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Abstract

A global Voiterra series is obtained for a meromorphic system defined on
a complex manifold C. Local bilinearizations are pieced together by a fibre

bundle giving rise to a 'twisted' bilinear system on C.
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1. Introduction

Volterra series have been widely applied in the study of nonlinear systems, see,
for example, Volterra, 1958, Brockett, 1976, Lesiak and Krener, 1978, Crouch, 1981,
and Banks, 1985. The existence of bilinear representations of nonlinear systems
has also been extensively investigated since the application of Carleman lineari-
zation to linear analytic systems by Brockett, 1976. Generalizations have been
developed by Krener, 1975 and Lo, 1975 where the global linearization of systems

of the form
x(t) = £(x(t)) + G(x(t)) u(t)
is discussed.,

In this paper we shall consider a general nonlinear system

ST

e,
N o
C

where C is a complex manifold and F is a meromorphic map, i.e. there exists an
analytic subset PSC of codimension 1 in C such that C\P Ls an open submanifold

of C and the induced system

(C\P) xi! F e T NE)

vl
P, S

po
CAP

is holomorphic. 1In the first part we assume that C = ¢n and U= ¢m and that the

system has a global representation

7. = £f(z,u)/g(z,u)

and obtain a bilinearization for this system.

In the second part we shall replace the system (1.1) by system

(Cx W) xT(W) —F—> T(c)e TW




which can be represented locally by an equation of the form

z = f(z,u)/z,u)
u=v

We can then use the local theory of the first part to derive a global Volterra

series by defining an exponential map for a certain fibre bundle.

2. Notation and Terminology

We shall denote a goneric local system on ¢’ by

z = f(z,u)/g(z,u)

n P
where zeC , ue€" and f and g are analytic functions. If i = (il""’ 1n),
§ = (ji3"" jm) are multi-indices, with ika jLEN, we shall write
e i i ] ]
i
2l Wt ey O T e B
1 n 1 m

In particular, 1k will denote the multi-index which has a 1 in the kth place and

zero elsewhere. The dimension of the vector 1k will be clear from the context.

n . i . . . .
P (€) will denote the n-dimensional complex projective space and T(C) will denote
the tangent bundle of a complex manifold C with corresponding projection ﬂb.
D(C) denotes the set of meromorphic vector yields on the complex manifold C and

we shall use the theory of fibre bundles in the formulation of Kobayashi and

Nomizu, 1963.

3. Differential Equations on Complex Manifolds

Consider first the example

2= 2F (3.1)
for any integer p. This equation is defined as an analytic system on C\{0}
with a removable singularity at z = Q if p30. |he vector yield defined by f(z)=zp
is meromorphic on € with a pole of order -p at z=0 if p<p. For technical reasons

it is desirable to extend this equation to a meromorphic equation of the compact

1 " X :
space P (C). To do this let w= 1/z. Then we obtain the equation

o= - L (3.2)



which is defined on the w-space €\{0}. The vector field g(w) =‘1/wp_2 is again
meromorphic on € and so the equations (3.1), (3.2) together form the local rep-
resentations of an equation

v = F(v) _ (3.3)
where F(v) 1is a meromorphic function on.Pl(C). More precisely, if X(PY(C)) denotes
the set of meromorphic vector yields on w‘(c), these equations (3.1) and (3.2)

together represent an element of XGPl(C)).

Consider next the equation

. - 1
1 1q
21%2
(3.4)
5 - 1
2 r s
ke

defined on CZ. In the variables (w1= L, zz) and (zl, w2=l/zz) this equation

takes the respective forms

‘} = _—1
1 p+2 q
w2,
wr
e g mes
2" 25
and i
g o= 2
1 Zp
1
P
g = zrws+2
1 2

Since these coordinate systems cover Pz(C) we see that the equation (3.4) defined
in the affine space Gz can be completed to a meromorphic vector field in X(Pz(m)).
Note, however, that the singularities now occur on projective subvarieties of

of PZ(E) of codimension 1,and not just isolated points. (Indeed, by Hartog's
theorem an analytic function defined on.Pz(C)\{p}, for any point pEPZ(E), has an

analytic extension to PZ(C).)

In general, we shall consider differential equations defined on Pn(C) by a

meromorphic vector field in X(PH(C)) which is analytic except on a union of



- 4 =
. . ; _ n ; z ; .
projective subvarieties of P (€) of codimension 1. Then locally such an equation

is given by

fl('Z)
, lgisn (3.5)

: . n
wnere fi and gi are analytic functions of z = (zi, ooy Z ) eC,
n

. 3 g = 3 n
Theorem 3.1 Given a meromorphic difterential equation on P (C) we may represent

it by a finite number of local systems of the form

=] [ee]

. : k i i

Z, = I g Z .a, i zi{“.z LI 18k<n (3.6)
y=-ed = e Al 1

Proof "We shall prove tne result for n=2; the general case is similar. If pEPi(C)
then let z:U-€> be a coordinate system mapping a neighbourhood U of p into a
neighbourhood W of 0 in €*. 1In these coordinates the differential equation may

be expressed in the form (3.5) where gi(z) = gi(zl,zz) is analytic and not iden-
tically zero. Consider fl/g1 and drop the subscript 1 for simplicity. If g(0) # O
then the representation (3.6) is clear. If g(0) = 0 then we may suppose that there

exists an integer k>o such that

k
g(O,'Z.z)/z2

is analytic and + o at zzto. By the Weierstrass preparationtheorem (HSrmander, 1966)

we can write g uniquely in the form g=hW when h and W are analytic in a neighour-

hood of 0, h(0) # 0 and W is a Weierstrass polynomial
k
k
+
2 :
]

where each a. is analytic in a neighbourhood of 0 with aj(0)=0. Hence the equation
J

-1 .
- ]
Wz , 2,) =z anj(zl)zz

has the form

@ f(z)
h(z)W(=)

in a neighbourhood of 0. Since f and h are analytic and h(0) + 0, £/h has an
expansion of the required form and we need to consider only the ternlihﬂ(z). If
all the a, in W are identically zero then the result is true and so we suppose
that some of the functions aj are not identically zero. For simplicity of expo-
sition we assume that none of the aj are identically zero- the contrary case is

similar. Then we can write



L.
aj(zl) = zljaj(zl)

where uj(o) + 0 and 1j>0. Now

L - 1
W(z)
zZ +Vl
where
k-1 ;
v, = 'Z aj(zl) z .
J'—O

Hence, if fzkI>|v [We can expand 1/W(z) in the form
1 \ c
LlE) )
z, \J= o\

for some coefficients c. and since vy is analytic the result is true in the
i

N ??‘li—l

region |z§[>|v1|. If |v1|>|z§|, then we can expand 1/W(z) in the form
1 = ( zk 'ijE )
24
k .E Vv ) /
) =o " 1

for some new coefficients c.. Now consider
]

1 1
v B k-1 k-2 J
1 ak_l(zl)z2 + Z a.(z )22
j=o
- 1
k-2
k 1 k“

2 z, d (z )+ z aJ(z )z

j=o

and since aj is analytic and ai(O) + 0 we can continue as before. Eventually

we have to consider a term of the form

1 1
Vo1 al(zl)22+no(zl)
. 1
a QI M’(')

2y gl Yy M

A 2
and the result follows from the compactness of P (C). O

It follows trom theorem 3.1 that we may consider systems which have a finite
number of representations of the form (3.6) in some neighbourhood of any point
p in Pn(m) whose domains of definition partition the neighbourhood minus a

union of some n-1 dimensional submanifolds through p .
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4., Local Theory of Meromorphic Systems

As we have seen above we may write a meromorphic system

z = f(z,u) , zatn, veC” (4.1)

" . n+m . i
in a neighbourhood of (0,0)eC m in the form of a finite number of represen-

tations
‘ T 0% kij _ o
z = Z z a.z u , lsksn (4.2)
k . ; ]
]_—-oo J = =00
where i=(il,..., in), j=(j1,...,jm). We shall restrictﬁhe controls to be Cl,
i

in which case we may regard u as a state and v=u as the control by adding the
equation

a=v (4.3)
to (4.2). Our object is to reduce (4.2) and (4.3) to an infinite-dimensional

bilinear system, which we can do by introducing the functions

i ]
.. =z u,
%
Then, following the technique of Carleman linearization
we have
. = 1"lk 13 . | 3_12.
q = E lk z u Zk+ Z ng u U
k=1 2=1
n @ e . A o o
i . = ; -1
= Z 1k E z a?.,-zl+l L uJ+J+ E Iy zluJ by .
k=1 {'=— J =—00 J 2=1
R (5, 3
= I P s u o+ j.z u v
jfe §éies gy S thl s ) =g g=1 % o
@ o . J =) -4 1, J,
i
= Z s .0t z E B-. * cb r =4V
i7=-w j E—:u\ 1] ?SI J 1’ == j':—oo 13,4 1) 2
where
i’j’ n i i:j; rzn i’j’
o, = ) i a,, . i = 5 B = Jj.8; %
ij P R S ) PR R ij,e gop 21 ] 13
In the latter expression we define
i3 _ 1t ho 1 Im
Sp = S S er 8T8 . 8,
1 "2 “n 1 m



ana
(Bo),, = 7 y 513¢,,,1<u<m
]’_‘:—co JJ._—oo J’H
we have
. m
3=A3+ ) vBO (4.4)
p=1 MM
where

In order to consider the theory of equations of the form (4.4), we must put a
. : 1
sultable norm on the space of tensors. First let £ denote the Banach space of

doubly infinite sequences a={a } with the norm
n —oo<] <o

oo

Hallg = F o]

n=-—=co I

_ 1
Then we define £ to be the space of sequences a={a_} such that the
e n  —e<n<®

1
sequence (...,a_2/2!,a_l/ll,ao,al/l!,az/Zl,...) belongsto £ . Define a norm on

1

b
Ee y
o |a_|
_ n 1
lollg= 1 e - weth.
Next introduce the space
1
I;=®£,,,
n n °
i.e. the algebraic tensor produce of n copies of Q;, and let ||.|| be any cross

norm on Ih (see Taksaki, 1979). Thus, for any tensor @ei% of the form

¢ = ; . = ( SRR = T
(¢1 sl ) (ali a?l, an; ) 0L1® ®CLn
1 n 1 2 n
= 1 1
where uk (...,ak’_z,ak, 1’ uk,o,akl,akz,...)s ﬂe we have
n
[lef] = 1 |fo|]
EE] k''e
Lerma 4.1. For any vector z=(zl,...,zn)s m“, with zl+0 for i=1,...,n the tensor
1 i
P | h 1
) (Zl . ) belongs to ®n2€. and we have
n
e[| = = (exp(|z, |) + exp (———I) ~EJ..
k=1 |2k
i1 i n 1
‘ n
Proof. [|(zl ez )| = kzl H(zk )f|e

[
= p

k

— LEELQ ?
l{zlw EIR J
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n

o - on 1)1

k=

'(Expiuk|+exp WGiT =3 ]

by lemma 4.1.(4.5) now follows easily and (4.6) is similar. O

K|

of Ln consisting of all tensors of

(4.5)

(4.6)

Iflkz,u)|

_1)

k

= =

1

i

\
)
4

%
Now introduce the nonlinear subspace 'Ln
the form ®=(zluJ).
Theorem 4.2 We have
n
[1ae]| gclmax{__l-zs-u,l_z? DERCRNILN
Iz lz_| _[k—l
T 1 n
for all ¢ , Where
n+m
C1 = max(r(zl},...,r(zn),l)
where 2
2l i AZ eXE]z
expfz)-1
and
N
[Bel] & 5 [iBell <mc,max§ 1 ..., 1 }|[e]|
. r
i=1 ] 2 l IZ
where |ul| ks #
C2 = max((ul),n..,r(um),l),
Proof. To prove (4.5) note that
e (i-1.) j
(A‘I’)ij = yzl iz K ouf (z,u).
Consider the term
i-1 i i ]
J 1 2 n "1 m o
(AlQ)ij iz, z, eeez U fllz)4)
We have
i -1 TL i o j
= E 1 1 i 1 e k i ; Ky
ool = it 1l TS, 1S,
© . ]’ =1 i _
= z _[;l_l | 1‘z].l_L i (e}{pi; 'I+ exp 1
i1=mm ilgﬁ k=2 "~ 2,
However,GD - . | ~i1—1 . 1 i
. LAy = _ v Z z
L Y L =
1 [T foml 40 1 Ty
= |z | £ exp (|z |_1)+ explz. |
b S 1 1
< C 1 (explz, |+ exp 1 -1
AR 5 1 ;
2, | !
Hence
[1agef] < ¢ ___1,§| le|} [£,(z,u) |
121]
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At ; T
Corollary 4.3 e t@ exists for all t and for all @ejh+m and we have

12| | < exp(u(z,wt)]]o]]

where 0
w(z,u) = Clmax T o556 1 E [fk(z,u)]. O
EAR ENES B
1 n
It follows from corollary 4.3 that the system

¢ = AD
is soluble in I? and if @ =(zluJ) for some z Emn, u eC™ (4.7)
n+m o oo ) o
we have
1|¢(t)|| < exp(w(zo,uo)t)1|®01 .

We can now define the Volterra series solution for the equation (4.4) in the

usual way:

v ot t
o(t) = w (£)+ YEIIO ---fO WY(t,cl,..-,cy)v(cl)a...ﬁv(oY)dcl...dcY (4.8)

where

A
w (t) =e Eo
[e]
_ _ Av
w (t,O younn s D =eA(t Ol)BeA(Ol %)B...B?- ¥ % , for tro.> ... 30
=0 otherwise
and

QP\U:_%)BE’.A(Ul_Gz)B- . .BQAVX(I)O (v(ol)Q. . -&V(GZ)\

A(t—crl) A(o_—_oz) Ao
V(GZ)B...V(U yBe Yy .
Y o]

= _) Be
e V(Gl)
Then we have
Theorem 4.4 ‘'[he Volterra series in (4.8) converges (in in+n9 and 1s the unique

solution of equation (4.4), provided v(t)aLm(o,m) and xo,u0+0.

Proof. The only nontrivial part to prove is the convergence of the Volterra

series. Let

]|v|]m = max ess sup |v,(8)].
i=1,..,m sefo,»)
Then
o o
¥ 'Y t —2 —}_ @
“VHm J'O Ll J’OY IOY ||Wg(tadls"'sUY)[|'

sosdg
dcl OY

o~1 8
p—t

[leCe)[[<|fw o) ]| + ;

Hence by corollary 4.3 and (4.6) we have

[lw (50,5050 ) ]2 nYexp(w(z_,u)e)||e |,

1’



where
n = mC max{|u |_2 y wes 3|8

2 ol

i i
and ? = (x uJ). Hence,
o o o

[ee] t g —l
||<1><t)||;|lwc,<t>||+Y§l|1v|ilﬁn*!o---foY exp(u(z,u )0 |[a|[doy .- do,

=[lw |1+ I [|vl|n" expu(z_su)t)]le ||

v=1 Y!

< explw(z_u )t +[[v][ nt} |[e [].

5. Equations on Complex Manifolds.

We now consider the system

cxU —— T(C)
N
C

defined on a complex manifold C where F is a meromorphic map, i.e. there exists

{5.1)

a set P which is a union of submanifolds of codimension 1 such that C\P is an

open submanifold of C and the system

Cevk) —Ea Teen®

N

AN
is analytic. The system (5.1) is given locally (near peC) by an equation of the
form
z=Ff (z,u)/g (z,u)
5 EoA ) gp

+ + )
where fp: L En and gp:([ln S Cn are analytic.

In order to apply the theory of section 4 we reformulate the problem in the
following way. We can regard a system of the form (5.1) as a map X(.):U+D(C)
where D(C) is the set of meromorphic vector fields on C and

X(u) = F(.,u).

For any point (p,u)eC x U we have T(p u)(CXU) = TpC & TuU. We define the system

¥ : T(U) = D(Cxu)

such that, for each ZeT(U),



...—11._

= (X(Ll) ’V)
,u) p

where vaTuU. Then, in a neighbourhood of (p,u) we can write Y in the form

Y(z)(p

z=1f (z,u)/g (z,u)
P P

(5.2)
u=v

Note that the control space is now the gangent bundle of U rather than U. From

the results of section (4) we can replace the .ocal system (5.2) by the system

d =A% + vB 9 (5.3)
p PP PP

m i %
where vB_ = z v.B. and ¢ = (zlu]).
p . 1 l, P
i=1
Similar equations hold for each peC and we must relate the systems arising from
two intersecting coordinate neighbourhoods. To do this let (5,w) = g(z,u) be a
biholomorphic coordinate transformation from (z,u)-coordinates (in a neighbour-

hood U) to (¥,w)=-coordinates with (0,0) = g(0,0). Then we can write

glzyw = [ ] iJ i
i=o j=o
By theorem 3.1 we can write, for any a,B with -=<qg,B<w,

co

v o (] T giigddy (@B

i=o j=o
- z z glJ zluﬂ (5.4)
gt el apf
i=o j=o

y i s ij .
in a finite number of open subsets of U, for some numbers gu% (which depend on

the particular open subset). Hence we can write

Y =G ¢
where
v = %%, o=(z"d)
and
o
G (gua)-

Since g is biholomorphic we can also write

=1 . .
where G 1s the inverse tensor operator of G.

Similarly, if



then
(n,Y) = he g(z,u)
and
7' = HGo
where
T = %P, e=(z*),

and H,G are defined as above. Hence the set of tensor operators of the type

(5.4) is a group and operates as a transformation group on,fz+m. Thus, assigning

T i j ; ; ;
a space of tensors.gn+m p of type (zlu;) at each point p of C (with coordinates
3
; #'T i F §
(z,u)) then we can make UL with projection
peC ?
+ T
™ U 11n+m - C
peC sP

into a fibre bundle over C. We denote this bundle by Pn+m
We can now define the concept of global bilinear system.

Definition. Let X(.): UsD(C) be a system as defined above. We shall say that

"
m+1 sectionsxil,-b ,...;Bm of the fibre bundle Tn+m form a bilinear system on C

1

if the local representation of X(.) given by

z fp(z,u)/gp(z,U)
u=v

at p is related to the bilinear system

e

+ v B, § +...+v B & 343

P PP 1'ip'p m mp p —
as above, where ¥ = A & ,.ﬁ, =B, ¢ .
P PP ip ip p

The group action of the transformations of type (5.4) imply that local represen-—

tations of the form (5.5) are related by

Y =GAG L Y+vGB. Gl y+...4v GB G Ly
q p q 1 1ip q m mp |

where ¥ = G@P and G is a transformation of type (5.4) between the local

coordinates (w,v) at q and (z,u) at p, where

w(q) = x(p) =0, v(q) = u(p) = 0.

If a given section ¥{ of T - belongs to a bilinear system, we can define an
n

exponential map for this 'tensor field' by
At
() =ce P,

P P
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This is well defined since Ap is just a linear tensor operator. Moreover,
under a change of coordinates G, we have

il
G(eAPt)G L _ g&APG t.

We can now state

‘Theorem 5.1. Given a nonlinear system X(.):U»D(C) on a complex manifold C,

we can assoclate with it a Volterra series

o]

ot t
o] = t) + ty B i do_...d
(&) = w_(t) Yzl /s IO wy (t,0,, 0, )v())® (o )do, o,
where the kernels are given locally by
A (t—ol) Ap(cl—oz) Apc#
w (t,o.,...,0 ;p) = e P B e B ...Be P
y ool 10y 3P p p p op
where B = (Bip,...,Bmp). Moreover the kermels transform according to
A (t-g.) A (o,-0,.) Ao
| 1 q 1 2 q Y
t T =e B e B ... Be L
Wx( ’Uls ,U'Y q) q q q 0q
O e - T o A (o-0.) o _
=G Velep ¢l P 12 g PY¥lg
e P ]

Gw (t,o ,...,GY;p).

Y 1
This theorem shows, therefore, that a meromorphic system on a complex manifold

has a global Volterra series expansion.

6. Conclusions

In this paper we have derived a global Volterra series for a meromorphic
differential equation defined on a complex manifold. As we have seen, such a
series is a 'bundle' of local Volterra series with a transformation group

induced by local coordinate chahges.
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