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Abstract. Extended techniques and signal processing devices are in-
creasingly common in contemporary music composition and performance.
At present, few machine listening methods deal reliably with extended
techniques. Moreover, existing instrumental corpora have not tradition-
ally included sources of variation that arise naturally in every-day per-
formance environments. In the current study, timbral descriptors are
extracted for a range of instrumental techniques, and their dispersion is
quantified in order to examine the variation stemming from recording
strategy choice and performer repetition.
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1 Introduction

As ‘extended techniques’ have become mainstream in contemporary music com-
position and performance, work is underway to develop machine listening meth-
ods that allow a more fruitful integration of acoustic instrument with signal pro-
cessing technologies (see e.g., [1–5]). The current paper describes ongoing work
developing a database of extended string techniques recorded under naturalis-
tic performance conditions, and examines computational hearing methods that
attempt to summarise sonically interesting aspects of sound. To motivate this
work, Section 1 describes existing datasets and reveals the gap between these and
modern musicians’ requirements. Section 2 outlines our corpus creation meth-
ods, describing the selection of extended techniques, recording conditions, data
preparation, annotation and assessment processes. Illustrative examples are pre-
sented in Section 3, and the paper concludes with a discussion in Section 4.

Extended techniques have been adopted by composers since at least the sev-
enteenth century, and their use has become firmly established in the twentieth
century as composers have sought to find new sounds on acoustic instruments.
In an early example, Biber used col legno (the wood of the bow) and insertion of
paper between the strings [6]. Krzysztof Penderecki and George Crumb worked
extensively with extended string techniques in the 1960s and ‘70s respectively,
formalising techniques far-removed from the equally-tempered chromatic scale,
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concerned more with timbal variation than with pitch. Extended techniques in-
clude ways of preparing and playing an instrument that fall outside traditional
standard practice [7], [8] and can involve timbral changes (e.g., sul ponticello),
unconventional musical material (e.g., seagull glissando), and methods to de-
liver sound that the instrument was not originally designed to produce (e.g.,
subharmonics [9]).

Extended techniques can be problematic for a composer to notate, and hard
for a performer to achieve consistently. Moreover, the variability in reproduc-
tion of such techniques can be a serious concern for performers who use live
signal processing in their work. Our auditory systems afford a degree of context-
sensitivity to human hearing (e.g., constancy for spectral envelope ‘colour’ [10],
or for the temporal envelope in reverberation [11]), but these effects have not
yet been adequately replicated for machine listeners. Thus while people tend to
hear the (context-dependent) ‘interesting’ variation in a signal, machines often
end up overly reliant on cues that vary unintentionally.

Datasets containing sound material to address the variability inherent in
instrumental performance (intentional or otherwise) are not common at present.
Instrument corpora first documented standard performance techniques, often
based around a collection of semitone-spaced pitches, in a normal working range,
at a range of loudness levels [12–14]. Usefully, [12] is being updated to include
second recordings of instruments, and to augment the corpus with extended
techniques. A number of commercial ventures have also recognised the increasing
desire for extended performance techniques [15–17], but such datasets suffer
from proprietary interfaces and a lack of information regarding the audio signal
processing undertaken [18]. Moreover, while such sound libraries may allow a
composer to work with sound in a convenient manner, they are of no immediate
use to an instrumentalist. Sample banks intended for use by performers are
typically work-specific and designed to return material in real-time, for example
using parameters derived from an input audio signal [1], [5].

The current study is a step towards a robust machine listener for live instru-
mental performance. Such a device would identify aspects of variation in sound
signals that were intended, relating directly to the performance underway. Ad-
ditionally, it would ‘compensate’ for undesired aspects of variation, resulting
from uncontrollable factors such as the microphone or room effect. Towards this
aim, we examine factors governing variability from a performer’s point of view,
and are specifically concerned with (i) performance environment and (ii) rep-
etition. Knowledge of the expected variation in (i) would allow the performer
to travel with a degree of confidence to perform in a new venue. Knowledge
of the expected variation in (ii) would ensure that the performer can play the
same technique several times and predict how their sound will be registered by
the machine (which may allow the performer to auralise subsequent signal effect
chains). Though it is outside the scope of the present paper, we note for future
work that variation due to the performer and instrument themselves should be
examined in order that a composer can give a performance system to different
performers and achieve predictable results.
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2 Methods

In the pilot study described below, a prototype corpus was used to examine
the variation naturally arising in normal and extended performance techniques
due to (i) the recording conditions and (ii) iteration of the technique by the
performer. This section describes four main operations undertaken to gather
data appropriate to the task: selection of performance techniques; selection of
microphones and their placement; sample extraction and storage; automatic an-
notation with timbral descriptors.

2.1 Selection of Techniques

The current study draws its sound material from an ongoing project documenting
the sound world of the viola da gamba. An instrument-specific list of techniques
(normal and extended) has been compiled, informed by the performing back-
ground of one of the present authors (MS) with cross-reference to other surveys
of extended techniques on string instruments [7], [8], [17]. A list of 90 individual
techniques serves as the basis for the corpus.

A small number of these techniques have been picked for illustrative analyses
in Section 3. Firstly, we fix the pitch, loudness and duration (as in typical timbre
studies), and examine bowing this pitch normally on six different strings. Sec-
ondly, we use a single string to examine the effect of different bowing techniques.

2.2 Selection of Microphones and their Placement

Recordings were made in an acoustically isolated room in the University of
Sheffield Sound Studios (volume 34.7 m3). Two walls were covered with heavy
felt curtains, and there was an upright piano on another wall. The player sat in
one corner pointing diagonally towards a ‘far’ room microphone at a distance
of 3.6 meters. Three further ‘close’ microphones were placed on or near the
instrument as described in Table 1.

The signal arriving at each microphone was recorded via an RME Fireface
800 audio interface connected to a MacBook in an adjoining control studio,
running Audacity software [19]. Two DPA microphones were directly attached to
the instrument itself, and represent the highest signal-to-noise ratio practicably

Table 1. Description of microphones selected, their directional characteristics and
placement in regard to the instrument and room.

Microphone Direction Proximity Placement

DPA 4060 omni close below bridge, under highest (1st) string

DPA 4060 omni close below bridge, under middle (4th) string

Neumann KM184 cardioid close 0.1 m in front of instrument’s bridge

Neumann KM184 cardioid far 3.6 m distant to front, raised 1.8 m
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achievable. The close Neumann microphone recording represents the best data
capture available for a player who is unwilling to attach ‘gadgets’ directly to
their instrument. On the other hand, the far Neumann microphone registers the
signal after transformation by a small room with a moderate level of reflections,
and is more representative of the sound typically transferred to the audience.

2.3 Sample Extraction and Storage

Groups of samples were recorded simultaneously with four microphones into in-
dependent channels of a long sound file. A click track of 120 beats per minute
was provided over headphones to the performer (MS) to facilitate the session
timing. Four seconds elapsed between the start of each sound event (2-seconds
of bowing, 2-seconds of rest), and multiple iterations of every technique were
recorded (six repetitions at minimum). For some techniques, the natural reso-
nance of the instrument persisted beyond the 2-second rest period assigned, but
we did not extend the recording period in such instances since it would be rare in
performance to wait for the resonance to decay fully. Moreover, any overlapping
resonance was naturally masked by the next sound event.

Individual samples were extracted from the long audio recordings, separating
24 audio files for each technique (6 iterations × 4 microphones). Segmentation
was achieved in a two-stage process. Firstly, time points of the player’s excita-
tion onset and offset (e.g., bow movement start and stop) were marked by hand
in a Praat textgrid [20], guided by audition and by viewing the waveform and
spectrogram of a DPA 4060 microphone recording. Secondly, the Praat textgrid
was read in Matlab [21], where time boundaries were moved to the nearest
zero-crossing (independently for each microphone channel) to reduce artefacts
in subsequent signal analyses. The samples were then excised individually, nor-
malised to achieve a consistent root-mean-square level across the entire group,
and rescaled en masse to be saved as 44.1 kHz, 16-bit WAV files without clipping.

2.4 Annotation with Timbral Descriptors

Automatic annotation was undertaken in Matlab using the Timbre Toolbox [22].
Every audio file was individually analysed to obtain an array of numerical values,
each one a ‘timbral descriptor’ that characterises an aspect of the signal.

Instinctively, we aim to represent aspects of the audio in such a way that the
performer can repeat a technique and have it interpreted in the ‘same’ way by the
machine each time. To best match human audition, we reason that the unim-
portant variation across a single technique due to either recording conditions
or performer iteration should be characterised by a small variance in an ideal
parameter. Furthermore, that parameter should register a large change due to
the important variation in sound when the instrumentalist selects a contrasting
technique to perform.

An exhaustive parameter search is beyond the scope of the current pilot
study. However, Peeters et al. [22] report the importance of the central tendency
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and temporal variability of spectro-temporal properties, the temporal energy en-
velope and the periodicity of the signal. We inspect variation inherent in record-
ing condition and performer iteration according to the first and last of these,
using spectral centroid and spectral flatness measures.

2.5 Measure of Variability

The variability of human repetition was measured by means of the quartile
coefficient of dispersion (QCD), a relative and dimensionless measure of variation
[23]. First, the inter-quartile range (iqr = Q3 - Q1) and median parameter values
were derived for individual audio samples by time-varying, frame-based analysis
methods in the Timbre Toolbox [22]. Secondly, QCD quantified the quartile
deviation (= iqr/2) as a percentage of the median,

QCD =
iqr

2
×

100

median
, (1)

such that a stable parameter results in a low QCD value (close to zero). Con-
versely, a large QCD value implies a high degree of variability.

3 Illustrative Examples

Variation arising from alterations in recording strategy (§ 3.1) and from perfor-
mance iteration (§ 3.2) are illustrated in this section with perceptually-correlated
parameters addressing spectro-temporal variation and periodicity.

3.1 Recording Strategy

Figure 1 displays the spectral centroid median of the Short-Term Fourier Trans-
form (STFT) power spectrum (squared amplitude) for a single pitch, A3, played
with standard bowing technique at six different positions on the instrument.
The mean and standard error of the median parameter are displayed across six
performance iterations at each of the four microphone positions. A closely re-
lated value, the spectral centroid mean has been previously correlated with the
‘brightness’ of a given sound [24]. The open string (string 2) could thus be said to
have had a ‘brighter’ timbre than the stopped strings (strings 3–7), independent
of the microphone used. A paired-samples t-test, with Bonferroni corrections for
two comparisons, revealed an effect of microphone placement for the Neumann
microphone pair, with t(35) = 16.64 and p < 0.001. However, the DPA micro-
phones produced statistically indistinguishable spectral centroid median values
irrespective of the string under which they were positioned (p = 0.16). It ap-
pears from figure 1 that the ‘close’ Neumann microphone resulted in centroid
measures approximating those recorded by the DPAs for the higher numbered
strings. The ‘far’ microphone, however, resulted in higher centroid values, ex-
hibiting colouration of the sound attributable to the room position.
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Fig. 1. Mean and standard error of six performance iterations for standard bowing of
the pitch A3 played on strings 2 to 7, as captured by the spectral centroid median of
the Short-Term Fourier Transform power spectrum. The open string (2) showed a high
centre of gravity, especially when recorded by the DPAs. For the stopped strings (3–7)
the three ‘close’ microphones recorded lower values than the ‘far’ Neumann microphone.

3.2 Performance Iteration

The following analysis incorporates data from the three ‘close’ recording strate-
gies, using the on- and off-instrument microphone positions that are frequently
encountered in performance (cf. § 2.2). Figure 2 presents a range of performance
techniques for the pitch A3, ranked according to their variability, QCD, derived
from the spectral flatness of the STFT power spectrum. The spectral flatness
measure approaches 1 for ‘noisy’ timbres (with characteristically flat spectra)
and 0 for ‘peaky’ spectra comprising sinusoidal (tonal) components [22]. Here,
it is not the flatness parameter value that is of primary interest, but rather its
consistency through time (in a series of consecutive frames). When the balance
of noisy and tonal components alters throughout the duration of the audio file
(and a larger iqr results for a given median value), the QCD increases. Figure 2
clearly shows that the four extended techniques (ranking 1–4) were measured
as being inherently unstable in comparison to the standard bowing techniques
(ranking 5–10). Though extended techniques are often reported to be difficult
for a player to reproduce consistently, the variability recorded in this data was
in fact similar to that of standard bowing on the open string (the error bars are
of comparable size).

4 Discussion

To better understand the reproducibility of timbral variation on an instrument,
two perceptually-correlated parameters were selected from the Timbre Toolbox
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Fig. 2. Ten techniques ranked according to their quartile coefficient of dispersion
(QCD) derived from the spectral flatness of the Short-Term Fourier Transform power
spectrum. Extended techniques (shaded) were unstable and resulted in high QCD

scores (col legno tratto – with the wood of the bow (notched from previous use); anoma-

lous low frequencies – frequencies below the fundamental of the string (subharmonics);
sul ponticello – bowing at the bridge; sul tasto – bowing over the fingerboard). The stan-
dard bowing techniques (unshaded) were more stable in their spectral flatness measure
throughout the full duration of the sound, and achieved lower QCD scores.

[22] and used to quantify variation attributable to the microphone setup and
to human reproducibility for a range of normal and extended performance tech-
niques. For standard bowing techniques, close microphone positions produced
similar numerical values for the spectral centroid (median), irrespective of the
microphone type or location (§ 3.1). However, this measure did not describe the
stability of this centroid over time. When the spectral flatness parameter varia-
tion was additionally tracked throughout the duration of the sound (using iqr)
and incorporated in a dispersion measurement to assess iterative consistency,
extended bowing techniques were found to contain more inherent variation than
normal bowing (§ 3.2).

Much work has been done in recent years to extract control parameters from
audio signals in live performance. Simple parameters with small computational
loads were typically favoured (e.g., pitch, duration and mean amplitude [1]; pitch,
amplitude, and ‘roughness’ [4]). At times, richer feature sets and more sophis-
ticated approaches have been implemented (e.g., a dynamic performance state
vector approach using instrument-appropriate features [2]; hidden Markov mod-
els with spectral, pitch strength and textural features [3]). However, it appears in
all these works that signal variability arising from a change of room, microphone
or performance iteration was considered either negligible or irrelevant.

Our current work involves recording the complete technique set with one
performer, and will widen to include additional performers, violas da gamba, and
acoustic spaces. The resulting dataset will allow study of the variation inherent
in extended techniques, and may eventually inform improvements in machine
listening algorithms to increase their reliability on stage.
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