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This report describes the identification of a nonlinear difference

INTRODUCTION

T

b

equation model of a 6996 bhp 12 cylinder industrial diesel generator.
The analysis of the data, recorded from experimental trials on the
diesel generator, is initially pursued assuming that the relationship

\
between the input (rack position) and the output (engihe torque) are
linearly related. As the analysis proceeds this assumption is shown to
be in error and nonlinear terms are introduced into the model represen-
tation. The inclusion of nonlinear terms in the model is shown to provide
a representative model of the diesel generator which fits the available
data wgll and which is shown to produce accurate predictions of the
system output response over a different data set.

The report begins with a brief description of the nonlinear identifi-
cation and structure detection techniques which are used in the analysis.
This is followed in Section 3.1 with a description of the raw data set.

A summary of the linear analysis and results is given in Section 3.2 and
this is followed by a detailed description of the nonlinear identification
and the final model.

IDENTIFICATION TECHNIQUES FOR NONLINEAR SYSTEMS

There are basically three distinct approaches to the identification
of nonlineaxr systemsl and these are based on functional series methodsl,
block structured system52 and parameter estimation methods applied to
differential or aifference equation models4'5. Each of the three
approaches has distinct features and characteristics which arise
largely from the mathematical description which is used to characterise
the system rather than the method of identification which is applied.
Exhaustive surveys and descriptions of the algorithms which have been
developed for these three categories of system description can be

1'2'4'5. The practicalities of the methods can

found in the literature
however be judged by considering the identification of a simple non-

linear system consisting of a linear dynamic subsystem in cascade with
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a staticnonlinearity. Identification of this system using functional
séries methods would require the estimation of at least 500 and
possibly many more parameters, or typically 40 parameters using a
block structured algorithm. In comparison estimation of typically
less than 10 parameters in a nonlinear difference equation model
would be adequate. It is largely for these reasons together with

the fact that difference equation models often arise naturally from
physical and chemical laws that these models will be used as the
basis fof the identification of the diesel generator.

Testing for Nonlinearities

Before nonlinear identification routines are applied the
experimenter should attempt to determine if the process under test
exhibits nonlinear characteristics which warrant a nonlinear model3.
Whenever the input u(t) + b, u(t) = O, b # O is applied to a system,
the system cannot be linear if ;;723 5 ;TE} where §;TE} and ;TET-are
the mean levels of the system output for the inputs b(i.e. u(t) = 0
and u(t)+b respectively. Alternatively, if the third order moments
of the input are zero {i.e. E(u(t)u(t+fl)u(t+T2))=O\#Tl,12]'and all

even order moments exist (i.e., sine wave, gaussian, ternary sequence

: 3
etc) then the process is linear iff

) ég) = n[y'(t+c)(y%t))2] = O‘%F o] (1)
vy

where the dash indicates that the mean level has been subtracted
The test will distinguish between additive noise corruption of the
measurements and distortion due to nonlinear effects providing the
input and noise are independent.

Parameter estimation based on the NARMAX model

If the system is linear then it is finitely realizable and can

be represented by the linear difference equation model
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y(t) = J (ay(t-i)) + J (b,u(t-i)) (2)
. 1 y . 1
i=1 =1
if the Hankel matrix of the system has finite rank. When the system
is nonlinear a similar representaion can be derived by considering
the observability of nonlinear systems and utilizing results from

automata theory to yield the nonlinear difference equation model4'5'6

%*
y(t) = F [y(t—l),...y(t—ny) ,y(t—l),...u(t—nu)] (3)

where F*[i] is some nonlinear function of u(-) and y(-).the extension
to multivariable systems and conditions for the existence of such a
model are rigorously defined elsewhere?. The Hammerstein, Wiener,
bilinear, Volterra and other well known nonlinear models can be shown
to be special cases of equation (3).

A similar representation for nonlinear stochastic systems can be
derived by considering input-output maps based on conditional proba-

bility density functions to yield the model5

z(t) = F[z(t-1),...z(t-n_), u(t-1),...ult-n_),
z u
€(t-1}...e(t-n)] + e(t) (4)
where g(t) is the prediction error. This model will be referred to as
a Nonlinear AutoRegressive Moving Average model with eXogenous inputs
4 .
or NARMAX model”’°7®

A NARMAX model with first order dynamics expanded as a second

order polynomial nonlinearity would for example be represented as

H]

y(t) = F,[y(t-1u(t-1)]

It

2
CIY(L—l) + Czu(t-l) + Clly {£=1) + Clzy(t—l)u(t—l)

2
+ C22u (t-1) (5)

Assuming that the output measurements are corrupted by additive noise



z(t) = yt) + e(t) (6)
gives the input-output model

2
z(t) = Clz(t-l)+C2u(t—l)+C lz (t—l)+Clzz(t—1)u(t—l)

1

2
+ C22u (t—l)+e(t)~Cle(t—l)—ZCIlz(t—l)e(t—l)

+ Cllez(t—l)aclze(t-l)u(t~l) (7)
Because the NARMAX model maps the past input and output into the
present output multiplicative noise terms are induced in the model
even though the noise was additive at the output. In general the
noise may enter the sysfem internally and because the system is non-
linear it will not always be possible to translate this to be addi-
tive;at the output. This situation will again result in multiplicative
noise texms in the NARMAX model with the added complication that the
noise source and prediction error will not in general be equal. Since
most of the parameter estimation techniques derived for linear systems
assume that the noise is independent of the input, biased estimates
result when they are applied to nonlinear systems equation (4).
The recursive extended least squares (RELS) algorithm can

however be readily adapted to the NARMAX model, by defining the
following vectors

() =[z(t~1),u(t-1),zz(t—l),z(t—l)u(t~1),u2(t—1),s(t—l),

E(.t—l)z(t—l),u(t—l)a(t—l),sz(t--l):[T

8 = [c,.C,...c]”

e(t+l) = z(t+1) - Q(t+1) 76 (t) (8)
for the model of equation (7) for example. With these definitions
the standard RELS algqrithm7 can be applied to yield unbiased parameter
estimates. The development of a recursive maximum likelihood algorithm
(RML) is more involved and requires a complete derivation by working
Backwards from known conditions of convergenceS. The major disadvantage

of both these algorithms when applied to nonlinear systems is the need
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to include prediction error terms in the estimation vector. It can

be shown that instrumental variables (RIV) will yield unbiased

estimates providing the noise terms in the NARMAX model can be represented

as a purely linear mapa. This restriction can be widened slightly by
employing a new suboptimal least squares (SOLS) routine8 based on the
model

z(t) = F' [y (t-1),. ..§(t—ny) ;ult-1) .. ult-n )]+ (8) (9)
where §(t—l) represents fhe predicted output. The algorithm will yield
unbiased estimates whenever the noise is additive at the output.

The direct application of a maximum likelihood algorithm is not
possible because in general the prediction errors will not have a
Gaussian distribution. However, by considering the loss function

N
Jg(e) = %ﬁ-log det Z E{t;@)E(t;B)T (10)
® t=1
it can be shown that the prediction error estimates obtained by
minimising equation (10) have very similar asymptotic properties to
the maximum likelihood estimates even when e£(t) is non—gaussian7.
A prediction error algorithm has been developed for the NARMAX model
based on this result. This together with the RELS, RML, RIV and SOLS
routines have been augmented with a stepwise regression algorithm,
a likelihood ratio test and Akaike tests to detect the correct model
structure prior to final estimation.

Model Validity Tests

Whichever model formulation or identification algorithm is imp-
lemented it is important to test that the identified model does ade-
quately describe the data set3° When the system is nonlinear the
residuals £(k) should be unpredictable from all linear and nonlinear

combinations of past inputs and outputs and this condition will hold

LEE



¢gg('l.') = 6§ (T)
d?_uE(T) =0 ¥ T (11)
g ™) = E[E(£)E (t-1-Tu(t-1-1)] =o¥ T > 0

Notice that for nonlinear systems the traditional linear tests

(<) and ¢ _(-) are not sufficient.

ug

If RIV and SOLS are used the residuals may be coloured and

Yee

specific tests which determine if the process model is correct without
testing the whiteness of the residuals are required. It can be shown
that models estimated using RIV or SOLS will be unbiased iff8

b 2201) =0N T
u

£
¢u2‘g(fi?) =0 ¥ 1 (12)
¢u€(T) =0 4 1
In equation (12) ¢u2%(1) and ﬁug(T) simply indicate that the neglected
terms are either ewven or odd. Although ¢u£§2(T) should contain all

) 27 2
the relevant information sometimes u (t) and & (t) are small and the

correlation ¢u2'€2(f) may incorrectly appear insignificant. Computation
of ¢ 2%2(1) and ¢UE(T) is therefore worthwhile and often detects this

a
latter condition.

IDENTIFICATION OF THE DIESEL GENERATOR

The Data Set

The data which will be used throughout this analysis was supplied
as files TESTAS and TESTA6. Because the raw sampling intexrval At =
Smsecs was found to be too small the data on these two files was deci-
mated by retaining only every one hundredth point. The sampling rate
of the data used in the analysis is therefore 100At = 0.5 secs. The
decimated data is stored on files TEST6A.DTA and TESTS5A.DTA, and these
are illustrated on Figs. 1 and 2 respectively. The input sequence
which represents rack position and the output sequence which represents

engine torgue are plotted in the units of the original data. Apart
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from the.truncation of the data sets at the end of the tests the raw
data in Figs. 1, 2 will be used throughout the following analysis.
Unless stated otherwise TEST6A.DTA will be used to estimate -all the
models and TESTS5A.DTA will be used as a prediction or testing set.

Linear Analysis

The initial analysis of the data in TEST6A.DTA involved the
application of the correlation test for nonlinear detection described
in section 2.1, equation 1. Although ¢Y,y,2(o) was found to have a
large positive value further analysis revealed that the third order
moments of the input;

N

i
k. k = N u(i)u(i-k. Ju(i-k k. = 0,1 m;k_=0,1 ;.
¢uuu( il 2) / _y (i)ul l} ( 2)’ 1 s T !

were outside the 95% confidence limits of # 1.96 4N , and consequently
the conditions under which the test was defined to operate were
violated. Interpretation of the results from this test were therefore
indeterminable and the analysis proceeded assuming initially that the
input and output are related linearly.

Extensive preliminary analysis of the data in file TEST6A.DTA
involved estimating the coefficients in linear models of varying order
(m=1,2,3) and with various time delays (k=0,1,2) computing the loss
function (or sum of sguared residuals) and analysing the residuals.

The results clearly indicated that there was no significant time
delay between the system input and cutput and that a first order dynamic
model appeared to be appropriate. 2Analysis of the data in TEST5A.DTA
produced comparable results confirming the walidity of the procedures
used and the time invariance of the model relating to the data in
TEST5A,.DTA and TEST6A.DTA.

The estimated first order (m=1) linear dynamic models with wvarious

noisemodel orders are summarised in Table 1 for the model



z(t) = y+0z(t-1) + eu(t—1)+>€(t)+§1€(t-1)+52 e(t-2)
+63e(t—3)+54€(t—4)+65e(t—S) (13)
coeff ‘
Y o B 8, 8, 85 8y 65

-50.6 0.286 13.23 0.3401
-54.08| 0.2361| 14.19 0.3916 0.0504
-37.91| 0.4698| 9.909 0.139 -0.1704 -0.2782
-50.37( 0.2935]| 13.18 0.2758 ~0.1176 -0.2242 -0.2105

~50.89| 0.2887| 13.3 0.282 ~-0.09474 | -0.2826 -0.2328 | -0.3382

Table 1 LINEAR ANALYSIS OF TEST6A . DTA
All the estimates were obtained using a maximum likelihood/

prediction error algorithm. Inspection of Table 1 shows that the coeffi-
cients of the process model (y,a,B) vary widely depending on the order
of the noise model. This is quite normal and suggests that the estimates
of the process model are biased when a low order noise model is used.
Note that the coefficients associated with the models using a fourth and
fifth order noise model are very similar. A detailed statistical com—
parison of the models in Table 1 indicated that the model with a noise
model order of five
z(t) = -50.89+0.2887z (t-1)+13.3nlt-1)+ &(t)

+0.282 e(t-1) - 0.09474 ¢(t-2) - 0.2826 ¢(t-3)

~0.2328¢e(t-4) - 0.3382¢(t~5) (14)
was a good fit to the data. The parameter estimation results for this
model are summarised in Fig. 3. The cross-correlation function between
the input and the residuals ¢ug<T} is within the confidence limits whilst
the autocorrelation of the residuals ¢ (1) indicates that the residuals

EE

are white except for the outsiders between lags six and ten. If the
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approximate 95% confidence intervals at * 1.96VN were plotted accurately
they would bell out away from the axis for increasing t and the offénding
points in ¢EE(T) would probably be marginally inside the confidence
bands. Various modifications and additions to the model failed to improve
¢€g(T) and consequently equation (14) can be regarded as the best linear
model.

Normally the analysis would be complete at this point since the
traditional linear covariance tests ¢£E(T) and ¢u£(T) in Fig. 3 indicate
that the linear model is adequate. However, the nonlinear model validity
tests equations (11) and (12) which are illustrated in Fig. 3 suggest that
nonlinéar terms have been omitted from the model. This is indicated

clearly by ¢u2' T), in Fig. 3, which is well outside the confidence

(
E
limits, and to a much lesser extent by ¢€ u(r). The effects of intro-

E

ducing nonlinearities into the model were therefore investigated.

Nonlinear Analysis
A prediction error estimation algorithm coupled with a stepwise
regression procedure was used to estimate the coefficients in the non-
lineaxr models starting with an initial specification of:-
maximum number of lagged outputs = 2

2

" v - " inputs
maximum polynomial order of z(l) and u(l) = 3
maximum polynomial order of prediction errors = 2
With this initial specification the total number of possible terms in
the model was forty-eight. BAllowing the stepwise regression algorithm
to sort through all the possible terms using a Fisher F-ratio test
operating with 95% confidence bounds produced the following model
z(t) = -6.482 + 1.015z (t-1) - 0.1688z(t-2)u(t-1)
+ 0.06466z (t-2)u(t-2) + 0.1430u3(t—l)

+ ¢f{t) ~ 0.01202z (t-2)e (t-1) {(15)
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A summary of the identification results for this model are illustrated
in Fig. 4. A comparison with the linear results in Fig. 3 reveals that

3

u(r) is now unacceptable.

although ¢ E(T) and ¢u£(r} remain almost unchanged, ¢u2' (1) has now been
reduced to be within the confidence band but ¢E£
One possible reason for this may be that the model in equation (15)
only contains one noise term 0.01202z(t-2) g(t-1) whereas it was shown
in the linear analysis that a fifth order linear noise model was approp-
riate. Additional linear noise terms were therefore included in the
nonlinear model to give
z(t) = -6.827+1.079z (t-~1) - 0.1229z(t-2)u(t-1)

+0.01527z (t-2)u(t-2) + 0,137u3(t—l)

+e (t) =0.6633¢(t-1) + 0.01303¢(t-2)

- 0.01229 (t~3) - 0.01824¢ (t=4) + 0.01663¢ (t-5) (16)
Restrictions within the program made it impossible to include the noise
cross product term z(t-2)e(t~1l) which appeared in the model of equation
(15). The estimation results associated with the model in equation (16)
are illustrated in Fig. 5. The model wvalidity tests indicate an improved

g

lies on the boundary of the confidence limits for t > 5. 1In an attempt

fit to the data with ¢£Eu(r) within the confidence bands but ¢u2' (1)

to improve this situation a term u(t-1) which appeared in the linear
model was forced into the nonlinear model of equation (16) to give
z(t) = 4.024+1.278z(t~1)~3.107u(t~1)

0.1367z (t-2)u(t-1)+0.01357z (t-2) u(t-2)

0.1532u3(t—l)+€(t)-0.874l€(t—1)

&

0.02¢ (t~2)+0.0525¢ (t-3) +0.03186¢ (t-4)

-+

0.0622¢ (t-5) (17)

B
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The estimation results for this model are summarised in Fig. 6. A comparison
with Fig. 5 clearly shows that the model validity tests have been improved
and the model in equation (17) is therefore unbiased and provides an
accurate representation of the data in file TEST6A.DTA.

To provide a final test on the adequacy of the model in equation (17)
the 650 data pairs in TEST6A.DTA were augmented with 450 points from the
data file TEST5A.DTA. This gave a combined data file of length 1000 data
pairs, and this was used to test the invariance of the model over a dif-
ferent data set. The results are summarised in Fig. 7.

The first 650 data points in this file (from TEST6A.DTA) can be
regarded as an estimation set and the last 450 points (from TEST5A.DTA)
can be considered as a testing or prediction set. The nonlinear model
was estimted using just the first 650 data pairs or the estimation set
and is therefore equal to the model in equation (17). This model was
then used to predict the output over the whole data set and the deter-
ministic errors and residuals were computed over this range. The model
validity tests illustrated in Fig. 7 clearly show that the prediction
of the model over the testing set, file TESTS5A.DTA is excellent.
Application of the model validity tests over the prediction and testing
set (Fig. 7) is a severe test and the satisfactory results obtained adds
a great deal of confidence to the results and indicates that the model
adequately represents the data set.

The noise or prediction error terms in the model equation (17) are
only included to ensure that the estimates of the process parameters are
unbiased. These terms fepresent noise induced on the measurements from
whatever source. From equation (17) therefore the model which represents

the diesel generator can be expressed as
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z(t) = 4,024+1.278z (t-1)-3.107u(t-1)-0.1367z(t-2)u(t-1)
+ 0.01357z(t~2)u(t—2)+0.1532u3(t—1) (18)

As a final check on the model of equation (18) the mean of the

output z(t) was computed about the operating point of the input u(t)=
5.962. The mean E?Eh computed from the estimated model equation (18)
was found to be 39.3915 and this compares well with a mean of 39.97
computed from the raw data.

DISCUSSION OF RESULTS -

Thg estimated model equation (18) has been shown to provide a
good ‘description of the data set. The model cannot however be expected
to predict effects which have not been excited by the input sequence.

It is difficult to assess the effectiveness of the input excitation in
TEST6A,DTA or TESTS5A.DTA without further expgrimentation on the plant.
Whenever possible the input signal chosen for an identification experiment
should be persistently exciting. This means that the input should excite
all the frequencies of interest in the system and if fhe process is non-
linear the input should also excite the process over the whole amplitude
range of operation of the process. The design of inputs for nonlinear
systems is as yet an unsolved problem but we would recommend the use of
inputs similar to that illustrated in Fig. 8.

In Fig. 8 the operating point is changed in steps over the amplitude
range of interest and sgperimposed on these levels is a uniformly dis-
tributed or similar signal which has a bandwidth sufficient to excite all
the modes of the dynamic subsystems within the plant. Alternatively,
the uniformly distribuﬁed signal could be superimposed on a sawtooth
waveform or sine wave etc.

Inputs such as pure sine waves are useful when applying the structure
detection test-¢yly,26r) but should not be used as the only basis for

parameter estimation. Pseudo-random binary inputs, although excellent

for linear systems, are usually totally inappropriate as inputs for
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nonlinear systems. This can be proved mathematically but is probably
best illustrated using the simple nonlinear system illustrated in
Fig. 9.

If the input to the system in Fig. 9 is a prbs sequence, identifi-
cation of a model relating the input u(t) and output y(t) will incor-
rectly yield a linear model. This problem arises because the probability
density function of a prbs is discontinuous, so that the prbs only
excites the nonlinearity at the amplitudes +a and -a. The application
of parameter estimation routines to the input/output data therefore
effectively models the nonlinear block as a linear gain element.
Consequently, the estimated model may fit the recorded data adequately
but it is totally incorrect and does not represent the underlying process.

CONCLUSIONS

The estimated model given in equation (18) has been shown to fit
the data in TEST6A.DTA adequately and to provide good prediction over
the data set TEST5A.DTA. Providing the input data contained in these
files can be regarded as a sufficiently exciting input over both the
amplitude and frequency range of operation of the generator then the
model should be an adequate mathematical representation of the system
which can be used for both simulation and controller design studies.
If the input data is not considered to be persistently exciting the
model should be regarded only as representative of the system over the
range of inputs for which it has been fitted. Further experimentation
would then be required to tune the parameters and structure of the

model to adequately describe the process over its total operating range.
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FIGURE 5 Nonlinear model estimation results
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FIGURE 6 Final nonlinear model estimation results
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