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Abstract

In this paper we show for the first time that calcite granules, produced by the earthworm Lumbricus terrestris, and com-
monly recorded at sites of archaeological interest, accurately reflect temperature and soil water d18O values. Earthworms were
cultivated in an orthogonal combination of two different (granule-free) soils moistened by three types of mineral water and
kept at three temperatures (10, 16 and 20 �C) for an acclimatisation period of three weeks followed by transfer to identical
treatments and cultivation for a further four weeks. Earthworm-secreted calcite granules were collected from the second
set of soils. d18O values were determined on individual calcite granules (d18Oc) and the soil solution (d18Ow). The d

18Oc values
reflect soil solution d18Ow values and temperature, but are consistently enriched by 1.51 (± 0.12)& in comparison to equilib-
rium in synthetic carbonates. The data fit the equation 1000 lna = [20.21 ± 0.92] (103 T�1) � [38.58 ± 3.18] (R2 = 0.95;
n = 96; p < 0.0005). As the granules are abundant in modern soils, buried soils and archaeological contexts, and can be dated
using U–Th disequilibria, the developed palaeotemperature relationship has enormous potential for application to Holocene
and Pleistocene time intervals.
� 2013 The Authors. Published by Elsevier Ltd. All rights reserved.

1. INTRODUCTION

Many organisms form reliable archives of palaeotemper-
ature or water composition, by precipitating calcium car-
bonate (CaCO3) in oxygen isotopic equilibrium with their
environment (Wanamaker et al., 2007; Ullmann et al.,
2010; Versteegh et al., 2010). The d18O values of the CaCO3

are controlled by temperature and water isotope composi-

tion (Urey, 1947; Epstein et al., 1953), with equilibrium
being defined via a mineral-specific fractionation factor
(Kim and O’Neil, 1997). The d18O composition of CaCO3

produced by some biomineralising taxonomic groups shows
a systematic offset from equilibrium, and as such is still use-
ful as a proxy (Ziveri et al., 2003; Rosenheim et al., 2009;
Ford et al., 2010). The CaCO3 minerals produced by other
taxonomic groups are not in equilibrium with the environ-
ment, but exhibit deviations, called vital effects (Owen et al.,
2002; Juillet-Leclerc et al., 2009; Correa et al., 2010).
Therefore, when a biomineral is investigated as a potential
palaeoenvironmental proxy, it is important to develop
species-specific and well-constrained palaeotemperature
relationships.

Although not widely appreciated, many earthworm spe-
cies are true biomineralisers (Briones et al., 2008b) and pro-
duce calcite granules in specialised glands (Canti, 1998; Lee
et al., 2008b) first noted by Darwin (1881; Fig. 1). The lob
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worm Lumbricus terrestris is common in Europe and
increasingly as an invasive species in the USA and Canada.
It is one of the major producers of earthworm-secreted cal-
cite granules in temperate soils. As such a large majority of
these distinctly shaped granules, that are commonly found
in soils, will have been produced by this species (Canti,
2007). The granules are formed in the calciferous glands
of the earthworm, occurring in segments 10–12 as three
pairs of swellings off the oesophagus (Canti, 1998). The
function that granule secretion serves is unknown, with sug-
gestions ranging from excretion of excess calcium as a reac-
tion against calcium toxicity of soils, to neutralisation of
gut pH and regulation of CO2 (Darwin, 1881; Robertson,
1936; Crang et al., 1968; Piearce, 1972; Bal, 1977; Becze-
Deák et al., 1997). Data show that granules incorporate
both dietary and atmospheric C (Briones et al., 2008b; Can-
ti, 2009). They have been reported from the Pleistocene
(Meijer, 1985; Green et al., 2006), but can likely be pre-
served for longer (Lambkin et al., 2011). Preliminary data
suggest they can be dated using U–Th disequilibria: gran-
ules recovered from Silbury Hill, a Neolithic monument
in Wiltshire, UK (Atkinson, 1967), which has an earliest
date of 4400 BP produce a U–Th disequilibrium age of
4670 ± 440 years (own data). Further U–Th analyses are
ongoing and applications and limitations will be discussed
in a future publication. 14C dating of earthworm granules
is possible if enough material is available from the same
stratigraphic unit and yields ages that agree with other car-
bonates (Pustovoytov and Terhorst, 2004). Due to their
abundance and good preservation, calcite d18O (d18Oc) val-
ues from these granules form a potentially powerful palae-
otemperature proxy. A limited number of oxygen isotope
analyses have recently been published on earthworm cal-
cite, showing similar values as directly precipitated second-
ary carbonates, but no systematic investigation into
temperature relationships has yet been performed (Pusto-
voytov and Terhorst, 2004; Koeniger et al., 2012). There-
fore, the aim of the experimental work presented here was
to investigate this potential by testing the hypothesis that
the d18O values recorded in the earthworm secreted gran-
ules vary systematically with soil solution d18O values and
temperature.

2. METHODS

We investigated the utility of calcite d18Oc values of the
earthworm-secreted granules as a palaeothermometer by
means of a laboratory experiment with an orthogonal com-
bination of two different types of soil, three types of mineral
water (initial d18O values �10.0, �7.3 and �6.3 (± 0.2)&
VSMOW) and three temperatures (10, 16 and 20 �C) with
6 replicates (individual earthworms) per treatment.

Soils were collected from agricultural fields in Berkshire,
UK: Hamble (SU 61968 70235) a Hamble series Typical
Argillic Brown Earth with 1.3 weight% Ca, and Red Hill
(SU 56060 80033) a Yattendon series Typical Argillic
Brown Earth with 0.6 weight% Ca (Jarvis, 1968; Avery,
1980). Following our established methodology for the col-
lection of earthworm secreted granules produced over the
course of an experiment, the soils were air-dried and sieved
to 250 lm prior to use (Lambkin et al., 2011). This ensures
soils are granule-free initially, and facilitates granule recov-
ery at the end of the experiments. For each replicate, 300 g
of soil were mixed with one of 3 different types of mineral
water to 65% water holding capacity (BS ISO, 1998). This
was put in a zip-lock bag with 5 g air-dried horse manure
rehydrated with 10 ml of the same mineral water. One adult
L. terrestris was added to each bag, and they were placed in
one of three constant temperature rooms at 10, 16, or 20 �C
in darkness. There were 6 replicates for each treatment. A
scoping study indicated that within 3 weeks exposure to
new isotopic conditions the oxygen isotopic composition
of the granules had reached a steady state. Therefore earth-
worms were acclimatised for three weeks, and then trans-
ferred to an identical treatment bag containing the same
type and mass of soil, manure and water at the same tem-
perature. After 28 days earthworms were removed and soil
solution was extracted using rhizon samplers (Van Walt
Micro Rhizon; Kölling et al., 2005; Seeberg-Elverfeldt
et al., 2005; Dickens et al., 2007). The samplers produce
water with a water vapour pressure of 2340 Pa at ambient
temperature (20 �C) and hence any fractionation of the
water isotopes during this process will be minimal. The soil
was wet-sieved to 500 lm to retrieve granules, which were
air-dried and weighed.

a b c

400 µm 100 µm 10 µm

Fig. 1. SEM pictures of a L. terrestris-produced calcite granule. (a) Entire granule, (b) surface calcite crystal structure, (c) individual calcite

crystal. Images are back-scattered electron images taken using a FEI Quanta FEG 600 Environmental Scanning Electron Microscope. (a) and

(b) are taken from Lambkin et al. (2011).
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Oxygen isotope analyses on the original mineral waters
added and soil solutions extracted at the end of the exper-
iment were performed on a Picarro L2120-i Isotopic Water
Analyzer with an A0211 High-Precision Vaporizer and
ChemCorrect software. Values were calibrated against ref-
erence standards IA-R052, IA-R053 and IA-R054 from
Iso-Analytical Limited. Long-term reproducibility was
<0.2&. Nine soils did not yield enough water for analysis.
In order to incorporate granule data from these in our anal-
ysis we used the average water d18O (d18Ow) value from the
replicates of the same treatment. Calcite granules were indi-
vidually analysed for d18Oc values, using a Thermo Delta V
Advantage IRMS with a GasBench II. The raw d18Oc val-
ues were converted into the VPDB scale after normalising
against NBS18 and NBS19 carbonate standards. The
long-term standard deviation of a routinely analysed in-
house CaCO3 standard was <0.1&. Soil solution pH was
measured with a combination micro-electrode connected
to a Hanna pH21 pH/mV meter and calibrated using pH
4.0 and 7.0 buffers. Ca2+ concentrations in soil solutions
were determined using a Perkin Elmer Optima 3000 ICP-
OES. Operational blanks had Ca2+ concentrations below
detection (16 lg/l). Data were calibrated via analysis of 1,
50 and 100 ppm dilutions of the Merck ICP multi-element
standard solution IV and accuracy determined through
analysis of an in house standard.

3. RESULTS

Results are shown in Table 1 and Fig. 2. At the end of
the 4 week exposure, soil solution d18Ow values ranged from
�10.2 to �5.3& VSMOW. Some influence of evaporation
was observed, causing higher d18Ow values for higher tem-
peratures. This is most pronounced for the Hamble soil,
probably because of its lower water holding capacity (Ta-
ble 1, Fig. 2). d18Oc values of individual granules
(n = 931) vary between �10.10 and �3.21& VPDB. With-
in-treatment d18Oc values of granules are normally distrib-
uted. The variability in d18Oc values between granules
produced by an individual earthworm within a single
month is on average 0.61& (range 1.44&). Higher soil solu-
tion d18Ow values yield higher d18Oc values, and higher tem-
peratures result in lower d18Oc values (Fig. 2).

4. DISCUSSION

For each replicate the expected d18Oc value for equilib-
rium was calculated from the d18Ow value and temperature
according to the equation of Kim and O’Neil (1997):

1000 ln a ¼ 18:03ð103T�1Þ � 32:42 ð1Þ

The resulting predicted d18Oc (d
18Opred) values are plotted

with average measured d18Oc per replicate in Fig. 3. A lin-
ear regression shows that earthworm granules are systemat-
ically enriched in 18O by 1.51 (± 0.12 s.d.)& in comparison
to equilibrium:

d
18Oc ¼ 1:02d18Opred þ 1:51 ð2Þ

with R2 = 0.98; n = 96; p < 0.001. Subsequently, the frac-
tionation factor a was derived:

acalcite�waterð½1000þ d18OcVSMOW�=½1000

þ d18OwVSMOW�Þ ð3Þ

and plotted against 103 T�1 (K). Regression analysis yields
the palaeotemperature relationship:

1000 ln a ¼ ½20:21� 0:92�ð103 T�1Þ � ½38:58� 3:18� ð4Þ

with R2 = 0.95; n = 96; p < 0.001. Quoted errors on the
slope and intercept are reported at the 95% confidence
interval. Our results are compared to equations by Kim
and O’Neil (1997; synthetic carbonates) and Wanamaker
et al. (2006; 2007; Blue mussel, Mytilus edulis) in Fig. 4.
M. edulis data are slightly offset from equilibrium
(<0.2&), but this difference is not statistically significant
(Wanamaker et al., 2007). d18Oc values of calcite granules
produced by L. terrestris reflect soil solution d18Ow values
and temperature, but are enriched in 18O in comparison
to equilibrium in synthetic carbonates (Kim and O’Neil,
1997) and the bivalve M. edulis (Wanamaker et al., 2007).

Although the relationship is strong, the range of 1000 ln
a for a given temperature is about twice that observed for
M. edulis (Wanamaker et al., 2007) translating into an aver-
age offset in reconstructed temperature of 0.73 �C. A possi-
ble explanation for this increased variation is that some
evaporation occurred during the experiment, progressively
increasing soil solution d18Ow values throughout the 4-week
experiment. In addition, some of the variation could have
been caused by the variability of the controlled temperature
chambers in which the experiments were performed at
±0.5 �C from the set temperature.

The enrichment in 18O by 1.51& compared to equilib-
rium is statistically indistinguishable from the equation
for synthetic calcite precipitated from a solution with initial
[Ca2+] and [HCO3

�] of 15 mM (Fig. 4; Kim and O’Neil,
1997). The soil solutions collected after the experiment
had [Ca2+] values varying between 8.30 (± 1.02 s.d.) mM
and 16.79 (± 1.42 s.d.) mM with higher values for higher
temperatures, for mineral waters with higher initial
[Ca2+], and for the Red Hill soil. Average pH values were
6.5 ± 0.8 s.d. (Fiji), 6.8 ± 0.5 s.d. (England) and
7.0 ± 0.3 s.d. (Norway; Table 1). pH did not significantly
differ between temperatures or soils. At the measured pH
values, most DIC will be present in the form of HCO3

�

(Zeebe and Wolf-Gladrow, 2001). HCO3
� was not deter-

mined directly, but concentrations of dissolved inorganic
carbon (DIC) are likely to have been high (up to 32 mM
based on equivalence of charge of DIC with Ca2+), due
to earthworm and microorganism respiration (601–
1329 lmol/mol CO2 in soil air, own data). As such, it ap-
pears that elevated initial [Ca2+] and [HCO3

�] caused the
18O enrichment in earthworm granules, through the same
unknown mechanism as in synthetic calcite. Earthworms
do not produce calcite granules at low [Ca2+] (own data)
or low pH (Lambkin et al., 2011), and thus the range of
these parameters in soils containing granules will be con-
strained at the lower end. Therefore, different soils are un-
likely to yield radically different palaeotemperature
equations.

A possible alternative or additional explanation for the
1.51& offset of the granules lies in precipitation kinetics.
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Calcite precipitation in the calciferous gland likely takes
place along a pathway of dissolved CO2 transforming to
HCO3

� and CO3
2�, then to amorphous CaCO3, which fi-

nally stabilises into calcite through a dissolution-reprecipi-
tation mechanism (Briones et al., 2008a; Lee et al.,
2008a). If calcite precipitation were very fast, there would
be incomplete fractionation between HCO3

� and CaCO3,
resulting in 18O enrichment of earthworm granules in com-
parison to equilibrium (kinetic effect; Mickler et al., 2004;
Lachniet, 2009). The production rate of the calcite granules
varied between 1.24 (± 0.47 s.d.) and 2.89 (± 0.31 s.d.) mg/
day and was higher for higher temperatures and the Red
Hill soil, and lower for Norway water (Table 1). However,

no relationship between precipitation rate and d18Oc values
was found.

Several recent publications on speleothems and inorgan-
ically precipitated calcite suggest that acalcite–water is greater
than the commonly accepted value by up to 1.5& (Coplen,
2007; Dietzel et al., 2009; Day and Henderson, 2011; Tre-
maine et al., 2011; Feng et al., 2012). Although these systems
are very different from the earthworm calciferous gland, it is
possible, that they have a common cause for disequilibrium,
such as fractionation reactions at the crystal surface.

For application in palaeotemperature reconstructions, a
good estimate of soil water d18Ow values is needed. Due to
the combined influence of seasonal variations in precipita-

Table 1

Experimental conditions.

T (�C) Soil Mineral

water added

Water

holding

capacity (%)

Soil solution

pH

Soil solution

[Ca2+] (mM)

CaCO3 production

per earthworm

(mg/day)

d18Ow

(& VSMOW)

N*

Pure mineral waters Fiji 7.8 0.46 �6.3 ± 0.2 1

England 7.4 1.20 �7.3 ± 0.2 1

Norway 7.7 0.18 �10.0 ± 0.2 1

10 Hamble Fiji 33 7.2 ± 0.4 10.93 ± 0.89 1.45 ± 0.28 �5.93 ± 0.05 5

10 Hamble England 33 6.7 ± 0.9 10.44 ± 0.62 1.66 ± 0.43 �7.11 ± 0.04 6

10 Hamble Norway 33 5.5 ± 1.0 8.30 ± 1.02 1.24 ± 0.47 �9.60 ± 0.05 6

10 Red Hill Fiji 56 6.9 ± 0.1 15.86 ± 2.09 1.82 ± 0.21 �6.04 ± 0.11 6

10 Red Hill England 56 6.7 ± 0.1 13.30 ± 0.82 1.77 ± 0.26 �7.24 ± 0.03 6

10 Red Hill Norway 56 6.9 ± 0.1 15.21 ± 0.92 1.76 ± 0.46 �9.85 ± 0.06 6

16 Hamble Fiji 33 7.3 ± 0.2 12.13 ± 1.52 2.30 ± 0.24 �5.72 ± 0.14 5

16 Hamble England 33 7.1 ± 0.2 11.22 ± 1.31 2.11 ± 0.25 �7.10 ± 0.08 6

16 Hamble Norway 33 6.7 ± 0.8 9.09 ± 0.87 1.79 ± 0.37 �9.44 ± 0.10 6

16 Red Hill Fiji 56 6.9 ± 0.1 15.82 ± 0.84 2.56 ± 0.27 �6.20 ± 0.12 5

16 Red Hill England 56 6.7 ± 0.2 13.44 ± 1.45 2.75 ± 0.27 �7.24 ± 0.09 6

16 Red Hill Norway 56 6.7 ± 0.2 15.25 ± 0.49 2.19 ± 0.49 �9.94 ± 0.10 6

20 Hamble Fiji 33 7.0 ± 0.4 12.34 ± 1.35 2.39 ± 0.47 �5.43 ± 0.10 6

20 Hamble England 33 6.9 ± 0.7 11.39 ± 0.58 2.06 ± 0.60 �6.74 ± 0.04 6

20 Hamble Norway 33 5.7 ± 0.5 11.38 ± 0.43 1.92 ± 0.47 �9.02 ± 0.11 5

20 Red Hill Fiji 56 6.8 ± 0.2 16.79 ± 1.42 2.46 ± 0.27 �5.85 ± 0.05 6

20 Red Hill England 56 6.8 ± 0.3 13.81 ± 0.53 2.89 ± 0.31 �7.02 ± 0.05 5

20 Red Hill Norway 56 6.9 ± 0.2 15.10 ± 0.89 2.70 ± 0.53 �9.60 ± 0.10 4

* N is number of replicates per treatment. Average soil solution pH, [Ca2+], CaCO3 production and d18Ow values are all means ± s.d.
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tion d18Ow values and evapotranspiration, these vary over
time and with depth (Hsieh et al., 1998). However, in a
high-rainfall temperate climate, like that of the British Isles,
the influence of evaporation is likely to be small. This is
supported by data showing that the d18Ow composition of

groundwater reflects that of local precipitation within
0.5& (Darling et al., 2003) and that d18Oc values of modern
soil carbonate are correlated with d18Ow values of local
meteoric water (Cerling, 1984). For the past 4000 years,
modern values for the isotopic composition of precipitation
can be used (McDermott et al., 2011). For earlier Holocene
and Pleistocene time intervals, d18Ow values of precipitation
are often not well-constrained and the earthworm-calcite
palaeothermometer can only be used if an independent
reconstruction of soil water d18Ow values is available. Alter-
natively, the equation can serve as an independent proxy
for soil water d18Ow values (and hence d18Ow values of pre-
cipitation) in the presence of existing palaeotemperature
reconstructions.

5. CONCLUSIONS

In summary, our study shows that the relationship be-
tween temperature and earthworm calcite d18Oc values is
significant and predictable. In combination with the wide
distribution, good preservation, and direct U–Th dating
of the granules, these will make a novel terrestrial temper-
ature proxy. Important questions to be addressed are if this
relationship holds under field conditions when evaporation
of soil moisture may occur, and for other earthworm spe-
cies. Future work will investigate these issues and also in-
clude application of the developed palaeothermometer to
granules retrieved from various Holocene and Pleistocene
locations and archaeological sites in Great Britain, the
Netherlands and Germany.
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Briones M. J. I., López E., Méndez J., Rodrı́guez J. B. and Gago-

Duport L. (2008a) Biological control over the formation and

storage of amorphous calcium carbonate by earthworms.

Mineral. Mag. 72, 227–231.

Briones M. J. I., Ostle N. J. and Piearce T. G. (2008b) Stable

isotopes reveal that the calciferous gland of earthworms is a

CO2-fixing organ. Soil Biol. Biochem. 40, 554–557.

Y = 1.02X + 1.51

R² = 0.98
n = 96; p < 0.0005

-10

-8

-6

-4

-2

-12 -10 -8 -6 -4

L
. 
te

r
r
e

s
tr

is
δ

1
8
O

c
(‰

 V
P

D
B

)

δ18Opred Kim & O'Neil (1997) (‰ VPDB)

Fig. 3. Comparison of d18Opred values according to Kim and

O’Neil (1997) and measured d18Oc values for earthworm-produced

calcite. L. terrestris CaCO3 granules are enriched in 18O by 1.51&.

Fig. 4. Relationship between 103 lna and temperature for several

types of calcite. L. terrestris granules (red diamonds; this study),

equilibrium (grey solid line), synthetic at initial [Ca2+] and [HCO3
�]

of 15 mM (black solid line), synthetic at initial [Ca2+] and [HCO3
�]

of 25 mM (grey dashed line; Kim and O’Neil (1997)), and M. edulis

shells (blue triangles; Wanamaker et al. (2007)). Earthworm

granules are enriched in 18O compared to equilibrium, in a similar

way as synthetic carbonates precipitated at elevated initial

concentrations of Ca2+ and HCO3
�.

E.A.A. Versteegh et al. /Geochimica et Cosmochimica Acta 123 (2013) 351–357 355



BS ISO (1998) Soil Quality – Determination of the Water-retention

Characteristic. BS ISO, Geneva.

Canti M. G. (1998) Origin of calcium carbonate granules found in

buried soils and quaternary deposits. Boreas 27, 275–288.

Canti M. G. (2007) Deposition and taphonomy of earthworm

granules in relation to their interpretative potential in quater-

nary stratigraphy. J. Quatern. Sci. 22, 111–118.

Canti M. G. (2009) Experiments on the origin of 13C in the calcium

carbonate granules produced by the earthworm Lumbricus

terrestris. Soil Biol. Biochem. 41, 2588–2592.

Cerling T. E. (1984) The stable isotopic composition of modern soil

carbonate and its relationship to climate. Earth Planet. Sci.

Lett. 71, 229–240.

Coplen T. B. (2007) Calibration of the calcite–water oxygen-

isotope geothermometer at Devils Hole, Nevada, a natural

laboratory. Geochim. Cosmochim. Acta 71, 3948–3957.

Correa M. L., Montagna P., Vendrell-Simón B., McCulloch M.

and Taviani M. (2010) Stable isotopes (d18O and d13C), trace

and minor element compositions of recent scleractinians and

Last Glacial bivalves at the Santa Maria di Leuca deep-water

coral province, Ionian Sea. DSR 57, 471–486.

Crang R. E., Holsen R. C. and Hitt J. B. (1968) Calcite production

in mitochondria of earthworm calciferous glands. Bioscience 18,

299–301.

Darling W. G., Bath A. H. and Talbot J. C. (2003) The O and H

stable isotope composition of freshwaters in the British Isles. 2.

Surface waters and groundwater. HESS 7, 183–195.

Darwin C. (1881) The Formation of Vegetable Mould, Through the

Action of Worms, with Observations on their Habits. The Echo

Library, Teddington.

Day C. C. and Henderson G. M. (2011) Oxygen isotopes in calcite

grown under cave-analogue conditions. Geochim. Cosmochim.

Acta 75, 3956–3972.

Dickens G. R., Koelling M., Smith D. C. and Schnieders L. (2007)

Rhizon sampling of pore waters on scientific drilling expedi-

tions: an example from the IODP Expedition 302, Arctic

Coring Expedition (ACEX). Sci. Drill. 4, 22–25.

Dietzel M., Tang J., Leis A. and Köhler S. J. (2009) Oxygen
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