ By,) > =L (x @ ++8x), P(y,0 By.)>
and if PEI,(Hi), Qe ) we define P@Q by
J

(P8Q) (¥@y) = PEBQY, TeH,, et .

Then we have the following elementary results (see Banks and YeW-E3]).
*

Lemina 2.1 Let PeL(Hi), QEZ(HJ.), with P self-adjoint (ie P = P).

Then
[‘3X<®ix, P@i:ﬂx = D4, ®. %, P@ix>, (2.1)

XK@ oo r@x

where 3}'{ is the Frechet derivative with respect to X and @ix
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(i factors), and, more generally, if Ce (H),
[’5‘X<®ix, P@ixﬁ(:x = 2<®ix, (PC)@ix>. (3.2)
Moreover, we have

<®ix, P@ix><®jx,Q.®jx> =<®i+jx 2 (P@Q)®i+j x> (2.3)

and

ol 5 €1F gy [ellpye ® 2.

Tt follows easily from the definition of PC, where PEf(Hi), CEI(H),

that
| |ec| | <i ||p]] e | ——
Jﬁ(Hi) ji(Hi) £,(H)
Let CP be defined as (P*C*)*,

We can express a tensor operator in terms of its components with
respect to a basis in the following way. Let {ek}k>l be an orthonormal

basis of H. Then {ek ®°"'®ek } (1skj<m, 1<jgi) is an opthonormal
1 ]

basis of Hi' If PstHi) we shall write its matrix representation in

El'. ..ii

terms of such a basis as P
klno.oki’

— v .D..m Q’ .--‘2. a e 8o
P(ekgoouogek.) = z I P 1 Al (ega ®eﬂ,,)-
1 T 2 ()

Then P is self-adjoint if

'Q'l..-.ﬂ'i kl....ki

Pk seweal =PQ‘.--.nQJ' ‘
1 1 1 i

Optimal Control of Bilinear Systems
Consider now the bilinear system

X = Ax + uBx (3y1}
where xeH, ueR is a scalar control, A is a closed, densely-defined
operator which generates a semigroup T(t), and B is a bounded operator.

We shall consider the minimisation of the cost functional
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t
f 2
3 =&x, 6+ [ 7 AGM>  + ru') de (3.2)
subject to the dynamics (3.1).

It can be shown (Banks and Yew [{]) that the optimal control is given

by the series

o il ’
u(t) = -r ®.x, (PiB)Gix>

S ' . ) (3.3)

He~1 8

where the tensor operators Pi are self-adjoint, PiEIIHi) and

| % tf_t %,
Pl(t) = Tl(tf—t) GT, (tf--_t) + jo Tl(tf-t—s) MT, (tf-jt‘-s)cls ¢ £8:4)
= tf_t *
Pm(t) = - §+j=m jo Tm(tf—tfs)Pi(tf—s)Ban(tf-s)BT m(I:f——'t—s)ds
(3.5)

8
provided the formal series in (3.2) converges. Here, Ti(t) is the
semigroup generated by the tensor operatorﬁti defined by

s’cipi = P4, PisI_(Hi)nD(oq;.L) ,izl.

It can be seen thatﬂti is densely defined and does indeed generate
a semigroup Ti(t) which satisfies
I, @1 < Ne t (3.6)

where N and o are positive numbers such that

) =
[z (e) || <we™, (3.7
where T(t) is the semigroup generated by A. The main point remaining
is to establish the convergence of the formal series (3.3). To do

this we first estimate Pl(t) from (3.4), using (3.7), to obtain

2, (0 ]| W 20D g]| P ety |[u] [ su PR et
' se%ﬁ te

S o e_a.,tL)t (3.8)

for some w«>0,

Similarly, from (3.5) and (3.6) we have
£ o=t

f
= Bl 2um(t ~t=-s).. _ _
||Pm(t)||5r [I8]]| N §+j=mj° e £ 1J||Pi(tf s)l|.|IPj(tf s)||ds.



Define
P = ue?™5%™ T )| ™ )], m. (3.9)

Then, it follows that

tf"t

Pt < m§+j=mio By (Egma)py (Epmadda, (3.10)

with

p;(B)sl .

Lemma 3.1 Let p} be given by

P;(t) = 1, tEEO’tf 311
, Bt ,
Em(t) - §+j=m J.o Pi(tfHS) Pj (tf_S)dS. 3:12)

Then
'
P, (t) < p.(0), tefo,t ] .
(This follows easily by induction.) T

Lemma 3.2 If Pm satisfies (3.11) and (3.12), then it is the form

m-1 .
Pn = qm(tf—t) , izo,
where q is constant on [b,té] and satisfies the difference equation

q_ = _EL.Z q.q9., (m32), q, =1
m " 1 {+j=m *J 1 (3.13)

Proof Again this follows by induction if we note that

1~ISJ—1

It
0~
\’ﬁ

h

m=-1
qm(tf t) q;9; s ds

i
=

‘-1
) (t-0" " q.q. . O
W1 i+j=m © 17

Lemma 3.3 Suppose that qm satisfies (3.13) and that rm satisfies

the difference equation

r =z r.r., r. = 2;

m g i] 1 (3.14)
then

q L r_, mzl.



il

Proof Note that, from (3.13), we have

1, £ 2] qa,, a7l -
m T+i=n 177 1

Then it is easy to see that

g B Adl=a 2

for some Am. Hence the result follows. [Tl

co

Lemma 3.4 The power series Z r.ZZl has radius of convergence 1/2v2,
j=1 *

where . is given by (3.14).

21i

r.z . 1t is easy
=1 =

Proof Consider the formal power series R(Z) =

He0~1 8

to check that the coefficients of this formal series satisfy (3.14)

if and only if

rlzz + R2(2) = R(B). (3.15)

Hence the formal series is convergent to an analytic function in
some region if and only if the equation (3.15) has an analytic

solution R(Z). However, (3.15) implies that

R(Z) = 1t Y1-88°
2
cach branch of which is analytic inside the disc {2 : |8} < 1/2/2}.00

From (3.9) and lemma 3.1, we have

i

Bl=

e o] =172 ™" 3™ 5 o)

8_2 mwt am(r_l[ | B| TZNZ)m—l(tf_t)m—l g

[
=R

m

and so
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1/2 1/2 -t 1/2 -1 2 - -
(||Pm(t)||) /2m _ (l) /2m oTWE i i I|B|[2N )1/2 1/2m(tf—t)1/2 1/2m(qm)1/2m
< (l)l/Zm et o2 22 g n(e 0 2L 2/
m
> 2/2e T (2.1/2 [|B||N(1:f—t)1/2
T
as m > =, Hence the optimal- control (3.3) exists as a power series in the
state provided
it r 1/2
[[x]] <« 1 e (
2/2 | |B||w ot -t)
Since the optimal cost is
J(xo) - Z <:®1Xo’ Pi‘@ixo
1=1
(provided the series converges) we have
Theorem 3.5 The bilinear—quadratic regulator problem
X = Ax + uBx, x(0) = X
ts 2
J =<X(tf), Gx(tf)>+ f {<X,MX>+ ru~} dt
0
has the optimal solution
I y :
we) = -r ] {8x, (¢.B) &%),
i=1
where Pi satisfies (3.4) and (3.5), provided
x 1< 1.1 7z
2/2 ||B||® N\at, (3.16)

and where |]T(t)]f < Newt and a is given by (3.8). O
Example

As a simple example of the theory we shall consider the system

b= A+ up, 4e1”(0,1)
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where B = I and A is a closed, self-adjoint, densely-defined operator with
compact resolvent (see Dunford and Schwarta, [A] or Banks, [l]). Then the
spectrum of A consists of eigenvalues Ai to with finite multiplicity such
that |Ai| + ® ag 1 > «, Moveover, there is a complete orthonormal set of

eigenvectors ¢i such that, for any he L2(O,l)

he ] <hope;
i=1
Ah = E FCAD N

=1

and

ROAR =) 1 <h,674., e p(a)
: %74
i=1 A=A,
i
where R(X;A) is the resolvent of A and p(A) is the resolvent set. Here,

(li)1$i<Do is the sequence of eigenvalues counted according to multiplicity.

Since {¢i} is a basis of LZ(O,I) we can write

@ eenol,
1

0(h, ® ceeeBy ) = ....Z Q... (b, @ =@, )
k5 5 T R i

1

=0~18

1

for any tensor operator Qei(@iLz(O,l)). Note also that, if T(t) is the

semigroup generated by A, then

= b
() =] e 00,
{=1

In the cost functional (3.2) we shall assume, for simplicity, that G=M=I

j =
and so from (3.4) we have (Pl)i pligij’ where
2A. (£ _~t) 2x, (t.~t)
p..lk) = e 1o E + 1 (e Hd ~1D .
L 7.

315

Note next that it is easy to see by induction that Pm is also 'diagonal' in
the sense that

117 =7 6315,..6Jm
& ey i 1
m,11 lm 1 m

(P )

nitd swsEd
1 m

for some tensor Py . . Moreover, p_ 1is symmetric in all indices so that
1 e see] m
’ m



p : sese] =p 1 -
m,1, L m,d(ll, Lm)

where ¢ is any permutation of the indices. It follows easily that if

3km2m =P A,

m
then
j s e s s o) k m) t J j
(T (0P )il....im'= } 8, e K P Koi eeeed 6.1'7"5im.
me R k=1 1 ) Tmo M1 m
Hence
tf—too )
: z -1 ' o kX (sl
p_si,reeei (£) = -r ) kﬁf 3 ) &, e a f PR ¢ -
L m két=m o a=1g=1 1 kottyiyeeeedy © f
k,2>1
2A (t ““S)
GE o B £ Py g 1 et (tf—s)ds
e+l Bty m

Conclusions

This paper has been concerned with the optimal control of distributed bilinear
systems. In an earlier paper (Banks and Yew [3]) we were unable to prove

the convergence of the power series solution for the control. Convergence

has now been established for certain initial states (unlike the linear-quadratic
problem where the feedback rule is valid for all states). In particular, the
inequality (3.16) shows that for large initial states we must choose a small
horizon time tes whereas for a small initial state we could choose te to be

somewhat larger. This resembles receding horizon control (Banks Eﬂ).
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