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The mathematical model of rotating electrohydrodynamic flows in a thin suspended liquid film is proposed
and studied. The flows are driven by the given difference of potentials in one direction and constant external
electric field Eout in another direction in the plane of a film. To derive the model, we employ the spatial
averaging over the normal coordinate to a film that leads to the average Reynolds stress that is proportional to
�Eout�

3. This stress generates tangential velocity in the vicinity of the edges of a film that, in turn, causes the
rotational motion of a liquid. The proposed model is used to explain the experimental observations of the liquid

film motor.
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I. INTRODUCTION

The paper is devoted to the electrohydrodynamics �EHD�
of a thin suspended liquid film where the flows are driven by
constant external electric field applied at the edges of a film.
This research was inspired by the laboratory experiments
�1–3� where various rotating flows have been observed in a
water cell placed inside a plane capacitor. The ability of a
constant electric field to generate and to maintain rotating
flows looks so striking that the authors �1–3� called this ef-
fect a liquid film motor, emphasizing that it represents a new
type of engine. Simultaneously, they denied the possibility of
generation such a flow by the edge effects and proposed the
heuristic explanation based on the changing of orientation of
water molecular dipoles due to a strong electric field. In con-
trast, we show that an averaged rotating flow in a film can be
generated by the edge effects, so the appearance of rotating
flows can be explained within the classical EHD theory.
More precisely, we show that the jump of an electric field
across a water-dielectric interface can produce �due to the
electrokinetic effects� the tangential velocity of a fluid that,
in turn, can maintain a steady rotating flow in a film. The
related physical mechanism is simple and clear. The field of
the capacitor creates the opposite electric charges in the fluid
near the interface boundaries. Then the action of the electric
field �related to the potential differences between the elec-
trodes� creates the rotating flow.

Naturally, our final model for the averaged flows is two-
dimensional �a plane one�; however, the tangential velocity
at the side boundaries is caused by the Reynolds stresses that
are obtained by the averaging over the film thickness of an
original three-dimensional flow. The resulting tangential ve-

locity has the magnitude O�h4�, where 2h is the film thick-
ness. An intense EHD rotating flow in the whole film takes
place only in the restricted domain of governing parameters.
According to our theory, the ratio between the spatial scales
of a flow domain plays a crucial role: rotating flows can exist
only in moderately thin films and cannot appear in the flow
domains where all spatial sizes are of similar order as well as
in too thin films. For example, the tangential velocity
�1 cm /s appears for the following parameters: the strength
of the capacitor electric field �30 kV /m, the difference of
electrolysis potentials �20 V, the film thickness
�0.1–0.3 cm, and the film surface size �1 cm. To build
our model, we employ only two basic physical assumptions:
the absence of the pondermotive forces and the absence of
the surface stresses. All other assumptions, we use represent
the mathematical adjustments of various physical require-
ments �such as the rest of the film as a whole, the no-leak for
both liquid and concentrations, the conditions for the electric
potential and its derivatives at the boundary, etc.� to the con-
sidered geometry. The main general result of our paper is the
demonstration of the fact that classical EHD effects �such as
the electrokinetic phenomena�, that are small in ordinary
conditions, can play the key part in microscales. Such a re-
valuation of classical EHD effects may play important part in
the developments of microfluidics and in the creation of mi-
crodevices.

In our mathematical modeling, we essentially use the re-
sults �4–9� on the analytical and numerical studies of the
EHD flows with the gradient of conductivity, the method of
depth average, and the effective asymptotic procedure for the
EHD equations of multicomponent mixtures. In the averaged
equations derived in �4–8�, one can observe the terms de-
scribing the Taylor-Aris dispersion and the Reynolds
stresses; however, the latter are neglected since they are
small for the chosen intervals of parameters and negligible
for the studied phenomena. It is also useful that in �7�, one
can find the comparison between the mathematical models of
the different levels of approximation.
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We can also mention closely related to our studies papers
�10–14� which consider EHD flows in thin liquid films or in
liquid layers with interfaces �15�, describes the appearance of
vortex rings due to reactions near an electrode, and �16� pre-
sents a rotating EHD flow in a smectic medium. The role of
the interface boundary conditions in EHD is well known
from classical papers �17–19�. The important paper �20�
shows that an electrical double layer �ED� can allow the slip
in the boundary conditions between a liquid and a solid. The
papers �21–26� are devoted to the influence of the inhomo-
geneous electrical charge of microchannel boundaries on
EHD flows. Other papers �27–31� consider various theories
of the EDL, including so-called extremal regimes. The sur-
vey of modern EDL theories can be found in �32�.

The attention to various flows in micro- and nanoscales
has increased greatly during the last few years. For example,
the main parts of recent surveys �33,34� are devoted to EHD
processes in microchannels �35–40� and deal with various
flows in microchannels including the flows caused by the
injection of a fluid. This attention is strongly stimulated by
the creation of the microfabricated fluid devices for the sepa-
ration or micromixing of multicomponent mixtures �41–46�,
the electromicropumps �47�, etc. These new devices are
known as parts of the lab-on-a-chip technology. In this
booming research area, the mathematical models can help to
understand and describe the microprocesses, to develop ex-
perimental methods, and to construct microchips.

In the paper, first we present the rigorous asymptotic
theory and then we study the relation of our results to the
experiments �1–3�. Section II contains the original and di-
mensionless governing EHD equations and boundary condi-
tions as well as the list of the dimensionless variables used.
In Sec. III, we present the plane-averaged EHD equations
and the boundary conditions that are involved in the descrip-
tion of rotating flows. How we derive these equations is ex-
plained fully and systematically in Appendix A. In Sec. IV,
we present the simplified asymptotic model describing the
flow near the side boundaries of a film. The results of this
section allow us to estimate the impact of Reynolds stresses
on the near-wall flows and to derive the formula that links a
flow velocity with the strength of the electric field in a ca-
pacitor. These questions are also considered in Appendix B.
In Sec. V and Appendix C, we present the simplified equa-
tions and boundary conditions for averaged flows. The ob-
tained analytical solution allows us to predict the qualitative
structure of the flows. The main purpose of Secs. III–V is to
give the asymptotic evaluation of the main parameters. This
evaluation allows us to split the solution of our problem into
two parts: the deriving of the boundary conditions based on
EDL and the computations of a rotating flow. Section VI
contains the results of computational experiments for the se-
lected set of parameters. Here we describe the rotating flows
in a square film by the presenting of their velocity fields. In
addition, we characterize the differential rotation of the liq-
uid by three different parameters: by the averaged vorticity,
by the averaged ratio v� /r, and by the period of rotation of a
passive scalar admixture. We also consider the flows in rect-
angular films and the flows in a film with smothered angles.
Finally, we compare the flows with the no-slip and free-
surface boundary conditions. The detailed discussion is given
in Sec. VII.

II. BASIC EQUATIONS

A rectangular thin liquid film with fixed-plane free sur-
faces z= �h is considered in Cartesian coordinates �x ,y ,z�
�Fig. 1�. The gravity and the surface tension are absent. An
electric field can be conveniently split into two parts. The
first part is due to the constant electric potentials �=0 and
�=�0 on the boundaries x=0 and x=X, so the constant dif-
ference of potentials is applied in the direction x. The second
part is a constant external electric field Eout that is prescribed
at the boundaries y=0 and y=Y. The vector Eout lies in the
plane z=const and � is the angle between this vector and y

axis.
The dimensional system of governing equations describ-

ing the EHD processes in multicomponent mixtures is well
known �see, e.g., �4,7,48��. Here, we first present all equa-
tions of this system and then describe the notations used. The
Navier-Stokes equations include the additional terms for the
pondermotive force �1 /2�E2

�� and the force qE exerted on
a charge

�
�v

�t
+ �v · �v = − �p + ��	v −

1

2
�E

2
� � + qE . �1�

The continuity equation

div v = 0. �2�

The Poisson-Boltzmann equation

div��E� = q . �3�

The charge of the multicomponent medium consists of the
charges of components and the electric field has the potential

�e = F�
k

ekck, E = − �� . �4�

The mass transfer is described by the balance equations that
do not contain chemical reactions �the Nernst-Plank equa-
tions without source terms�

�ck

�t
+ v · �ck + div ik = 0, �5�

ik = − Dk � ck + ek
kckE . �6�

Here, v is velocity �m/s�, p is pressure �N /m2�, � is liquid
density �kg /m3�, q is charge density �C /m3�, � is electric
potential �V�, E is electric field strength �V/m�, ck is molar
concentration for the kth component of mixture �mol /m3�, ik

is density fluxes for concentrations �mol / �m2 s��, � is kine-
matic viscosity �m2

/s�, Dk is diffusivity for the components
of a mixture �m2

/s�, ek are the electric charges of compo-
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FIG. 1. A sketch of thin film.
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nents �in the units of electron charge�, � is the solution per-
mittivity ��=�r�0, where �r is relative permittivity and �0 is
absolute permittivity, C / �V m��, 
k are electric mobilities
�m2

/ �V s��, and F is Faraday constant �C/mol�.

A. Scaling

For the dimensionless variables, we use the following
characteristic values of parameters:

�x,y� = a�, �z� = h�, �t� = T�, �u,v� =
a�

T�

,

�w� =
h�

T�

, �ck� = C�, �E� = E�, ��� = E�a�,

�q� = F�C�, �p� = F�C�E�a��2,


 =
F�E�a�

R�T�

, T�

2 =
��a�

F�C�E��2 , �2 =
h�

2

a�

2 . �7�

Here, a� is the characteristic length in the plane of the film,
h� and � are the dimensional and dimensionless half thick-
nesses of the film, T� and C� are characteristic time and mo-
lar concentration, F�C� is the characteristic charge density, R�

is the universal gas constant, T� is the absolute temperature
of a solution, and a�E� is the characteristic difference of elec-
tric potentials in the x direction. The dimensional values of
kinematic viscosity ��, diffusion coefficients Dk

�, and dielec-
tric permittivity �� are linked to their dimensionless counter-
parts as

� =
��T�

a�

2 , Dk =
Dk

�
T�

a�

2 , � =
��E�

a�F�C�

. �8�

The use of dimensionless parameters �viscosity, diffusivity,
etc.� instead of conventional scaling numbers �Reynolds
number, Peclet number, etc.� is more convenient for our pur-
poses since they allow us to see which physical effects par-
ticipate into a certain process. The connections between the
introduced parameters and the scaling numbers are apparent

Re =
1

�
, Pek =

1

Dk

.

B. Dimensionless equations

The dimensions of all involved variables are listed after
Eqs. �1�–�6�. For brevity, we use the same notations for di-
mensionless variables as for their dimensional counterparts.
This usage can cause confusion where both types of vari-
ables are used simultaneously; in these cases, the dimen-
sional variables are asteriated.

We take the dielectric permittivity �=const that leads to
the vanishing of the pondermotive force �1 /2�������2=0.
Hence, the dimensionless system of governing equations de-
scribing the EHD flows of multicomponent fluid is

�2du

dt
= − �2

�0p + �2�	0u + ��zzu − q�0� , �9�

�4dw

dt
= − �2

�zp + �4�	0w + ��2
�zzw − q�z� , �10�

div0 u + �zw = 0, �11�

���2	0� + �zz�� = − �2q, q = �
k

ekck, �12�

�2dck

dt
+ �2 div0 ik + �zIk = 0, �13�

ik = − Dk��0ck + ek
ck�0�� , �14�

Ik = − Dk��zck + ek
ck�z�� ,

� = ��13,�23,0� = ���zu + �2
�0w� ,

d

dt
= �t + u · �0 + w�z, �0 = ��x,�y�, 	0 = �xx + �yy . �15�

Here, v= �u ,w� is the velocity and u= �u ,v� is its �x ,y� pro-
jection, ik and Ik are the planar and transversal density fluxes
for concentrations, the parameter 
 characterizes the ratio
between the transports of concentrations by an electric field
and by diffusion, 2� is the dimensionless film thickness, and
� is the tangential stress vector that is expressed via the
components �13 and �23 of a viscous stress tensor.

The used method of the introducing of dimensionless
variables �see Eq. �7�� allows us to write separately the vari-
ables and equations that describe the processes in the plane
of a film, such as the Eq. �9� for the plane velocity u and the
Eqs. �13� and �14� for the plane transfer of concentrations ck.

C. Boundary conditions

On the film boundaries z= �1, we accept the no-leak con-
dition for velocity

w�z=�1 = 0, �16�

the tangent stress-free condition, that with the use of Eq. �16�
takes form

��z=�1 = ���zu + �2
�0w��z=�1 = ��zu�z=�1 = 0, �17�

the no-leak conditions for concentrations

Ik�z=�1 = 0, �18�

and the vanishing of the normal electric current

�z��z=�1 = 0. �19�

For the deriving of the averaged model in Sec. III and in
Appendix A, we use the governing Eqs. �9�–�15�. In our
averaging procedure, we only use the boundary conditions
�16�–�19�. The additional boundary conditions �defined for
the averaged equations� are given in Sec. III.

III. AVERAGING ACROSS A FILM

The main part of the employed averaging procedure is the
same as in �4–8�. The operation of averaging is defined as
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f̄�x,y,t� =
1

2
�

−1

1

f�x,y,z,t�dz, f̃ 	 f − f̄ . �20�

We decompose the solution of Eqs. �9�–�19� into the series


u,w,p,q,ck,�� = �
m=0


um,wm,pm,qm,ck
m,�m��2m

= �
m=0


um,w̄m, p̄m, q̄m, c̄k
m,�̄m��2m

+ �
m=0


ũm,w̃m, p̃m, q̃m, c̃k
m,�̃m��2m. �21�

The averaging of the governing Eqs. �9�–�14�, which takes
into account the boundary conditions �16�–�19� and the de-
composition into the small parameter �2, first yields
q̄= q̄0+O��2�, �̄= �̄0+O��2�, c̄k= c̄k

0+O��2�, �̃0=0, c̃k
0=0, and

q̃0=0 and then leads to the expressions for ũ
0, w̃0 c̃k

1. The
averaged plane equations that retain the terms O��2� are
�for details, see Appendix A�

�2d0u

dt
+ �0�U � U� = − �2

�0p̄ + �2�	0u − �U , �22�

div0 u = 0, �23�

�	0�̄ = − q̄, q̄ = �
k

ekc̄k, �24�

d0c̄k

dt
− �k�

2 div0�U�U · �0c̄k�� + div0 ik = 0,

ik = − Dk��0c̄k + ek
c̄k�0�̄� , �25�

d0

dt
	 �t + u · �0, �U 	 q̄�0�̄ ,

 	
�2

45
, �k 	

4

945Dk

, �26�

where �U � U� denotes a tensorial product. We emphasize
that after this averaging, � must be treated as a regular inde-
pendent parameter of the problem, jointly with �, �, Dk, etc.

Boundary conditions for two-dimensional domain

For the Eqs. �22�–�26�, we prescribe the boundary condi-
tions for the averaged fields u, ck, and �̄ on the side bound-
aries x=0, X and y=0, Y �Figs. 1 and 2�. The boundaries
y=0 and y=Y represent the interfaces between two dielectric
materials: the liquid of dielectric permittivity � and the out-
side medium of dielectric permittivity �out. These boundaries
are insulators �not electrodes�, hence we require the continu-
ity of the normal components of electric induction �48,49�

��n · �0�̄� = �out�n · Eout�, y = 0,Y ,

where n is the normal unit vector to the boundary. Since
vector Eout lies in the plane z=const and has the angle � with
y axis, we have

��̄

�n
= � E0, y = 0, Y ; E0 =

�out

�
�Eout�cos � , �27�

where the sign “–” corresponds to the boundary y=0 �Fig. 1�.
The conditions of zero concentration fluxes at y=0, Y are

ik · n = 0, y = 0, Y . �28�

The fixed difference between the electric potentials at x=0
and x=X is given as

�̄ = 0, x = 0; �̄ = �0, x = X . �29�

For all edge boundaries x=0, X and y=0, Y, we require the
no-leak of a liquid

ū�x=0,X = 0, v̄�y=0,Y = 0 �30�

and the analog of Helmholtz-Smoluchowski slip condition

u · ��y=0,Y = − R�0�̄ · ��y=0,Y , �31�

u · ��x=0,X = − R�0�̄ · ��x=0,X, �32�

where � is a unit tangent vector to the boundary and R is the
coefficient defined in Sec. IV. By virtue of Eq. �29�, the
boundary conditions �32� for x=0, X take the no-slip form

v̄�x=0,X = 0. �33�

The prescription of tangential velocity �31� at the boundaries
y=0, Y is justified in Sec. IV where we show that R�E0

3.
This derivation is performed from the Eq. �22� that contains
the averaged Reynolds stresses

�0�U � U� 	 �U · �0U + U div0 U� , �34�

which define R for certain intervals of parameters �, �, �,
etc.

The derivation of Eqs. �22�–�26� is given in Appendix A.
Here we mention only that the boundary conditions
�16�–�19� at z= �1 play a central part in this derivation. It is
also well known that the use of the spatial averaging only
does not allow producing the closed systems of equations;
for its closure, one has to employ some additional hypoth-
eses. As such a hypothesis, we impose the condition w̄0=0

λD

λD

v

v

capacitor plate

capacitor plate

surface charge

surface charge

screening cloud

screening cloud

anode cathodeliquid

insulator

insulator

y=Y

y=0

x=0 x=X

Eout

Eout

x
y

FIG. 2. The physical mechanism of rotation. The capacitor field
creates the opposite electric charges in the fluid near the interface
boundaries y=0, Y. Then the action of electric field related to elec-
trodes �applied in x direction� generates the rotating flow.
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that is natural from the physical viewpoint. The equations
similar to Eqs. �22�–�26� have been obtained in �4–8� �and in
other papers cited there� and devoted to the studies of the
EHD flows with the spatially nonuniform conductivity.
These papers also contain the decomposition into power se-
ries and even the term similar to Eq. �34�. However, the key
difference with our paper is that this term is small for the
physical parameters considered in �4–8�, so it is naturally
neglected.

IV. FLOWS NEAR BOUNDARIES

The problem �22�–�34� can be split into the sequence of
two problems: �i� the calculation of R in Eq. �31� and �ii� the
finding of the averaged velocity field u and the averaged
potential �̄. In order to evaluate R, we assume that the mix-
ture is electroneutral everywhere except the vicinities of the
boundaries y=0, Y. In these vicinities, we build the
boundary-layer solution that leads to a good estimation for
R. The detailed studies of the related double layers �the
Gouy-Chapman layer or diffusion layer, the Stern layer, etc.�
can be found in �20,22–25,28–32�, where nonlinear and
steric effects are taken into account along with linear elec-
trokinetic effects. From the mathematical viewpoint, differ-
ent EDL theories are aimed to formulate and justify different
boundary conditions for the related boundary layers. The
main question is how to choose the mutual positions of a
physical boundary and an interface between the regions with
positive and negative charges.

The appearance of a tangential velocity near the bound-
aries is rather obvious from the physical viewpoint. It can be
explained as an electrokinetic effect �electro-osmosis�; the
correspondent theory was introduced by Smolukhowski in
1905 and then developed in the papers we quoted above.
This theory is based on the fact that the surface charges of
the insulator induce the equal but opposite in sign charges
inside the liquid which form the Debye screening layers of
the characteristic thickness �D

� near the insulator boundaries.
Then the electrical field related to the electrodes generates
the tangential velocity that has opposite directions near y

=0 and y=Y. These opposite velocities, in turn, generate the
rotation of a liquid �see Fig. 2�.

To study this phenomenon in more details, we consider
the vicinity of the boundary y=0 �the case y=Y is similar�
and look for the steady solution of the problem �22�–�30� in
the form

u = „ū�y�,0…, c̄k = c̄k�y�, �̄ = ��y� + Ex , �35�

where E is the constant tangential component of the electric
field in the vicinity of y=0. For simplicity, we neglect the
terms �k�

2
U�U ·�0c̄k� in Eq. �25�. The form �35� of a solu-

tion is commonly used in the EDL theory for the deriving of
the relation between the strength of an electric field and the
flow velocity at a boundary �see, e.g., �50��. The requirement
E=const is not essential. It is used only for the simplification
of calculations; physically it corresponds to the “local” con-
sideration of a short boundary segment. When the required
relation is derived, E is allowed to be dependent on x and y.

The integration of Eq. �25� with the boundary conditions
�28� yields

c̄k�y� = cBke
−ek
��y�, q̄�y� = �

k

ekcBke
−ek
��y�, �36�

where cBk are the constants representing concentrations for
the equilibrium Boltzmann distributions. We restrict our-
selves with the case when the mixture is electroneutral, only
two kinds of ions are present �for example, H+ and OH− for
water� and the equilibrium Boltzmann distribution is valid

cB1 = cB2 =
def

cB, z1 = 1, z2 = − 1. �37�

The Poisson-Boltzmann Eq. �24� takes the form

�2
�yy� = sinh �, ��y� = 
��y� , �38�

where �D
� and � are the Debye length and the relative Debye

length �see also Fig. 2�

�2 =
�

2
cB

=
��D

� �2

a�

2 � 1, ��D
� �2 =

��R�T�

2cB
�
F�

2 . �39�

In the vicinity of y=0, the boundary-layer variable is intro-
duced as y=�� �similarly, at y=Y, the change of variable is
y=Y +���.

In more precise terms, the considered boundary-layer so-
lution represents the so-called “penetrating boundary layer”
�51�. In this case, the original equations and the boundary-
layer equations coincide and ��1 is not required for the
obtaining of a solution. Instead of looking for the boundary-
layer solution decaying at infinity, one can use the symmetry
with respect to y=Y /2; the result will remain the same. Nev-
ertheless, our further consideration follows the path that is
more transparent from the physical viewpoint. Equation �38�
takes form

������� = sinh ���� . �40�

Its integration with the boundary condition �27� for ��0�
yields

��0� = − �0, 
��0� = − �0, �41�

where

�0 = ln�1 + E
2 + E�2 + E

2�, E
2 =


�

4cB

E0
2.

The expression for ��Y� is similar to Eq. �41�

��0� = �0, 
��Y� = �0.

The boundaries y=0 and y=Y represent the different plates
of a capacitor, therefore the opposite signs of potential � are
apparent. The calculation of �0�U � U� with the use of Eqs.
�26�, �34�, and �35� yields

�0�U � U� =


�2 �E�y�q̄
2
�y��, �y�q̄�y��2� , �42�

where the right-hand side �written in components� allows us
to integrate the Eq. �22� with the additional condition
u���=0. This condition means that the flow arising near the
boundary must decay at large distance from this boundary,
i.e., the distributions of the horizontal component u and po-
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tential � are of a boundary-layer type �for more details, see
Appendix B�

E�2

�2�4
3�
�

�

������2
���d� = �2�u��� +

�E����



. �43�

For the obtaining of the boundary condition �31� and defin-
ing R, we evaluate the integral at �=0,

�
�

0

������2
���d� = �

0

��0�

sinh2 �d� =
1

2
�sinh �0 cosh �0

− �0� .

Taking into account that E=−�� ·�0��y=0 and comparing Eq.
�43� to Eq. �31�, we obtain �the case y=Y is similar�

R = R3 + R1, R1 = �
�

�2�

�0,

R3 = �
2cB

2

�2�3

�sinh �0 cosh �0 − �0� , �44�

where different signs correspond to y=0 and y=Y. After the
use of series decomposition, we can replace the expression
�45� for R3 by

R3  �
8cB

2

3�2�3

�2E3, E � 0.6. �45�

The error of the above replacement is below 5% for
E�0.6 �for the real parameters of Sec. VI, the value
E0.01, hence the relative error of this replacement is
0.0001�. In order to avoid misunderstanding, we should men-
tion that the calculated value of R �31� represents only a
rough estimation; to obtain, it we accept that the Eq. �25� is
steady and we can neglect the Taylor-Aris dispersion. More-
over, in Eq. �35�, we assume that E=const on the boundaries
y=0, Y that is not true; later on, we consider E=E�x�
�see Eq. �51��. In spite of these simplifying assumptions, the
results of this section show that Reynolds stresses
�0�U � U� can crucially participate to the generation of the
tangential velocity �of order O�E0

3�� at the side boundary of a
film.

V. FLOW IN A THIN FILM

In order to describe the flow in a thin film, we use the
simplified version of the Eqs. �22�–�26�, where we accept
that the mixture is electroneutral �q̄=0� everywhere but at
the vicinities of the boundaries. It allows us to eliminate
from the equations all terms proportional to U, taking them
into account only in the boundary conditions �see Sec. IV�.
The problem describing the averaged velocity u= �ū , v̄� and
the averaged potential �̄ is

�tu + u · �0u = − �0p̄ + �	0u, div0u = 0, �46�

	0�̄ = 0, �47�

where Eq. �47� corresponds to the continuity equation for an
electric current in the case of constant conductivity and equal

diffusion coefficients Dk �see Appendix C�; Eq. �47� is not
the Poisson-Boltzmann Eq. �24� that expresses the potential
via the charge that was used in Sec. IV, the formal coinci-
dence of these equations should not cause misunderstanding.
We solve Eqs. �46� and �47� in the rectangular domain
D= 
0�x�X , 0�y�Y� with the boundary conditions
�27�, �29�, �30�, �32�, and �33�

u�x=0,X = 0, v̄�y=0,Y = 0, �48�

ū�y=0,Y = − R�̄x�y=0,Y, R = R1�E0� + R3�E0� , �49�

�̄�x=0 = 0, �̄�x=X = �0, �̄y�y=0,Y = E0. �50�

The value R is given by Eq. �45� and the value of R essen-
tially depends on E0 as it follows from the expressions:

R1  �
��2�

2�2��
cB

E0, R3  �
��2
�cB

3�2�3 E0
3.

The problem Eqs. �47� and �50� has the analytic solution that
can be presented as Fourier’s series. For the further use, we
give the following formula �where the sign “+” corresponds
to y=0�

�̄x�y=0,Y =
�0

X
� E0G�x;X,Y� ,

G�x;X,Y� =
4

�
�
k=0

�
tanh

�2k+1��Y

2X

�2k + 1�
cos�2k + 1�

�x

X
. �51�

The computed graphs of G�x ;X ,Y� for the different values of
X and Y are shown in Fig. 3.

It is apparent that for the fixed X and Y, the sign of
�̄x �y=0,Y �and hence the tangential velocity ū �y=0,Y given by
Eq. �49�� depends on the relation between the parameters �0,
E0. For example, for X=Y =1 and �0 /X=E0, the velocity
u�0 on the part of the boundary 
0�x�0.1,y=0� and
u�0 on the rest of it 
0.1�x�1, y=0�. The graphs of Fig.
3 allow us to give the qualitative explanation of the flow
structures; in particular it is used in Sec. VI for the explana-
tion of Fig. 4.

The numerical solution of the problem �46�–�50� is pre-

sented below with the use of the stream function �̄ which is
defined by the equations

0.2

G(x; X, Y )

x

0.4 0.8 1

−2

−1

0

1

2

23

4

1

FIG. 3. The function G�x ;X ,Y� for X=1 and the different values
of Y: �1� Y =1, �2� Y =0.5, �3� Y =0.2, and �4� Y =2.
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ū = �̄y, v̄ = − �̄x, � 	 v̄x − ūy ,

	�̄ = ūy − v̄x = − �, �̄�x=0,X = �̄�y=0,Y = 0.

Case when the electrodes represent free boundaries

At the electrodes x=0, X, we have accepted the no-slip
boundary conditions �48� for u. It is also interesting to con-
sider the different case when the electrodes represent free
boundaries, which require the tangential no-stress condition

ū�x=0,X = 0, v̄x�x=0,X = 0.

VI. NUMERICAL RESULTS

We solve the Navier-Stokes Eqs. �46� with the prescribed
tangential velocity and the no-leak condition at y=0, Y and
the no-slip condition at the rest of the boundary �48� and �49�
by the employment of the standard projection algorithm
�52,53� and the finite element method. The numerical setting
is based on the package FREEFEM++ �54� with the use of
adaptive grids. The formula �51� for �̄x �y=0,Y is not efficient
due to its singularities at x=0, X; therefore taking into ac-
count the singularities of derivatives near the vertices, we
also find �̄ �Eqs. �47� and �50�� numerically.

The formulated problem is rather simple, however, the
qualitative properties of its solution strongly depend on the

relation between the parameters �0, E0, X, and Y. As we have
already mentioned, the direction of the tangential velocity on
the boundaries y=0, Y is defined by Eq. �51� �Fig. 3�: the
velocity is positive on one part of each boundary and is
negative on its remaining part �Fig. 4�. The particular veloc-
ity distribution depends mainly on the ratio �0 /E0.

It is apparent that this tangential velocity causes the rota-
tional motion of a large scale. Some additional smaller vor-
tices can appear in the regions adjacent to the parts of the
boundary, where the tangential velocity has the opposite sign
�Fig. 4�.

It is instructive to express dimensionless parameters in
terms of dimensional ones with the use of Eqs. �7�, �8�, and
�45�

a�

T�

R1 = −
��E�

2

����

�D
�

E0,

a�

T�

R3 
F�cB

���E�

3

135��

2��

3 � 2��E�

2

R�T�cB
� �1/2

E0
3h�

4,

�D
� = ���R�T�

2cB
�
F�

2 �1/2

, T� =
a�

h�

� ��a�

F�cB
�
E�

,

� =
��T�

a�

2 , E0 =
�out

�

��

Eout
�

E�

, �0 =
�0

�

a�E�

. �52�

We perform our computations for the experimental values
of parameters for a liquid film motor taken from �1–3�; all
used values are listed in Tables I–III. It is apparent that the
velocity �a� /T��R1 �that is similar to the classic electro-
osmosis� is significantly less than the tangential velocity on
the boundary �a� /T��R3 that appears due to the averaging
over the film thickness. Therefore in the computations, we

TABLE I. Dimensional parameters.

Symbol Description Value

�0
� Difference of potentials 20 V

a� Length 10−2 m

Eout
� Electric intensity 30000 V/m

�� Kinematic viscosity 10−6 m2
/s

�0
� Absolute permittivity 8.85�10−12 C / �V m�

�� Water permittivity 78.3�0
�

�out
� Air permittivity 1.0�0

�

�� Water density 103 kg /m3

C�=cB
� Ion concentration 10−4 mol /m3

F� Faraday constant 9.65�104 C /mol

R� Universal gas constant 8.3 J / �mol K�

T� Absolute temperature 293 K

TABLE II. Characteristic scales.

Symbol Description Value

E� Electric strengths scale 2000 V/m

T� Time scale 7.7�10−2 s

a� /T� Velocity scale 0.13 m/s

1 /T� Angular velocity scale 12.99 Rad/s

R3�a� /T�� Tangent velocity scale 3�10−2 m /s

R1�a� /T�� Tangent velocity scale 0.5�10−6 m /s

�D
� Debye’s length 0.95�10−6 m

h�=�a� Half height 0.29�10−2 m

TABLE III. Dimensionless parameters.

Figure E0 −�0 � ��104 R3 R3 /E0
3 X Y

5–10, 12,
14–17 0.19 1.0 0.29 7.7 0.235 33.42 1.0 1.0

11 0.19 1.0 0.29 7.7 0.235 33.42 1.0 0.5

13 0.19 0.1 0.29 7.7 0.235 33.42 1.0 1.0

Eout

u > 0

u < 0y
x

FIG. 4. The sketch of a rotating flow in the film.
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have not taken R1 into account. One can see that �20.09; it
gives us a sufficient ground to treat �2 as a small parameter
and to use Eqs. �22�–�26�.

A. Flows in square domain

Let us show the results of computations in a square and in
a rectangle. The left part of Fig. 5 shows the isolines for the
potential �̄�x ,y� with the step 0.05. Figure 6 demonstrates

the streamlines of �̄�x ,y , t� with the step 0.002 at the instants
t=10 �0.77 s� and t=30 �2.31 s�.

The isolines of the velocity field u�x ,y , t� at t=30 are
given in Fig. 7. After t=30, the flow is practically steady; for
the additional control of the relaxation to a steady state, we

calculate the mean-square norm ��̄�· , t�� �Fig. 5�.
More detailed discussion of the computational results is

given in Sec. VII. Here, we just mention that Fig. 6 shows
the initial appearance of two corotating vortices. Later on,
these two vortices merge into a single vortex that in the
whole domain represents an almost steady rotating flow. For
the considered parameters, the transition �relaxation� to the
final steady flow takes around 2 s.

It is more convenient to describe rotating flows in polar
coordinates �r ,�� with the radial vr and azimuthal v� velocity
components

vr = ū cos � + v̄ sin �, v� = − ū sin � + v̄ cos � ,

x = 0.5 + r cos �, y = 0.5 + r sin � .

The isolines of vr�x ,y , t� and v��x ,y , t� �with the step 0.02�
along with the additional isoline vr�x ,y , t�=0.01, all at

t=30, are shown in Fig. 8. It is worth to notice that
v��x ,y , t��0 that means all fluids are rotating anticlockwise.

Figures 7 and 8 show that the velocity field is rather com-

plex for rather simple geometry of streamlines �̄�x ,y , t�
given in Fig. 6. The isolines of � �which denotes the z com-
ponent of vorticity rot u� are shown in Fig. 9; they are pre-
sented with the step 0.1 along with the additional isolines
0.35, 0.375, and 0.45.

The vortex core with the value of vorticity �0.4 is
shown in Fig. 9 as the dashed circle 0�r�0.25. In addition
in Fig. 9, we give the graphs of ��r ,�m , t� for �m=m� /4,
m=0, 1, 2, 3, and 4 and t=30 in polar coordinates �r ,��. The
presence of an elliptic vortex core is also visible from the
distribution of azimuthal velocity component v� �Fig. 8�.

The averaged angular velocity �0 appears as the
result of the averaging of vorticity over the flow domain
D= 
0�x�X , 0�y�Y�,

�0 =
1

2
��� =

1

2XY
� �

D

�dxdy  0.229 �53�

or in the dimensional form

�0
�  2.92 Rad/s  0.464 rps, 1/�0

�  2.154 s.

�54�

The value of �0 is conserving �d�0 /dt=0� by virtue of
Eqs. �46�–�50�; it can be presented by the explicit formula

�0 = −
1

2XY
� �

D

	�dxdy = −
1

2XY
�

�D

n · ��dS = −
R3�0

XY
.

�55�

1

0.5

0 0.5 1

–
0
.3

–
0
.8

–
0
.5

5

30 600

8

16 10
3‖ψ‖

t

FIG. 5. The isolines of the potential �̄�x ,y� �left� and

��̄�· , t��.
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FIG. 6. The streamlines of �̄�x ,y , t� for t=10 �0.77 s� and
t=30 �2.31 s�.
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FIG. 7. The isolines of ū�x ,y , t� �left� and v̄�x ,y , t� at t=30.
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FIG. 8. The isolines of vr�x ,y , t� �left� and v��x ,y , t� at t=30.
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Additional computations for the motion of passive admix-
ture �see Sec. VI F� show that the angular velocity of a ro-
tating flow can be better represented not by � but by the ratio

��x,y,t� =
v�

r
. �56�

The isolines of ��x ,y , t� with the step 0.04 are shown in Fig.
10 �left�; the right frame shows the graphs of ��r ,�m , t� for
0.001�r�0.25, �m=m� /4, m=0,1 ,2 ,3 ,4, t=30 in polar
coordinates �r ,��.

The averaged value �defined similarly to Eq. �53�� is

�1 = ��� =
1

XY
� �

D

�dxdy  0.166 �57�

or in the dimensional form

�1
�  2.12 Rad/s  0.337 rps, 1/�1

�  2.966 s.

�58�

The value of �1 for the problem �46�–�50� can be pre-
sented by an explicit formula

�1 = −
1

XY
� �

D

�� · � ln rdxdy

=
2�

XY
� �

D

���x − x0�dxdy

=
2�

XY
�0�x0,t� , �59�

where ��x−x0� is the Dirac delta function, x0= �x0 ,y0�,
x0=0.5, and y0=0.5. The calculation of �0�x0 , t� for t�30
�when the flow is almost steady, see Fig. 6� yields

�0�x0 , t�0.02646, which is in the complete agreement with
Eq. �57�: 2�0.26460.166, X=1, and Y =1.

B. Flows in rectangular domains

In addition to the square domain, we perform the compu-
tations in rectangular domains with different Y. In all cases
X�Y, we observe a flow structure similar to the shown in
Fig. 6: the initial appearance of two vortices with the
subsequent forming of a unified steady rotating flow. For
example, the flow for X=1 and Y =0.5 at the instants
t=7 �0.546 s� and t=30 �2.31 s� is shown in Fig. 11.

C. Flows in smoothed square domain

Figure 12 shows the flows in the square domain with the
deliberately smoothed angles �the curvature radius is 0.1�.
One can see that the singularities in the electric field near the
vertices do not alter the flow structure. In these computa-
tions, we keep the boundary conditions �48�–�50� at x=0, X

the same, while on the rest of the boundary, we introduce
physically similar conditions. In these computations, �̄=0 on
the part �A ,B� of the boundary and �̄=�0 on �C ,D�. The
external electric field acts in the y direction. On the rest of
the boundary, the tangential velocity component is propor-
tional to the tangential derivative of the potential �similar to
Eq. �49��. We also keep the no-leak condition valid on the
whole boundary.

D. Two-vortex regime in square domain

We have already mentioned that the tangential velocity at
the boundary is determined by the relation between the pa-
rameters �0, E0, X, and Y �see Eq. �51�� with one possible
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FIG. 9. The isolines of ��x ,y , t� and ��r ,�m , t� for �m=m� /4,
m=0,1 ,2 ,3 ,4, and t=30.
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FIG. 10. The isolines of ��x ,y , t� and ��r ,�m , t� for
�m=m� /4, m=0,1 ,2 ,3 ,4, and t=30.
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FIG. 11. The streamlines of �̄�x ,y , t� for X=1, Y =0.5 at t=7 �0.539 s� and t=20 �1.54 s�.
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flow regime shown in Fig. 4. In order to confirm its exis-
tence, we present in Fig. 13 the results for the parameters
�0=−0.1, E0=0.19, X=1, and Y =1. One can see there the
isolines of the potential with the step 0.01 and the stream-
lines at t=200 with the step 0.0002. The shown flow regime

is almost steady: the norm ��̄�· , t��=0.001 442 in the interval
160� t�200 changes only in the last digit.

In Fig. 13, the tangential velocity at the boundary y=0
changes its sign at x=X00.2. The computations show that
the additional vortices in the angles of the domain do not
appear if X0�0.1. In particular, for X=1, Y =1, and
E0=0.19, the generation of the rotating flow takes place
when ��0��0.6. It is also interesting to see the differences
between the distributions of potentials �cf. Figs. 5 and 13�.

E. Square domain with free boundaries at x=0, X

Figure 14 shows the results of computations for the same
values of parameters but for a different boundary condition
when the electrodes represent a free material boundary �see
Sec. VA�. It is noticeable that in this case, the rotational
motion is close to the flow with circular streamlines. This
result can be expected physically, since the free slip at the
boundaries x=0, X does not disturb the flow that is generated
by the tangential velocities at the boundaries y=0, Y.

Figure 15 shows the isolines of ��x ,y , t� with the step 0.1
�left� and the graphs of ��r ,�m , t� for 0.001�r�0.25,
�m=m� /4, m=0,1 ,2 ,3 ,4, and t=30 in polar coordinates
�right� �cf. with Fig. 10�. We should notice that Eq. �59�
remains valid for the free boundaries, while Eq. �55� fails.

F. On the rotation of fluid

We have already observed that the rotating flows have
rather complex structure. The results of Sec. VI A �such as

presented in Figs. 9 and 10� show that � and v� /r are func-
tions of �x ,y�. It means that different fluid particles move
along the streamlines with different velocities. An instructive
flow visualization can be achieved by the placing of a diffu-
sive scalar admixture c�x ,y , t� to the flow at the instant t0

when the flow becomes “almost steady” �55�

�c

�t
+ u�x,y��0c = D0	0c, t � t0,

�n · �0c���D = 0, c�x,y,t0� = c0�x,y� .

Figure 16 shows the concentration isolines with the step
0.4 at the instants t=300, 500, 700, and 1500 for
D0=0.0001, t0=30. It is clearly seen that the concentration
distribution taken originally as a “square spot with smoothed
angles” undergoes strong deformations and eventually takes
the shape that is similar to the streamline geometry �cf. Fig.
16 at t=1500 with Fig. 6 at t=30�.

One can measure the period of rotation of a fluid by ob-
serving the concentration at some point �xn ,yn�. Figure 17
shows the time dependence of concentrations c�xn ,yn , t� for
�x1=0.7, y1=0.5�, �x1=0.8, y1=0.5�. Both functions are
periodic with the superimposed attenuation due to diffusion.
The time interval between the neighboring maxima and
minima corresponds to the half of a full revolution �due to
the flow symmetry with respect to its rotation over the angle
��. The periods of full revolutions are T136.5 for �x1 ,y1�
and T233.4 for �x2 ,y2� that in dimensional terms yield
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�m=m� /4, m=0,1 ,2 ,3 ,4, and t=30.
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1/T1
�  0.351 rps, 1/T2

�  0.369 rps. �60�

These values are close to �1
�0.337 rps, obtained by the

averaging of v� /r �see Eqs. �56�–�58��. It means that the fluid
rotation can be better characterized by the averaging of v� /r

than � �where �0
�0.464 rps, see Eqs. �53� and �54��.

Table IV gives the values of angular velocities calculated
by the formulas �53� and �57�: the first row corresponds to
Fig. 6 �see also Eqs. �54�, �58�, and �60��, the second row
corresponds to the free boundaries �see Sec. VI E and Fig.
14�, and the third row contains the experimental data of
�1–3�. The fourth row gives the results of computations when
Navier-Stokes Eqs. �46� are replaced with the Stokes equa-
tions �i.e., we drop the term u ·�0u�. One can see that the
values of angular velocities in the first and fourth rows are
close. It indicates that the nonlinearity is small �at least for
the computations of the averaged values� and one can try to
obtain the analytical solutions in the form of the power se-
ries. However, we should notice that during the computa-
tions, we observed the different geometries of stream func-
tions for Navier-Stokes and Stokes equations.

Notice that Eq. �55� gives a simple and useful estimation
of the angular velocity for the problem �46�–�50�. The value
of �0 can be found analytically without any use of numerical
solution. For the rectangle �0,a��� �0,b�� it gives

�0
� = −

F�h�

4

135a�b���

2��

3��

2�2��cB
�

R�T�

�1/2

��out
� Eout

� �3�0
�. �61�

This formula contains the known constants F�, R� and three
groups of parameters: the first group ��, ��, ��, cB

� , and T�

defines the physical properties of the liquid, the second
group �out

� , Eout
� , and �0

� determines the external factors, and
the third group a�, b�, and h� describes the film geometry;
Eq. �61� is valid when

��out
� Eout

� �2

4R�T���cB
�

� 0.6, �2 =
h�

2

a�

2 � 1,

where the first condition appeared during the asymptotic cal-
culation of R3 �see Eq. �45�� while the second condition
represents the main small parameter of our model. It is easy

to check that formula �61� �with the use of the data from
Tables I–III� gives the same values of �0

� as in the second
and fourth rows of Table IV �the choosing the value h� is
discussed in Sec. VII�.

VII. DISCUSSION

The important result of our paper is the formula that links
the tangential velocity at the boundary with Reynolds
stresses �see Sec. IV�. This formula represents the main ap-
proximation that can be improved.

Another our main achievement is the explicit formula �61�
that predicts the angular velocity of the liquid. It is notice-
able that Eq. �61� predicts the rotation of liquid in much
broader intervals of parameters than are exploited in the ex-
periments �1–3�. Hence our theory predicts that the phenom-
enon of the liquid film motor can appear in much more gen-
eral conditions.

The existence of the described rotating EHD flows can be
expected since the tangential velocity at the boundaries could
generate it. However, it still may look surprising that all
considered rotating flows appear as the result of the applying
of constant fields Eout and �0. In this connection, one can
also mention the recent paper �56� that describes a EHD
plane flow that appears under the action of a constant electric
field in the presence of an additional central electrode.

It is interesting to compare our main equations and the
used averaging technique to the ones presented in the papers
�4–8� devoted to the electrokinetic instability of the EHD
flows with inhomogeneous conductivity. The averaged Eqs.
�22�–�26� are almost identical to the derived in these papers,
although we use different boundary conditions �16�–�19�.
The Reynolds stresses were also derived in these papers,
however, they were neglected due to their smallness. In our
model �22�–�26�, the situation is right opposite since Rey-
nolds stresses generate a tangential velocity near the bound-
aries. One can also see in Appendix A that our averaging
method is more detailed and transparent than the method of
�4–8�.

Our model of a rotational flow looks more realistic than
the heuristic hypothesis of �1–3� on the changing of the ori-
entations of water molecular dipoles by an external electric
field.

The full quantitative comparison of our results to the ex-
periments �1–3� is impossible, since the key information
about the values of some crucial parameters is absent in these
papers.

TABLE IV. Angular velocities.

No. �0 �0
�
Rad

s
�1 �1

�
Rad

s

2�

T1�

Rad

s

1 0.229 2.975 0.166 2.157 2.200

2 0.739 9.601 0.620 8.0552 8.121

3 �8–10�
Rad

s
�1–3�

4 0.229 2.975 0.173 2.247 2.603

1.8 1.8 1.8
1.4

FIG. 16. The isolines of the concentration c�x ,y , t� at t=300,
500, 700, and 1500.
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FIG. 17. Concentration c�xn ,yn , t�, n=1,2.
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The qualitative comparison of our results �Figs. 6, 11, and
12� to the flow pictures in �1–3� shows a good agreement:
both in the experiments and in our computations, one can
observe the appearance of the rotational flow, growing to its
stationary state during the time interval of the order of 2 s.
This fact opens the opportunity for the fast switching be-
tween the directions of a rotation as has been proposed in
�1–3�.

There are flows with one vortex and with two vortices in
the experiments. According to our computations, only one
steady vortex can exist; it appears when the tangential veloc-
ity changes its sign at the point x�0.1X. From another side,
we have shown that there are two corotating vortices in the
rectangular film with the ratio of sizes 1:2 �that is similar to
the experiments�. However in our computations, such a flow
is not steady, it finally transforms to the flow with single
vortex �Fig. 11�. However, the authors �1–3� do not mention
whether or not the observed flow with two vortices is steady.

The experimental rotating flow appears only for some
critical values of the electric field Eout

� , which depend on �0
�

�1–3�. In particular, the authors of �1–3� indicate that
Eout

� �0
�=const for their experiments; using their data, we have

estimated that this constant 500 kV V /m. The rotating
flow in our model �46�–�50� also appears only for the certain
values of parameters. In particular, data of Table I �for the
flows shown in Fig. 6� yield Eout

� =30 kV /m, �0
�=20 V, so

Eout
� �0

�=600 kV V /m. In order to obtain this estimation, one
should use Eq. �51� and the comments to Fig. 13.

Experiments �1–3� show that the angular velocity does not
depend on the concentration of glycerol in water. However,
the formula �61� �0

������−3����−2����−3/2h
�

4 contains several
parameters that depend on this concentration �one should
keep in mind that cB

� is not the glycerol concentration�.
Hence, for the verification of Eq. �61�, one should directly
measure the viscosity, dielectric permeability, density, and
the film thickness; all these measurements are not given in
�1–3�. At the same time, the theoretical deriving of the de-
pendence of these parameters on the glycerol concentration
is very difficult, since the solution of glycerol in water rep-
resents a notoriously specific liquid.

The results of �1–3� show that the angular velocity of fluid
increases toward the center of a film. On the basis of this
fact, the authors of �1–3� deny the electrokinetic effects at
the film edges as the possible mechanism that causes the
rotation. However, in our model �22�–�26� and in the numeri-
cal results �see Figs. 5–12�, the fluid is not rotating as a rigid
body, it has different angular velocities at different points
�see, e.g., Figs. 9 and 10�. For example, we first observe a
weak growth and then a decrease of � along the rays �=0
and �=� of the used polar coordinates. At the same time, the
angular velocity is growing toward the center along the ray
�=� /2. Such a complex behavior looks natural, since the
cause of this rotation is the tangential velocity at the bound-
ary �see the boundary conditions �48��. Also, data of Table
IV show that our results strongly depend on the used bound-
ary conditions at x=0, X: the angular velocity in our compu-
tations differs from the experiment by the factor of 4 for the
no-slip conditions, while for the free boundaries the theory
produces a good agreement with the experiments. In order to
avoid misunderstandings, we should emphasize that our re-

sults strongly depend on the parameters of the problem, es-
pecially on the film thickness h�. A quantitative comparison
to the experiment is not feasible now since �1–3� do not
contain any data on h�.

The theoretical evaluation of h� is difficult. In order to do
it, one may consider its following heuristic estimation: let h�

be determined as the additional height of the liquid in a
rectangular capillary pipe h�=2���a�+b�� / ���g�a�b��,
where �� is the surface tension and g� is gravity �57�.
Such estimation is based on the imaginary experiment
of the pilling up an initially submerged rectangular frame
�where both the free surface of liquid and the frame are hori-
zontal�. For water ��0.072 N /m; taking g�9.8 m2

/s,
a�=b�1.0�10−2 m yields the half thickness of the film
h�0.29�10−2 m. This value has been chosen in the com-
putations of Sec. VI �see Tables I–III�. One can expect that
this value of h� corresponds only to the beginning of the
experiment; the evaporation �and maybe other factors� makes
h� rapidly decreasing with time. Alternatively, we can also
demonstrate the use of formula �61� for the estimation of h�.
Most likely, the parameters used in �1–3� for the measure-
ments of angular velocity are a�=b�=3.1�10−2 m,
Eout

� =60 kV /m, �0
�=120 V, ��=1.3�10−6 m2

/s �solution
of glycerol�, �out

� =5.0�0
� �insulator—textolite�. Taking

the remaining parameters from Tables I–III yields
h�=9.48�10−4 m ��=0.03� and �0

�9.65 Rad /s �cf. with
the third row of Table IV�.

Our mathematical model �22�–�33� represents only the
simplest asymptotic model of the flow near the boundary.
There is a serious potential for the further theoretical devel-
opments. Here, one should keep in mind that the modeling of
EHD processes in microscales represents a rather complex
problem due to the broad spectrum of various physical phe-
nomena such as electrokinetic effects �electro-osmosis, elec-
trophoresis, etc.�, the effects of diffusion, the chemical reac-
tions both in a solution and on electrodes, the mass transfer
by an electric field, the Joule heat, convection, Taylor-Aris
dispersion, etc. In particular, it is unclear whether we have to
consider the equilibrium Boltzmann concentrations
cB

� 10−4 mol /m3 or we can have ions of only one sign near
the boundaries. We consider as the most sensitive the follow-
ing three factors. First, our mathematical model is incom-
plete since it does not consider the surface tension and the
deviations of the free surfaces of a film from the planes.
Second, our model describes the averaged velocity field that
differs from the real three-dimensional velocity distribution
�see Eq. �A17��. Due to the accepted electroneutrality of the
mixture �almost everywhere except the vicinities of the
boundaries�, the taking into account the three dimensionality
of a flow can produce the decreasing of the rotation for the
layers of a film near its boundary. Third, there should be a
more complete model to consider the Joule heat that natu-
rally appears in a weakly conductive liquid under the signifi-
cant electric current �0.2 mA�20 V=4 mW�. The result-
ing nonuniform temperature can cause strong inhomogeneity
in viscosity and the permittivity of a solution. We should
remind that the changing of temperature from 15 °C to
35 °C produces the changing of water permittivity �r from
81.9 to 74.8 ���r /�T0.35�. For a strong electric field, it can
produce a significant pondermotive force �1 /2�������2.
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It is especially important to explain the connection be-
tween our model and the EDL theories for strong external
electric fields �20,27–32�. In our model, the rotating flow is
caused by the edge effects at the boundaries y=0, Y where
simplified boundary conditions lead to the estimation of the
value R=R1�E0�+R3�E0� �Eqs. �49� and �52��. In doing so,
we emphasize the key role of the water-insulator interface
and the discovery that the electrokinetic effects can define
the relation between R1�E0� and R3�E0�. At the same time,
this simplified model can be upgraded with the use of con-
temporary EDL theories. It is a rather complex task that can
be undertaken if the industrial applications of the liquid film

motor appear. Here, one can go ahead with the full solution
of the problem that must include the exact evaluation of
R1�E0�, R3�E0� and the upgrading of the assumption that
E=const in Eq. �35�. For the achieving of such a goal, one
should describe the interface flow more precisely, which is
possible only with the use of EDL theories. In general, the
creation of a full model requires reconsidering or upgrading
all results of Sec. IV.

The general significance of our results for the further de-
velopments of microhydrodynamics might consist in the re-
valuation of the roles of the considered classical effects in
the micro- and nanoscale processes. In the practical applica-
tions, the considered rotating flows can be used for the mi-
cromixing in microfluidic devices �see, e.g., Sec. VI F and
�58,59��.
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APPENDIX A: THE AVERAGING PROCEDURE

The averaging of Eqs. �9� and �11�–�14�, which takes into
account the boundary conditions �16�–�19�, gives the exact
but not closed system of equations

�2��tu + u · �0u� + �2 div0�ũ � ũ�

= − �2
�0p̄ + �2�	0u − q̄�0�̄ − q̃�0�̃ , �A1�

div0 u = 0, �A2�

�	0�̄ = − q̄ , �A3�

�tc̄k + u · �0c̄k + div0�ũc̃k� + Dk div0 ik = 0, �A4�

ik = − Dk��0c̄k + ek
c̄k�0�̄ + ek
c̃k�0�̃� . �A5�

In order to obtain the closed system with the precision O��4�,
we use the decompositions �21� to calculate the terms

ũ � ũ = ũ
0

� ũ
0 + O��2� , �A6�

q̃�0�̃ = �q̃0 + �2q̃1��0��̃0 + �2�̃1� + O��4� , �A7�

ũc̃k = �ũ0 + �2
ũ

1��c̃k
0 + �2c̃k

1� + O��4� , �A8�

c̃k�0�̃ = �c̃k
0 + �2c̃k

1��0��̃0 + �2�̃1� + O��4� . �A9�

For the main terms in Eq. �21�, Eqs. �10� and �12�–�14� and
condition �18� yield

�q̄0 + q̃0��z�̃
0 = 0, q̄0 + q̃0 = �

k

ek�c̄k
0 + c̃k

0� , �A10�

�zĨk
0 = 0, Īk

0 + Ĩk
0 = �zc̃k

0 + ek
�c̄k
0 + c̃k

0��z�̃
0,

�Īk
0 + Ĩk

0��z=�1 = 0. �A11�

Equations �A10� and �A11� give �z�̃
0=0, �zĨk

0=0, and

Ĩk
0=�zc̃k

0. It is clear that if �z f̃ =0, then f̃ =0 and f = f̄ . Hence

�̃0 = 0, c̃k
0 = 0, q̃0 = 0,

�0 = �̄0, ck
0 = c̄k

0, q0 = q̄0. �A12�

The use of Eq. �A12� transforms the expressions �A7�–�A9�
to the form

q̃�0�̃ = O��4� ,

ũc̃k = �2
ũ

0c̃k
1 + O��4�, c̃k�0�̃ = O��4� . �A13�

From Eqs. �9� and �A12�, we obtain the equation for ũ
0,

��zzũ
0 − q̄0

�0�̄0 = 0,

which is required for the calculation of Eq. �A6� with the
precision O��2�. In particular, it means that we can make the
replacements q̄= q̄0+O��2�, �̄= �̄0+O��2� and w̃0, ũ0 can be
found from the equations

��zzũ
0 − q̄�0�̄ = 0, �A14�

div0�u0 + ũ
0� + �zw̃

0 = 0, �A15�

with the boundary condition

w̄0 + w̃0 = 0, z = � 1. �A16�

We assume that w̄0=0. The integration of Eqs. �A14�–�A16�
yields

ũ
0 = g��z�U, w̃0 = − g�z�div0 U, �U = q̄�0�̄ ,

div0 u
0 = 0, g�z� =

1

6
�z3 − z�, g�z� = 0, g��z� = 0,

�A17�

where we have used the notation Eq. �26� for U.
One can notice that we do not require ũ

0 to satisfy the
boundary condition �17�. This condition is required only for
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ũ. The equality �zũ
0=0 at z= �1 leads to U=0 that is not

true. In an exact problem, one should consider a boundary-
layer solution at z= �1 and assume the absence of a charge
�q̄=0� at the boundary. If it is not accepted, then the action of
a tangential to the boundary external field creates the stresses
related to the electromagnetic stress tensor.

The use of Eq. �A17� gives the expression for Eq. �A6�

ũ � ũ = g�
2�z��U � U� + O��2�, g�

2�z� =
1

45
.

�A18�

The calculation of ũc̃k is based on the next approximation for
the Eqs. �12�–�14�

�tck
0 + u

0 · �0ck
0 + w0

�zck
0 + div0 ik

0 + �zIk
1 = 0,

ik
0 = − Dk��0ck

0 + ek
ck
0
�0�0� ,

Ik
1 = − Dk��zck

1 + ek
�ck
1
�z�

0 + ck
0
�z�

1�� ,

��	0�0 + �zz�
1� = − q0

or taking in account Eq. �A12�

�tc̄k
0 + �u0 + ũ

0� · �0c̄k
0 + div0 ik

0 + �zIk
1 = 0,

ik
0 = − Dk��0c̄k

0 + ek
c̄k
0
�0�̄0� ,

Ik
1 = − Dk��zc̃k

1 + ek
c̄k
0
�z�̃

1� ,

��	0�̄0 + �zz�̃
1� = − q̄0. �A19�

The last equation shows that �zz�̃
1 does not depend on z, so

to find c̃k
1, we obtain the equation

ũ
0 · �0c̄k

0 − Dk�zzc̃k
1 = 0, �A20�

with the boundary conditions that follow from Eq. �18�

�zc̃k
1�z=�1 = 0.

For the calculation of ũc̃k, one can take c̄k= c̄k
0+O��2� in Eq.

�A20� since the required precision for Eq. �A8� is O��2�. It
allows us to integrate Eq. �A20�

Dkc̃k
1 = �g0�z� − g0�z��U · �0c̄k, g0�z� =

z2

12
�1

2
z2 − 1� .

Finally, we obtain

ũ
0c̃k

1 = − �kU�U · �0c̄k� ,

�k = −
1

Dk


g��z��g0�z� − g0�z��� =
4

945Dk

. �A21�

APPENDIX B

Let us show that in the case �35�, Eq. �22� can be inte-
grated. The use of Eqs. �42� and �26� gives us the velocity
component ū,



�2E�y�q̄
2
�y�� = − �2

�xp + ��2
�yyū − q̄E . �B1�

Taking in account that q̄, �, and ū depend only on y, we get

− �2p = � 

�2E�y�q̄
2
�y�� − ��2

�yyū + q̄E�x + H�y� .

Its substitution into the Eq. �22� for w shows that p depends
only on y,



�2�y�q̄�y��2 + q̄�y� = H��y� .

It follows that the expression in braces is vanishing and Eq.
�B1� gives us Eq. �43�.

APPENDIX C

Let us consider the case when the values of all diffusion
coefficients are the same �Dk	D�. The multiplying of Eq.
�A4� by ek and combining the results yield

dq̄

dt
+ div0�ũq̃� − D div0��0q̄ + ��0�̄� = 0,

where �=D�kek
2
c̄k is the conductivity of a mixture. We

have also taken Eq. �A21� into account. By virtue of Eq.
�A21�, the electroneutrality q̄=0 leads to q̃=0 everywhere
except the boundaries. Hence, in the case c̄k=cB �see Eq.
�37��, we arrive to Eq. �47�.

The requirement of the equality of all diffusion coeffi-
cients represents a strong restriction. In particular, the differ-
ence between the diffusion coefficients leads to the electro-
kinetic instabilities due to the term ũq̃ that is linked to the
Taylor-Aris dispersion �4–8�.
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