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a  b  s  t  r a  c t

Earthworms  are  important organisms  in  soil communities and so  are  used as  model organisms  in  environ-

mental  risk assessments of chemicals.  However  current  risk assessments  of soil  invertebrates  are  based

on short-term  laboratory  studies,  of  limited  ecological  relevance,  supplemented  if  necessary  by  site-

specific field trials,  which  sometimes are  challenging  to apply across the  whole agricultural  landscape.

Here,  we  investigate  whether population responses  to  environmental stressors  and  pesticide  exposure

can be  accurately  predicted  by  combining energy budget  and  agent-based  models  (ABMs), based  on

knowledge  of  how  individuals  respond  to their  local  circumstances.  A  simple  energy  budget model was

implemented  within  each  earthworm Eisenia  fetida in the  ABM,  based  on a priori parameter estimates.

From  broadly accepted physiological  principles, simple  algorithms  specify  how  energy  acquisition  and

expenditure  drive life cycle  processes.  Each individual allocates  energy between  maintenance,  growth

and/or  reproduction  under  varying conditions of food  density, soil temperature  and  soil  moisture. When

simulating  published experiments,  good model fits  were  obtained  to experimental  data  on individual

growth,  reproduction  and  starvation. Using  the  energy  budget  model as a platform we developed  meth-

ods  to identify  which  of the  physiological  parameters  in the  energy  budget  model  (rates  of ingestion,

maintenance,  growth or  reproduction)  are  primarily  affected by  pesticide  applications,  producing  four

hypotheses  about how  toxicity acts.  We  tested  these  hypotheses  by  comparing  model  outputs  with pub-

lished toxicity  data  on the  effects  of copper  oxychloride  and chlorpyrifos  on E.  fetida. Both growth and

reproduction  were  directly  affected in experiments  in  which  sufficient  food  was provided,  whilst  main-

tenance was  targeted  under  food limitation.  Although we  only  incorporate  toxic effects  at the  individual

level  we show how  ABMs  can readily extrapolate  to larger scales by  providing good  model fits  to field

population data. The ability  of the  presented  model  to fit the  available field and laboratory data for  E.

fetida  demonstrates  the promise  of the  agent-based  approach  in  ecology, by  showing how  biological

knowledge  can  be  used to make  ecological  inferences. Further  work is  required  to  extend  the  approach

to  populations  of more ecologically  relevant  species  studied  at the  field scale.  Such a  model  could  help

extrapolate  from  laboratory  to field conditions  and  from  one  set of field conditions  to another or  from

species  to species.

© 2013  Published by  Elsevier  B.V.

1. Introduction

Earthworms are significant contributors to  the ecosystem ser-

vices provided by arable soils (Daily et al., 1997; Keith and

Robinson, 2012; Blouin et al., 2013) and they respond rapidly

to alterations in soil  quality (Fraser et al., 1996), tillage (Chan,
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Sciences, University of Reading, Reading RG6 6AS, UK. Tel.: +44 0118  3785049.
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2001)  and exposure to chemical toxicants (Vorphal et al., 2009).

Consequently, they are  focal organisms for environmental risk

assessments of agricultural chemicals in Europe (OECD, 1984).

However, current regulatory guidance for risk assessment is  limited

to short-term laboratory studies supplemented if necessary by site-

specific field trials to investigate population-level effects (SANCO,

2002). Laboratory studies have limited ecological relevance since

they are carried out in standardised conditions, whilst field tri-

als are expensive, time-consuming and challenging to interpret

for a wide range of agricultural landscapes (Jänsch et al., 2006).

Here, we investigate a  mechanistic approach to modelling organism
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responses to environmental and chemical exposure. This approach

has the potential to act as a  refinement option for chemical risk

assessments if it can accurately predict population-level responses

to the agricultural uses of plant protection products (PPPs) under a

range of different conditions (Thorbek et al., 2010).

As  individual physiologies direct the life cycle processes (e.g.

growth and reproduction) which give rise to a  population’s dynam-

ics, modelling at the individual level is  crucial in mechanistic

effects modelling for chemical risk assessment (Grimm et al., 2005;

DeAngelis and Mooij, 2005). Individual physiology can be  described

by energy budgets and modelled using well-established princi-

ples of energy and mass conservation (Sousa et al., 2010; Sibly

et al., 2013). Organisms uptake resources (in the form of food)

from their environment and expend assimilated energy on main-

tenance, growth and reproduction (Karasov and Martinez del Rio,

2007; Sibly and Calow, 1986), but the allocation of energy to

metabolic processes depends on a combination of environment-

and organism-specific conditions (e.g., Nisbet et al., 2000). Dynamic

energy budget (DEB) theory (Kooijman, 2010)  provides a method

for modelling individual physiology and DEB models have been pre-

viously developed for earthworm species by  Baveco and de Roos

(1996) and Klok et al. (2007).  We do  not follow DEB theory here

because DEB models implement a  ‘kappa rule’ which assumes that

a fixed proportion of assimilated resources are  allocated to mainte-

nance and growth and the remainder to reproduction throughout

life. It is important to realise that the kappa rule is  (1) not in

accord with the principles of physiological ecology as outlined

in e.g. Karasov and Martinez del Rio (2007) and Sibly and Calow

(1986);  (2) denies the possibility of allocation trade-offs between

growth and reproduction which are widely believed to occur (see

e.g. Stearns, 1992); (3) has been shown not  to apply to Daphnia

magna, the species for which DEB was initially devised, by Glazier

and Calow (1992) and Nisbet et al. (2004), who showed the pro-

portion allocated to  growth reduces from 1 early in  life to <0.05

later; (4) is contradicted by  the finding that in  the absence of a  sex-

ual partner, earthworms grow larger, indicating that reproduction

has priority over growth in  adults (Neuhauser et al., 1980) and;

(5) is contradicted by  observations of continued reproduction dur-

ing weight loss by earthworms under limiting feeding conditions

(Reinecke and Viljoen, 1990). Baveco and de Roos (1996) and Klok

et al. (2007) offer no evidence that the kappa rule applies to earth-

worms. We  therefore felt it necessary to  develop a  more accurate

mechanistic energy budget model based on accepted principles of

physiological ecology and have followed the approach of Sibly et al.

(2013).

The purpose of this study is to develop and evaluate a  mecha-

nistic model of earthworm responses to local conditions, describing

physiological responses to biotic and abiotic factors at the individ-

ual level, and seeing how this translates to the population level.

We construct an energy-budget-driven ABM for the earthworm

species Eisenia fetida, and compare model outputs to  experimen-

tal data from the literature on both individual life cycle processes

and population dynamics. In the experiments we simulated, indi-

viduals were kept for periods of time with depleting food supplies.

To simulate these experiments mechanistically, model landscapes

incorporating spatially and temporally varying food availability are

required, so that the necessary interactions between individuals,

stress exposure and lack of food can occur. Following its suc-

cess in simulating published data from non-toxic environments,

we develop and evaluate methods for considering how individ-

ual  physiological processes are altered by toxic stress. Adopting

the methodology of Jager and Zimmer (2012) we assume that pes-

ticides impose stress on specific physiological parameters, which

have predictable effects on growth, reproduction and/or starvation

following energy allocation principles. Although not  common in the

field, E. fetida is used as a  model species due to  the ample quantity

Fig. 1. Structure of the energy budget model for adult E. fetida, with the thickness of

arrows indicating priorities for energy allocation from food. Cocoons and juveniles

are  also in  the model though cocoons do  not  grow and juveniles do not  reproduce.

Energy remaining after allocation enters the energy reserves which may  be used for

other functions when food is limited.

of literature data available for model development and evaluation

at the individual level. However, we  anticipate that our model can

be developed for application to  other species and environmental

conditions.

2. Methods

Here we provide a full model description and give an out-

line summary of model evaluation methods. Full details following

guidelines for transparent and comprehensive ecological modelling

documentation (TRACE) (Schmolke et al., 2010) are presented in  the

supplementary material.

2.1. Model description

The model description follows the ODD (Overview, Design con-

cepts, and Details) protocol for describing ABMs (Grimm et al.,

2010). The model is  implemented in Netlogo 5.0.2 (Wilensky, 1999),

a platform for building ABMs. The Netlogo code is  available in  sup-

plementary material.

2.1.1. Purpose

The purpose of the model is to simulate Eisenia fetida population

dynamics under varying environmental conditions representative

of those encountered in the field and investigate how energy

budgets can be used to investigate how pesticides achieve their

physiological effects.

2.1.2. Entities, state variables and scales

This ABM comprises a number of individual E. fetida individ-

uals and a model landscape consisting of two-dimensional 0.01  m2

patches of soil. Individuals are characterised by life cycle stage

(cocoon, juvenile or adult), mass and energy reserves, and land-

scape patches by food density, soil temperature, soil moisture and

pesticide concentration. The model proceeds in  discrete daily time-

steps. Metabolic calculations are in  units of energy per unit time

(kJ/day).

2.1.3. Process overview and scheduling

Each individual in the ABM has its own energy budget. The

energy budget model includes algorithms for how energy uptake

and expenditure direct life cycle processes based on fundamental

principles of physiological ecology, and generally follows the

methodology of Sibly et al. (2013). Individuals assimilate energy

from ingested food (Ingestion and Energy Uptake)  and expend

available energy on maintenance (Maintenance),  growth (Growth)

and reproduction (Reproduction) in the order of priority outlined

in Fig. 1.  Total available energy is limited by the amount of

food an organism can ingest, whilst mass and temperature have

scaling effects on individual metabolic rates (Brown et al., 2004).
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Fig. 2. Partial energy flow  diagram of E. fetida adults within the  ABM, showing

the  processes (rectangles) each individual goes through per time step, with dia-

monds indicating decision points. Energy reserves are used for maintenance and

reproduction in starving individuals.

Maintenance is essential for the survival of an individual, and thus

has first priority for energy allocation. Juveniles grow until sexually

mature, and thereafter adults preferentially allocate energy to

reproduction before growth. If energy remains after reproduction

and/or growth, energy is stored in the energy reserves as glycogen

(Byzova, 1977), which may  be used to pay maintenance costs

when food is limited (Energy Reserves and Starvation).

Juveniles and adults move randomly in  the landscape (Move-

ment), assimilating a  fixed proportion of energy from ingested food

that fuels life cycle processes and survival. Feeding by  individuals

depletes landscape patches and the food density changes accord-

ingly. Cocoons cannot feed or move but  pay maintenance costs

from energy reserves until they are fully developed at the end of

the temperature-dependent incubation period, when they hatch

as juveniles (Sousa et al., 2010). Juveniles transform to adults once

they reach a body mass threshold for sexual maturity (Ma,  1984;

Springett and Gray, 1992). Food was provided in  the same amounts

as in the experiment being simulated, and food densities in land-

scape patches depleted as individuals ingested food. When food

was not available, energy reserves were used to cover mainte-

nance costs. Once the energy reserves are depleted to a  critical level

individuals catabolise energy from tissue to meet maintenance

demands (Survival). Pesticides were applied in the ABM at the con-

centrations and times specified in the experiment being simulated.

Individuals experiencing these concentrations were affected as

indicated by potential ‘toxicity submodels’. Fig. 2 gives an overview

of processes occurring at the adult stage in each time-step under

different feeding conditions.

2.1.4. Design concepts

Basic principles. Key processes in  the model determine how

energy consumption and expenditure direct life cycle processes

in response to environmental and pesticide exposure. Individ-

ual energy budgets follow fundamental principles of physiological

ecology (Sibly and Calow, 1986)  and scale with body mass and

temperature according to known allometric laws (Sibly et al.,

2013). Pesticides achieve their effects by imposing stress on specific

physiological parameters following a dose-response relationship

obtained from toxicity data.

Emergence. Variation in  food availability between patches arises

from the random movement and feeding of individuals in the

landscape. Population dynamics emerge from differential energy

allocation amongst individuals which is affected by food avail-

ability, soil temperature, soil moisture and pesticide concentration

(Reinecke and Viljoen, 1990; Tripathi and Bhardwaj, 2004; Edwards

and Bater, 1992).

Interaction. Individuals need mates (any other adult as earth-

worms are hermaphrodite (Dominguez et al., 2003)) present in  the

same patch to reproduce. Adults and juveniles interact indirectly

by  competing for food within patches, and both affect patches by

depleting food.

Stochasticity. Movement and background mortality are random

amongst juveniles and adults, with specified probability density

functions.

Observation. Population density, stage class structure (cocoon,

juvenile, adult) and individual body masses and reproduction were

recorded.

2.1.5. Initialisation

Simulations were initialised with individuals randomly dis-

tributed in  the landscape. Landscape size and earthworm numbers,

life cycle stages and body masses followed the experiments being

replicated, outlined in  detail in  Section 2.2.

2.1.6. Input data

The model does not utilise any input data for representing exter-

nal driving factors.

2.1.7. Submodels

Species-specific parameters were derived from the literature for

E. fetida as shown in  Table 1.  Where data were not available for E.

fetida closely related species were used. For example, the assim-

ilation efficiency estimated by Hobbelen and van Gestel (2007)

was for Lumbricus rubellus, which we suggest is  similar for E. fetida

given its epigeic feeding strategy and additional support provided

in Appendix A.  A number of assumptions about the metabolism of

individuals were necessary for model development and these are

described in the following sections. Further details of  parameter

calculations are available in supplementary material (Appendix A).

The following sections describe the energy budget model, outlined

in the above sections and in  Fig. 1,  in terms of metabolic organisa-

tion at the individual level.

2.1.7.1. Maintenance. The basal metabolic rate (B) is  the level of

metabolism below which an organism cannot survive (Fry, 1971;

Calow and Sibly, 1990), and is  used here as a  measure of main-

tenance costs. Costs of movement, small in earthworms, are here

included in maintenance. B is  known to scale with body mass (M)  as

a  power law and temperature (T), measured in grams and kelvins

respectively, according to the equation:

B = B0M3/4e−E/kT (1)

where B0 is  a taxon-specific normalisation constant, M3/4 is  the

scaling with body mass, e−E/kT is the exponential Arrhenius func-

tion, E  is  the activation energy, k is the Boltzmann’s constant

(8.62 × 10−5 eV K−1) (Table 1) (Peters, 1983; Gillooly et al., 2001;

Brown and Sibly, 2012). In what follows it is  sometimes conve-

nient to consider effects of temperature relative to  a reference

temperature, Tref.  The effect of temperature is  then given by

e(−E/k)((1/T)−(1/Tref )).

2.1.7.2. Ingestion and energy uptake. Variation in food density

affects the rate of ingestion of food up to an asymptote according
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Table  1

Default parameter values for the energy budget model with reference to literature data sources.

Symbol Definition Value Unit Reference Notes

Ae Assimilation efficiency 0.50 –  Hobbelen and van Gestel (2007) p. 376 (see Appendix A)

Bo Taxon-specific

normalisation constant

967 kJ/day Meehan (2006) Calculated from Table 2, p.  881 and Eq. (4) (see

Appendix A)

E  Activation energy 0.25 eV  Meehan (2006) p. 880

Ec Energy content of tissue 7 kJ/g Peters (1983) p. 235

Es Energy cost of synthesis 3.6 kJ/g Sibly and Calow (1986) Calculated from p.  54  to  55

Ex Energy content of food 21.2 kJ/g Wang et al. (2011) p. 173

IGmax Maximum ingestion rate 0.70 g/day/g Neuhauser et al. (1980) Derived/re-calculated from Figure 6, p.  96 (see

Appendix A)

h  Half saturation coefficient 3.5 g/0.01 m2 Neuhauser et al. (1980)

Mb Mass at birth 0.011 g Gunadi et  al. (2002) Derived from Table 1,  p.  18 and Figure 1,  p. 19

Mc Mass of cocoon 0.015 g Hartenstein et  al. (1979) Derived mean from  Figure 5,  p. 333

Mp Mass at sexual maturity 0.25 g Gunadi et  al. (2002) Derived from Table 1,  p.  18 and Figure 1,  p. 19

Mm Maximum asymptotic

mass

0.50 g Gunadi et  al. (2002)

rB Growth constant 0.177 day−1 Gunadi et  al. (2002) Figure 1,  p. 19  fitted to Eq. (5a) (see Appendix A)

rm Maximum rate of energy

allocation to reproduction

0.182 kJ/g day Tripathi and Bhardwaj (2004) Derived from p.  281 (see Appendix A)

T0 Incubation period 23  Days Reinecke et al. (1992) Table 3, p. 1298

Tref Reference temperature 298.15 kelvins Tripathi and Bhardwaj (2004) p. 280

to a type II  functional response (Holling, 1959; Ricklefs and Miller,

2000), so that:

ingestion rate ∝
X

h +  X

where X is food density (g/0.01 m2) and h is a constant that shows

how quickly the response curve reaches its maximum as food den-

sity increases. Ingestion rate is  also proportional to the surface area

(M2/3) of an individual as the search rate depends on the food gath-

ering apparatus (Kooijman and Metz, 1984; Pilarska, 1977) and to

temperature, giving:

ingestion rate = IGmaxe(−E/k)((1/T)−(1/Tref )) X

K + X
M2/3 (2)

where IGmax is the maximum ingestion rate recorded of a 1-g E.

fetida under optimal feeding conditions (g/day/g) (Table 1).  Inges-

tion rate is measured in  g/day and this is converted into kJ/day

depending on the energy content of the food. After ingestion, food

is processed by the digestive system and a  proportion, assimilation

efficiency, becomes available for allocation to the various functions

shown in Fig. 1. The value of the assimilation efficiency (Ae) (Table 1)

depends on diet but not body mass (Hendriks, 1999).

2.1.7.3. Growth. After expenditure to maintenance and, at the adult

stage, to reproduction, individuals allocate remaining energy to

somatic growth. The maximum growth rate of an individual under

optimal conditions is assumed to  follow the von Bertalanffy (1957)

growth equation:

M = Mm

(

1 −

(

1  −

(

Mb

Mm

)1/3
)

e−rBt/3

)3

(3a)

where Mb and Mm denote mass at birth and maximum mass respec-

tively and rB is the Bertalanffy growth constant, obtained by fitting

Eq. (3a) to data recording the increase in individual biomass over

time under optimal conditions. The maximum growth rate per

time-step is obtained from (Sibly et al., 2013):

�M = rBe(−E/k)((1/T)−(1/Tref ))(M
1/3
m M2/3

− M)  (3b)

The energy costs of growth are determined from the new mass

calculated from Eq.  (3b) and the energy costs of production (Ec + Es)

(Table 1). Eq. (3b) shows how the maximum rate at which resources

can be allocated to growth changes as an individual increases in

mass. If insufficient energy is  available to  support maximal growth,

growth rate is reduced accordingly.

2.1.7.4. Reproduction. Reproduction is  assumed to  take priority

over growth in adults, because in the absence of a  sexual partner,

earthworms grow larger (Neuhauser et al., 1980). Energy allocated

to reproduction by adults goes directly to the production of an egg

until oviposition inside a  cocoon (note this is a slight simplification

since E. fetida can insert more than one egg  into a  cocoon). The max-

imum rate of energy allocation to  reproduction per day increases

linearly with adult mass (Mulder et al., 2007):

�R  =  rme(−E/k)((1/T)−(1/Tref ))M (4)

where rm is the maximum rate of energy allocation to reproduction

per unit of adult mass (kJ/g/day). The energy cost of producing a

hatchling is Mc (Ec + Es) (Table 1)  and the hatchling’s energy reserve

content is  initially Mc Ec,  which is  utilised for maintenance during

the incubation period.

2.1.7.5. Energy reserves and starvation. If any assimilated energy

remains after expenditure on relevant life processes (Fig. 1)  it is

stored in an individual’s energy reserves. Energy is stored as glyco-

gen (Byzova, 1977), costing Es = 3.6 kJ to  store 1 g with an energy

content of Ec = 7 kJ (Sibly and Calow, 1986; Peters, 1983). When

energy is  not available from ingested material, maintenance costs

are  taken from energy reserves, allowing individuals to survive for

some time under starvation (Sousa et al., 2010; Gunadi et al., 2002).

Furthermore, as evidence supports the assumption that reproduc-

tion continues even when food is  limiting (Reinecke and Viljoen,

1990), the energy reserves are assumed to  be utilised for reproduc-

tion above a  threshold of 50% of an individual’s maximum energy

reserves, taken as (M/2)Ec (e.g. Peters, 1983). If food limitation con-

tinues and the energy reserves decline below 50% of an individual’s

maximum energy reserves, individuals are considered to be in  a

state of starvation. Under these conditions tissue is catabolised to

cover maintenance costs, resulting in  net weight loss (Gunadi and

Edwards, 2003); individuals die if  their mass falls to that at birth

(Mb) following Reinecke and Viljoen (1990).

2.1.7.6. Movement. On the basis that Kobetičová et al. (2010) found

movement in E. fetida individuals to  be random, we  modelled

individual movements as random in  direction from a uniform dis-

tribution between −90◦ and 90◦ and distance travelled as 5 cm per

time-step.

2.1.7.7. Survival. The survival of individuals living in field popu-

lations is determined by the availability of energy resources to
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Table 2

Experimental conditions used in model simulations for comparison with growth and reproduction data from the named studies. N gives the number of replicated simulations.

Soil  moisture content was 80%  in all experiments.

Study N  No. individuals Food quantity (g) Feeding times (days) Landscape size (m2) T  (◦C)

Gunadi et al. (2002) 3 5 150 0 0.08 20

Gunadi and Edwards (2003) 4 8, 6/5, 10 100 0, 161 and 315 0.08 20

Reinecke and Viljoen (1990) 4 10 10, 50 and 25 10, 60 and 140 0.04 25

Reinecke and Viljoen (1990) 4 10 20 Per 20 days 0.04 25

Reinecke and Viljoen (1990) 4 10 10, 50 and 25 10, 60 and 140 0.04 25

Helling et al. (2000) 4 10 75, 30, 30, and 30 0, 35, 42, 49  0.06 25

Maboeta et al. (2004) 3 20 0.54 0 0.08 25

Zhou et al. (2007) 4 10 5 0, 28  0.08 20

Zhou et al. (2011) 4 10 5 0, 28  0.08 20

maintain life cycle processes together with temperature and soil

moisture specific mortality rates. Individuals die of starvation if

their energy resources are depleted, and additional mortality rates

were imposed using a regression equation derived from Presley

et al. (1996):

mortality rate(%)  =  12.7 − 0.0010 SM − 0.0861 T + 0.000009 SM2

+  0.000147 T2 (5)

where SM is soil moisture (%) and T is soil temperature (K). Individ-

ual adults and juveniles die according to  Bernoulli processes with

daily mortality rates given in Eq. (5).

2.2. Model simulations

2.2.1. Laboratory experiments

The model was set up to simulate the conditions of published

laboratory experiments to evaluate model fits to growth and repro-

duction data. The studies of Gunadi et al. (2002), Gunadi and

Edwards (2003) and Reinecke and Viljoen (1990) were used to  eval-

uate growth and reproduction. Details of model initialisation for

these simulations are summarised in Table 2. Gunadi and Edwards

(2003) recorded a  mortality rate of 28% before 161 days and added

10 of the surviving adults to  a new substrate on day 161, which is

simulated in the model as shown in Table 2.  In the case of Reinecke

and Viljoen (1990) individuals were aged 25 days at  the beginning

of the experiment (Reinecke, AJ, Stellenbosch University, South

Africa, pers. comm.) and the model simulations were run accord-

ingly. To assess the model’s ability to  capture chemical effects on

the sublethal endpoints growth and reproduction, we used data

from Helling et al. (2000) and Maboeta et al. (2004) to investigate

the effects of copper oxychloride, and those of Zhou et al. (2007,

2011) for chlorpyrifos. Food quantities were uniformly distributed

over the landscape at the feeding times indicated in  Table 2.

2.2.2. Field studies

The model was used to simulate E. fetida population dynam-

ics under the field conditions studied by  Monroy et al. (2006).

The authors collected data from a manure heap exposed to sea-

sonal environmental conditions over one year. Autumn, winter,

spring and summer rainfall (mm)/ambient temperature (◦C) were

recorded as 600/9.1, 200/8.1, 770/12.1 and 250/16, respectively,

but the detailed environmental data needed for our model were not

reported and therefore had to be estimated as follows. We  followed

Meyer’s (1926) suggestion that soil moisture content is equivalent

to precipitation (mm)  divided by  the saturation deficit (mm  Hg) of

air, and assumed an average annual humidity of 50%, giving a sat-

uration deficit of 20 mmHg  (Frankham et al., 2004). Manure was

assumed to have a  30% higher water holding capacity than soil, fol-

lowing Unger and Stewart (1974).  Petersen et al. (1998) found large

cattle manure heaps to  be 2.3–6.2 ◦C warmer than the surrounding

air  at a depth of 50 cm,  with a  mean air temperature of 10 ◦C, and

on this basis we assumed a  compositional warming effect of 5 ◦C

for ambient temperatures reported over 10 ◦C as the manure heap

in  Monroy et al. (2006) is described as “a temporary heap of cow

manure from a small farm”. These calculations give soil moisture

(%)/soil temperature (◦C)  values of 60/9, 40/8, 70/17 and 45/21 for

autumn, winter, spring and summer respectively. To mimic  natu-

ral variation these values were varied by drawing each day from a

normal distribution with standard deviation (SD) 5 ◦C for tempera-

ture and 10% for moisture. As  food density was not measured in  the

original study estimates of seasonal availability were made as fol-

lows. Maximum quantities of 350 kg  manure/heap were reported

by  Rufino et al. (2007) for large dairy farms. As the manure heap in

Monroy et al. (2006) was only a temporary heap on a  small farm

measured per m2 rather than per heap, the maximum quantity of

manure was  taken as 50 kg/m2. Seasonal variation was estimated

on the basis that more cattle feed is provided during winter and

spring, that decomposition rates increase in summer, and that most

of the manure heap was removed in late spring each year (Monroy

et al., 2006), yielding values of 10, 15, 50 and 5 kg/m2 of  manure

for autumn, winter, spring and summer respectively. To account

for spatial heterogeneity landscape patches were replenished with

food supplies taken at random from normal distributions with these

mean values and SD 10% of the mean. Although these are mere

approximations they are the best estimates available.

2.3. Incorporating toxicity data

We used experimental literature data on the sublethal effects of

chlorpyrifos and copper oxychloride on E. fetida recorded in  the lab-

oratory (Table 2) to model dose–response curves at the metabolic

level. Pesticide risk assessments typically convert dose–response

relationships between chemical concentration and mortality, into

linear relationships using logit or  probit transformations. As the

data available here do not result in  linear relationships, an alter-

native procedure was necessary. Individual biomass and cocoon

production values for different treatment concentrations in each

case study were converted to percentages of the control value.

The data were then generally well fitted by exponentially declining

curves, of the form:

R(C) = ekC (6)

where R(C) is %  trait compared to control, k is a  chemical-specific

coefficient calculated by regressing log (% trait compared to con-

trol/100) against chemical concentration (C)  in  mg/kg. Eq. (6)

represents the dose–response relationship between chemical con-

centration and a  life cycle trait (growth or reproduction), presented

in Fig. 3, but does not  specify which physiological parameter was

affected.

To identify the physiological processes affected we  investigated

the various possibilities in  which either one or two of  the pro-

cesses shown in Fig. 1 were affected, here called toxicity submodels.

Inspection of Fig. 1 indicates that chemicals can affect ingestion,

assimilation, maintenance, growth or reproduction, the rates of
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Fig. 3. Modelling dose–response curves. Curves fitted to  experimental laboratory data for (a,  c,  e  and g) growth and (b, d and f) reproduction, for (a, b) copper oxychloride

by  Helling et al. (2000);  (c, d) chlorpyrifos by Zhou et al. (2007),  (e,  f) chlorpyrifos by Zhou et al. (2011) and (g) copper oxychloride by Maboeta et al.  (2004). R2 values for

regression curves in  a, b, c,  d, e, f and g are: 0.81, 0.73, 0.65, 0.99, 0.92, 0.96 and 0.99, respectively. Reproduction and growth data are represented as a reduction in life cycle

trait  compared to the control under different concentrations. Regression coefficients determining these curves are used to investigate the putative metabolic pathway for

each  pesticide.

which are governed by  physiological parameters IGmax,  Ae,  B0,  rB

or  rm, respectively (Table 1). Varying IGmax has the same effect

as varying Ae; here we only consider the former. Varying IGmax or

increasing B0 alone would have effects on both growth and repro-

duction as the energy available for expenditure to  these processes

is reduced. We  do  not consider varying either rB or rm alone as

immediate effects would be on either growth or reproduction, not

both together as indicated by the data in Fig. 3.  The plausible sub-

models in which just one or two processes are affected are  shown

in Table 3. Each submodel supposes that the chemical-specific tox-

icity coefficient (k) obtained by  fitting Eq. (6) to  the data shown in

Fig. 3 determines the relationship of the chemical concentrations to

physiological parameters IGmax, rm, rB or  B0, so that R(C) in Eq. (6) is

% parameter value compared to  control. Effects of chemical expo-

sure on life cycle traits (growth, reproduction) are then identified by

model simulations. For example, in  simulating Helling et al.’s (2000)

experiment with submodel T2 the parameter values of IGmax and

rB follow the dose-response curves in Fig. 3a  and b, respectively.

In submodel T4 we supposed the toxin led to  an increase in the

maintenance parameter B0, either to eliminate/detoxify the toxin,

or to repair damage. Here we assumed that above a  concentration

Table 3

Tested toxicity submodels used to  identify the physiological pathways disrupted by

pesticides. In each case the specified physiological parameters were affected accord-

ing  to  dose-response curves parameterised as in  Fig. 3. IGmax is maximum ingestion

rate, rm is maximum rate of energy allocation to reproduction, rB is the von Berta-

lanffy growth constant and B0 is a  taxon-specific normalisation constant used for

calculating maintenance rates.

Toxicity

submodel

Parameter Predicted observations in adult life

cycle traits

T1 IGmax Growth more reduced than

reproduction

T2  IGmax and rm Growth and reproduction similarly

reduced

T3 rm and  rB Reproduction more reduced than

growths

T4  B0 Growth more reduced than

reproduction or accelerated weight

loss under resource limitation
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Table 4

Sensitivity analysis showing ratio of % changes in mean output variables to  10% changes in parameter values, with standard errors. Thus, sensitivities between −1 and +1

represent  changes in outputs between −10% and +10% of baseline values, respectively.

Parameter Output variables

Adult biomass Juvenile biomass Cocoons per adult

Assimilation efficiency (Ae) 0.03 ± 0.08 0.02 ± 0.14 0.04 ± 0.09

Taxon-specific normalisation constant (Bo) 0.12 ± 0.10 0.09 ± 0.08 0.18 ± 0.14

Activation  energy (E) 1.09 ± 0.31 1.18 ± 0.19 1.17 ± 1.11

Energy  content of tissue (Ec)  0.12 ± 0.11 −0.41 ± 0.19 0.04 ± 0.12

Energy  cost of synthesis (Es) 0.13 ± 0.11 −0.01 ± 0.03 −0.06 ± 0.12

Energy  content of food (EX) −0.06  ± 0.04 0.08 ± 0.07 0.11 ± 0.08

Maximum  ingestion rate (IGmax) −0.26 ± 0.09 0.01 ± 0.09 −0.10 ± 0.11

Half  saturation coefficient (h) 0.01 ± 0.02 0.01 ± 0.06 0.03 ± 0.05

Mass  at birth (Mb) −0.02 ± 0.06 −0.01 ±  0.16 −0.10 ± 0.04

Mass  at sexual maturity (Mp)  0.07 ± 0.09 0.26 ± 0.11 0.01 ± 0.09

Maximum  asymptotic weight (Mm)  0.03 ± 0.07 0.35 ± 0.12 −0.05 ± 0.10

Mass  of cocoon (Mc) 0.19 ± 0.13 −0.08 ± 0.01 −0.10 ± 0.18

Growth  constant (rB)  −0.02  ± 0.10 0.08 ± 0.12 0.08 ± 0.10

Maximum  rate of energy allocation to  reproduction (rm)  0.02 ± 0.07 0.01 ± 0.09 0.03 ± 0.01

Incubation  period (T0)  0.02 ± 0.03 0.01 ± 0.10 −0.02 ± 0.08

Reference  temperature (Tref) 1.42 ± 0.13 −0.95 ± 0.13 1.03 ± 1.04

Environmental variable

Soil temperature (T)  0.48 ± 0.15 −0.52 ± 0.09 0.25 ± 0.22

Soil  moisture (SM) 0.01 ± 0.10 0.01 ± 0.08 0.02 ± 0.01

Food  density (X) −0.17 ± 0.08 0.13 ± 0.09 −0.09 ± 0.03

of 100 mg/kg there is a  linear relationship between B0 and C so

that:

B0 = B0 control, if C ≤ 100;

B0 = B0  control × 0.01 C, if C > 100.

The toxicity submodel producing the best fit to growth and

reproduction data in each case study was calculated to identify the

most plausible underlying physiological effects of toxicity. To eval-

uate model outputs using experimental data we used a  likelihood

approach by calculating Akaike information criterion (AIC) values

for measuring the relative goodness of fit of each model (Anderson,

2008):

AICc = n log( �̂2) + 2n′

(

n

n − n′ − 1

)

(7)

where �̂2 = ˙ε̂2
i
/n and ε̂i are the normalised differences between

the experimental data and the model outputs, n is the sam-

ple size and n′ is the number of parameters, here represented

by the number of toxicity coefficients used in the simulations.

The differences between submodel (�i) were then calculated as:

�i = AICci − AICcmin where AICcmin is the best performing model.

Full details of the calculations are available in  Appendix A.

2.4. Model evaluation

The model was thoroughly tested to  verify that it behaved as

expected. Here we  present only local sensitivity analysis; further

evaluation methods used are described in the TRACE document in

the supplementary material.

2.4.1. Local sensitivity analysis

The sensitivity of the model to the values of its parameters is

presented in Table 4.  The model was run with the parameter values

of Table 1  (N = 100) and again with parameter values increased one

at a time by 10% (N = 100). Changes in model outputs (adult biomass,

juvenile biomass and cocoons produced per adult) are shown in

Table 4. Also shown in Table 4 is  the sensitivity of the model to the

baseline values of the environmental variables varied individually;

these were soil temperature: 25 ◦C; soil moisture: 60%; and food

density: 20 g per patch. All simulations were run for one year under

the field study conditions outlined in  Section 2.2.2.

3. Results

All data used in model evaluation are included together with

model outputs in  supplementary material (Appendix B).

3.1. Local sensitivity analysis

Table 4 shows the sensitivity of adult biomass, juvenile biomass

and reproductive output to 10% changes in  model parameters.

All  output variables were most sensitive to parameters affect-

ing temperature relationships, with activation energy (sensitivities

1.09–1.18), the reference temperature (−0.95 to  1.42) and soil  tem-

perature (−0.52 to  0.48) having most impact. These results show

the importance of temperature for earthworm population dynam-

ics.

3.2. Individual life cycle processes

In  this section we present life cycle data for E. fetida from experi-

mental studies together with the outputs of model simulations run

under the same conditions. The results for growth and reproduction

under control condition are shown in Fig. 4. Note that the model

predictions shown in Fig.  4 were obtained without fitting parame-

ters to data. All  parameter values were obtained from the literature

as shown in Table 1.  Survival in  all experiments and model sim-

ulations, except for the case  of Gunadi and Edwards (2003),  was

100%.

Simulation of the Gunadi et al. (2002) experiment showed a

good match to  data in both the increasing phase (optimal food) and

the descending phase when individuals lost body mass because the

food supply was depleted (Fig.  4a). Model predictions of mass loss

during starvation are less accurate in  Figs. 4c and e, but the dis-

crepancies are in opposite directions, so it would not  be possible

to  fit both datasets well. Reinecke and Viljoen (1990) recorded the

reproduction rate of E. fetida under optimal and limiting conditions

(Figs. 4b and d), with model outputs fitting the experimental data

under both conditions well.

3.3. Sublethal effects on growth and reproduction

The toxicity submodels shown in Table 3 were simulated

for each literature experiment by altering the physiological
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Fig. 4. Comparison between model outputs (lines) and recorded growth (a, c  and e) and reproduction (b and d) data (points) from (a)  Gunadi et al. (2002), (b) Gunadi and

Edwards (2003) and (c–e) Reinecke and Viljoen (1990). Arrows indicate the  time and amounts of food supplied.

parameters according to the dose–response relationships of Fig. 3

under the conditions outlined in Table 2. Model fits to  the literature

data at the tested concentrations were then evaluated using a like-

lihood method described in full in  the supplementary material. The

fits of the toxicity submodels to the data were assessed by �i and

these  values together with evidence ratios (ERs) (see e.g. Anderson,

2008) are given in  Table 5. When adequate food was provided

(i.e. where food was not a limiting factor) the toxic effects of both

copper oxychloride and chlorpyrifos on growth and reproduction

were best described by  supposing physiological parameters rm

and rB were directly affected, using toxicity submodel T3 (Table 5).

When food was limited, in the experiment of Maboeta et al. (2004),

toxicity models T1–T3 resulted in  individuals remaining at their

starting biomass throughout, which is why the �i values for

models T1–T3 in  Table 5 are  near equal. Only when supposing the

parameter B0 was  affected in toxicity submodel T4  did the model

provide a  good fit to the data. Table 5 shows that  the odds against

toxicity models other than the best performing (T3 or T4) being

better are very high, given by the evidence ratios, in each case

>106:1.

Figs. 5 and 6 show growth and reproduction data for E. fetida

from experimental studies under various exposures of  copper

oxychloride and chlorpyrifos together with the outputs from the

best performing toxicity submodel simulations run under the

same conditions. Simulation of the Helling et al.  (2000) experi-

ment shows good model fits to growth data (Fig. 5a and b) and

Table 5

Comparison of toxicity submodel (T1–T4) fits to the experimental data. AICc differences (�i) between toxicity submodels and evidence ratios (ER)  indicate the relative fit

to  the data. Higher �i and ER values represent a worse fit to the data, following the methodology of Anderson (2008). The  best performing toxicity submodel for each case

study  is highlighted in bold.

Helling et al. (2000) Maboeta et  al. (2004) Zhou et al. (2007) Zhou et al. (2011)

Food availability Optimal Limited Near optimal Near optimal

Sample size 59  30 30 12

Toxicity submodel �i ER �i ER  �i ER �i ER

T1 108.3 3.3  ×  1023 122.6 4.1 ×  1026 82.7 9.1  ×  1017 30.7 4.6 ×  106

T2 87.4 9.5  ×  1018 124.9 1.3 ×  1027 70.8  2.4  ×  1015 34 2.4 ×  107

T3 0  1 124.9 1.3 ×  1027 0  1 0  1

T4  105.5 8.1  ×  1022 0 1 77.3 6.1  ×  1016 34.7 3.4 ×  107
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Fig. 5. Comparison of experimental toxicity data (left-hand panels) and model simulations of toxicity experiments (right hand panels). (a, b)  the effects of copper oxychloride

(Helling et al., 2000) modelled using submodel T3; (c, d) copper oxychloride (Maboeta et al., 2004)  using T4; and (e,  f) chlorpyrifos (Zhou et  al.,  2007) using T3.

Fig. 6. Comparison of model simulations (lines) with data on reproduction from (a) Helling et  al. (2000); (b) Zhou et al. (2007) and (d) Zhou et al. (2011).  Panel (c) shows the

fit  for growth data  in Zhou et al. (2011). Chemicals were chlorpyrifos (a,  c and d) and copper oxychloride (b).
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Fig. 7. Comparison between (left-hand panels) field population density data and (right-hand panels) population biomass data from Monroy et al. (2006) (dashed line) and

model  simulations (solid lines) with standard errors. (a, b) Total population; (c, d) adults; (e, f)  juveniles; (g) cocoons. Juveniles here comprise the hatchlings, juveniles and

preclittelates that were counted separately in the field.

reproduction data (Fig. 6a) under control and maximum concen-

trations, although at intermediate concentrations experimental

responses do not increase monotonically with concentration.

However these results are generally well predicted by  submodel

T3 in which the parameters controlling allocation of energy to

growth and reproduction are directly affected. Effects of copper

oxychloride on growth in  Maboeta et al. (2004) (Fig.  5c) were

not explained by imposing stress on physiological parameters

directing the allocation of energy (IGmax, rB, rm). As the authors in

this case study gave a high density of 20 adult E. fetida a  limited

supply of food at the beginning of their experiment there were

minimal changes in biomass in the control treatment, indicating

that energy ingestion was restricted. The data shows an increase

in  weight loss with chemical concentration, explained by our

energy budget model as the catabolisation of tissue for increasing

maintenance requirements. This mechanism is  described by

submodel T4, resulting in  the model outputs presented in  Fig. 5d

which capture the span of the response. Growth data presented

by Zhou et al. (2007) (Fig. 5e) shows great variation in  individual

biomass between treatment concentrations of chlorpyrifos, with

the standard errors for each treatment overlapping. Yet, based on

the mean biomasses recorded the model provides a reasonable fit

to the growth data (Fig. 5f) and a  good fit to  the reproduction data

(Fig. 6b).

Zhou et al. (2011) provided the same experimental conditions

as Zhou et al. (2007) and recorded mean individual biomass and

cocoon production after 56 days exposure as shown in  Fig. 6c and

d. Submodel T3 again provides a  good fit to the data.

3.4. Population dynamics in the field

Population data reported by Monroy et al. (2006) under field

conditions are compared with mean results from ten-year-long

simulations of the Monroy et al. (2006) study in  Fig. 7.

Patterns of seasonal changes in population density and biomass

(Figs. 7a  and b) are generally well predicted by the model, although

adult density and biomass and cocoon density are slightly underes-

timated in spring. The higher cocoon densities observed in  spring

may be due to  higher temperatures occurring within the manure

heap under high population densities, not considered in  the model.

4. Discussion

Key aspects of earthworm population ecology have been real-

istically simulated using the simple energy budget-driven ABM

developed and evaluated in  this paper. The distinctive features of

our approach are that we have aimed to  produce a  minimal model

in  which (1) each individual has its own  energy budget operating

according to accepted principles of physiological ecology; (2) com-

ponents of the model are parameterised using literature data at the

level at which it is generally available, the level of the individual;

(3) individuals live in a spatially explicit landscape so that food

availability depletes in those areas in  which individuals forage; (4)

individuals interact with others in natural ways, they meet others to

mate but compete for food with others in  their patch; (5) the com-

bination of energy budget and ABM approaches mechanistically

relates individual physiology to  ecologically relevant conditions.
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Good model fits were obtained to published experimental data for

individual growth and reproduction (Fig.  4)  under both optimal

and limiting feeding conditions, and to population data in  the field

(Fig. 7). Model applications to toxicology experiments provide a

useful basis for interpreting how pesticides achieve their effects,

with good model fits under exposures of chlorpyrifos and copper

oxychloride in Figs. 5 and 6.  It  is  important to  note that these fits

were obtained without modifying parameter values. Parameter

values were obtained from the literature and are shown in  Table 1.

Essential to achieving the good model fits presented is  the accu-

rate representation of physiological mechanisms and the inclusion

of depleting food supplies. The timing of starvation in  Figs. 4a, c

and e was well predicted by the model when food supplies varied.

As food depletes from the ABM landscape at a  rate proportional

to individual ingestion rates, the timing of starvation supports our

assumptions about energy acquisition, expenditure and the onset of

starvation. The over and under-prediction of maximum body mass

in Figs. 4c and e, respectively, may  be related to the energy content

of the food, as the quality of cow manure differs with decomposition

stage. These discrepancies highlight the need for comprehensive

environmental measurements in experimental work. The effect of

decreasing food availability on life cycle processes is particularly

evident in the data of Reinecke and Viljoen (1990) (Figs. 4b, d and

e). Under varying food availability, reproduction continued dur-

ing periods of individual weight loss (i.e. starvation). Aiding the

good model fits to the timing of weight loss and reproduction rates

under limiting conditions are  the assumptions made about the pri-

orities of energy allocation: adults continue to allocate energy to

reproduction at the expense of growth, until a  critical low energy

reserve threshold is reached. The response of our model is  sup-

ported by Klok’s (2007) study of L. rubellus in  limiting conditions:

earthworms reduced their individual growth rates but maintained

reproduction as population density was increased. Under limiting

and fluctuating conditions, such as those likely to  occur in  the field,

it is important that life cycles are modelled realistically.

Information about food supplies was essential in the identifica-

tion of the physiological parameters affected by  pesticides. When

earthworms are provided with sufficient food, the case studies of

Helling et al. (2000) for copper oxychloride and Zhou et al.’s (2007,

2011) for chlorpyrifos indicate that reproduction is more sensitive

than growth to toxic stress (Table 3; Figs. 5 and 6). To understand

the underlying physiological mechanisms of toxicity it is neces-

sary to investigate alternative models of how toxic chemicals may

achieve their effects. When sufficient food was available, the model

best fitting the data was T3 (Table 5), which supposes that  stress

is imposed directly on the physiological processes of reproduction

and growth. Svendsen and Weeks (1997) found copper exposure to

increase food consumption by  Eisenia andrei up to concentrations

of 80 mg/kg, which had proportionally positive effects on individ-

ual growth. In contrast reproduction was reduced from exposures

of 20 mg/kg and completely inhibited at 160 mg/kg whilst growth

persisted at a  reduced rate. Many other experimental studies have

also identified reproduction to  be more sensitive to toxicants than

growth when sufficient food is available for E. fetida (Robidoux et al.,

2004; Gunn and Sadd, 1994) and field populations of Lumbricus

rubellus (Svendsen et al., 2007). These findings are in line with our

interpretation of the physiological response of E. fetida to the two

pesticides tested in this paper.

By contrast when little food was available as in  the experiment

of Maboeta et al. (2004),  maintenance was fuelled from energy

reserves and the animals lost weight (Fig. 5c and d). Similar effects

have been observed in  biomarker studies of earthworms, in which

an inhibition of AChE activity in E. fetida during acute toxicity tests

resulted in self-digestion (Rao et al., 2003). Physiologically this

suggests that AChE inhibition led to muscular paralysis at higher

concentrations (e.g. Gupta and Sundararaman, 1991), impeding

food consumption, while at  the same time energy was required

to  eliminate the toxicant (Calow, 1991). As in  Maboeta et al. (2004)

our energy budget model describes the underlying physiological

processes of these observations as catabolisation of tissue under

starvation, with rates of weight loss proportional to the increase in

maintenance rates. This emphasises the usefulness of  building and

comparing models of how toxic chemicals achieve their effects in

helping to  interpret toxicology test results. As feeding conditions

are variable in  field conditions we suggest the simple combina-

tion of the two  best performing toxicity submodels (T3 and T4) for

population level simulations.

Density dependence in our  ABM is an emergent property of the

modelled interactions between individuals and their food supply

(Grimm and Uchmanski, 2002; Sibly et al., 2009). As fluctuations

in  food availability are the rule in  the field, understanding of how

food density affects population dynamics through its effects on

individual growth and reproduction is of great importance. Uvarov

and Scheu (2004) suggested that density-dependent regulation of

earthworm populations results directly from a decrease in food

availability at higher densities. Many authors have also observed

the negative effect of high population densities on E. fetida growth

(Hartenstein, 1984), sexual maturation (Neuhauser et al., 1980)

and reproduction (Kammenga et al., 2003). At the population level,

our  model accurately predicted how seasonal changes of just three

environmental state variables (food density, soil temperature and

soil moisture) determine earthworm population structure (Fig. 7).

In spring cocoon densities were higher than predicted, perhaps

due to higher temperatures when population densities were high.

Reproduction is particularly affected by temperature and many

authors have noted a  highly seasonal occurrence of cocoon produc-

tion (Gerard, 1967; Evans and Guild, 1948; Whalen et al., 1998). The

high cocoon density observed in  spring by Monroy et al. (2006) was

linked to a  decrease in  individual adult biomass, a pattern that the

model reproduces due to  preferential allocation of energy to repro-

duction before growth (Fig. 7d  and g). Overall the model captures

the major aspects of the population dynamics recorded by Monroy

et al. (2006) but would have benefited from more detailed recor-

dings of abiotic factors such as soil temperature and organic matter

content being reported. The ability of the model to replicate field

observations suggests it incorporates a realistic representation of

underlying metabolic processes.

The development of ABMs incorporating individual energy

budgets is  essential for realistic modelling of populations regu-

lated by environmental conditions. The capacity of  the model to

capture the linkage between food density and metabolism results

from the ability of ABMs to model individual–landscape interac-

tions, and illustrates the applicability of these methods to realistic

chemical risk assessments at the laboratory scale. For these pur-

poses our model provides a  promising alternative to simpler more

deterministic methods. An  advantage of ABM modelling is that it

readily extrapolates to larger scales, and prediction at the scale of

agricultural fields should be immediately possible. Field application

rates of agricultural chemicals tend to be much lower than those

tested in lower tier risk assessments, but  ABMs like  ours based on

physiological knowledge at the individual level can give insights

into how sublethal concentrations affect populations. As an exam-

ple, consider the findings of Senapati et al. (1992); application of

malathion led to a  dominance of adults in a  field population which

the authors interpreted as being caused by an increase in individ-

ual costs of maintenance. In our energy-budget-driven ABM, these

increased costs of maintenance would slow growth in  juveniles

and reduce reproduction rates of adults, and so support Senapati

et al.’s interpretation. We  do  not provide extrapolations to  pesti-

cide application effects on E. fetida field populations here because

no experimental data exists for validation, as E. fetida is not a  wide-

spread natural field species (Paoletti, 1999). Nevertheless good
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model fits to field population data under control conditions in Fig. 7

are an encouraging basis for further work extending the model to

more ecologically relevant species. Taking account of the heteroge-

neous distribution of chemicals in the soil environment and of their

degradation with time will then allow the evaluation of model pre-

dictions at the field scale. Such a model could help extrapolate from

laboratory to field conditions and from one set of field conditions

to another or from species to  species.
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