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Chiral electron-vortex beams, carrying a well-defined orbital angular momentum (OAM) about the propagation

axis, are potentially useful as probes of magnetic and other chiral materials. We present an effective operator,

expressible in a multipolar form, describing the inelastic processes in which electron-vortex beams interact with

atoms, including those present in Bose-Einstein condensates, involving exchange of OAM. We show clearly that

the key properties of the processes are dependent on the dynamical state and location of the atoms involved as

well as the vortex-beam characteristics. Our results can be used to identify scenarios in which chiral-specific

electron-vortex spectroscopy can probe magnetic sublevel transitions normally studied using circularly polarized

photon beams with the advantage of atomic-scale spatial resolution.

DOI: 10.1103/PhysRevA.88.031801 PACS number(s): 41.75.Fr, 42.50.Tx, 34.80.−i, 78.20.Ls

Particle vortices, most notably electron vortices (EVs), are

currently the focus of much interest following the prediction

by Bliokh et al. [1] and their experimental realization in a

number of laboratories, using various techniques [2–7]. This

area recently emerged after much fruitful research was carried

out on optical vortices (OVs) over the last two decades or

so, which led to a wealth of fundamental knowledge and

significant applications [8–10]. Both optical and electron

vortices are characterized by the singular nature of their wave

fronts, with a well-defined vortex core and quantized orbital

angular momentum (OAM) about the vortex axis. The general

expectation is that in all cases the vortex OAM should play an

important role in the interaction of the vortex with matter. How-

ever, in the case of an OV, a dipole active transition involves

exchange of OAM with the center of mass only [11,12], a

finding which has been confirmed experimentally [13,14]. The

development of OAM-based OV-beam spectroscopy has been

hampered by the weakness of optical multipolar transitions.

In contrast, we have recently demonstrated theoretically that

OAM can be transferred efficiently from an EV beam to

atomic electrons through dipole active transitions [12,15] and

experimentally a dichroic electron energy-loss spectroscopic

signal has been detected [3], opening up the prospect of

chiral-specific electron-vortex-beam spectroscopy (CEVBS)

based on OAM selection rules. Using an analytical method, we

present an effective operator in the context of OAM transitions

in quantum systems using electron-vortex beams. This is

important for the realization of CEVBS because it allows the

derivation of the key OAM- and chiral-related characteristics,

going beyond the derivation of the dipole OAM selection

rules to also include a multipolar expansion and the spatial

dependence of the quantum transitions involved. The results

suggest that a confocal spectroscopy setup could be used to

obtain optical activity or x-ray circular dichroic spectroscopy

at atomic resolution, for characterization of chiral or magnetic

materials and for the determination of the coherent state of a

cold-atom condensate.

The leading interaction between the EV and an atom

possessing Z electrons is given by the Coulomb interaction

*jun.yuan@york.ac.uk

Hamiltonian

Ĥint = −
Ze2

4πǫ0|rv − R|
+

Z
∑

j=1

e2

4πǫ0|rv − rj |
, (1)

where rv , rj , and R are the position vectors, respectively, of

the beam electron, the j th atomic electron, and the nucleus,

all expressed relative to the laboratory frame of reference.

The transition matrix element between states of the combined

atom-vortex system can be written as Mf i = 〈F |Ĥint|I 〉,
where |I 〉 and |F 〉 are, respectively, the initial and final

unperturbed quantum states of the overall system, being

products of unperturbed quantum states of the EV and those

of the atom: |ψEV〉|ψatom〉. In the present case the atomic

quantum state can be taken as a product of the quantum

state of its nucleus, here taken to also be characterized by

the center of mass of the atom, and that describing the

internal electronic state relative to the center of mass R, i.e.,

|ψatom〉 = |ψc.m.(R)〉|ψq(r1, . . . ,rj , . . . ,rZ)〉.
We will focus on Bessel EV beams with the beam axis along

the z direction in cylindrical polar coordinates (ρv,φv,zv),

|ψEV〉 = |k⊥,l,kz〉lab =
√

k⊥

2π
Jl(k⊥ρv)eilφv+ikzzv+iωt , (2)

where k⊥ and kz are the transverse and longitudinal com-

ponents of the wave vector of the vortex beam such that

k2
⊥ + k2

z = k2 = 2mE

h̄2 , with E the beam energy, and Jl(k⊥ρv)

is the lth-order Bessel function. Since Bessel EV states of

winding number l are eigenstates of the Schrödinger equation,

our treatment can be generalized to any EV beam which can

be expressed as a linear expansion of the EV Bessel basis set.

CEVBS is concerned with processes in which an incident

EV mode |k⊥,l,kz〉lab is scattered by the atom into an outgoing

EV mode |k′
⊥,l′,k′

z〉lab, with the atom undergoing a quantum

transition between its internal eigenstates. The treatment can

be readily extended to more general vortex beams since such

beams can be represented by a linear combination of the

Bessel basis modes discussed here. As a simplification, we

shall initially assume that the scattering process does not alter

the state of the atomic center of mass.

In analogy with light interacting with the atom, the

transition matrix element for an EV interacting with the atom

031801-11050-2947/2013/88(3)/031801(5) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.88.031801


RAPID COMMUNICATIONS

J. YUAN, S. M. LLOYD, AND M. BABIKER PHYSICAL REVIEW A 88, 031801(R) (2013)

may be reduced to the following form [16]:

Mf i =
e2

4πǫ0

∑

j

〈f |Ôl,l′

j |i〉, (3)

where |i〉 and |f 〉 are the initial and final states of the atom.

For convenience, we define an F function as

Fm,n
α (k,k′) = Jm(k⊥ρα)Jn(k′

⊥ρα)ei(m−n)φα . (4)

where m and n are integers and α specifies the in-plane vector

concerned in terms of its coordinates, ρα and φα . The effective

operator Ô
l,l′

j , acting on a single electron, then emerges in the

form

Ô
l,l′

j =
√

k⊥k′
⊥

4π2

∫ ∞

−∞

F l,l′

v ei(kz−k′
z)zv

|rv − rj |
d3rv, (5)

Note that the first term in Eq. (1) does not contribute to the

matrix element by virtue of the orthogonality of the initial and

final atomic states |i〉 and |f 〉.
The chief difficulty in the evaluation of the effective opera-

tor for the vortex-beam–atom interaction in Eq. (5) stems from

the fact that the vortex state function is conveniently expressed

in terms of the laboratory frame, while the internal atomic

states are customarily expressed in spherical coordinates in

a frame of reference centered on the atomic center-of-mass

of coordinate R. To overcome this difficulty, the addition

theorem of Bessel functions [17] can be utilized to represent

the original EV beam of mode l as a sum of other vortex states

relative to a shifted frame of reference centered on the atomic

center-of-mass coordinate R. The addition theorem reads

Jμ(a) = e−iμθ

∞
∑

ν=−∞
Jμ+ν(b)Jν(c)eiνϕ, (6)

where a, b, and c are three sides of a triangle, and θ and ϕ the

internal angles between sides a and b, and b and c, respectively.

Applying this to the triangle formed by the position vectors

of the vortex, nucleus, and atomic electron, we identify

rc(ρc,φc,zc)(=rv − R) as the position vector describing the

vortex electron relative to the center of mass, and after some

further algebraic manipulation, we find

Jl(k⊥ρv) = e−ilφv

∞
∑

p=−∞
Jl−p(k⊥ρR)Jp(k⊥ρc)ei(l−p)φReipφc .

(7)

As expected, the above expansion indicates that the only

vortex mode relative to the center of mass present for an atom

located on the beam axis is that for which p = l [because only

J0(ρR = 0) �= 0]. However, for an atom not situated on the

beam axis, the strength of the atom-centered vortex modes with

p = l + 1 and p = l − 1 also become significant when the

atom is positioned at radial distances of the order of a fraction

of
αl,1

k⊥
≈ 0.1nm, where αl,1 is the first zero of the lth-order

Bessel function, i.e., within the first ring of the vortex beam.

Thus the immediate consequence of the shift of the axis is

the importance of vortex modes of winding numbers different

from l, relative to the atomic center-of-mass frame [18,19].

This mode broadening effect, well known in OV research, is

a manifestation of the extrinsic property of the orbital angular

momentum of vortex beams [20].

Applying the shifted wave functions of Eq. (7), the effective

operator Ôl,l′ (the subscript j will henceforth be dropped)

relative to the atomic frame can be written as

Ô
l,l′ =

√

k⊥k′
⊥e−i(kz−k′

z)zR

2π

∞
∑

p,p′=−∞

F
l−p,l′−p′

R Ip,p′

c , (8)

where

Ip,p′

c =
∫

F
p,p′

c ei(kz−k′
z)zc

|rq − rc|
d3rc, (9)

with rq(ρq,θq ,φq) = rj − R, being the internal electronic

coordinate about the atomic center. We have also isolated the

center-of-mass factor FR , relative to the atomic frame, from

the integral Ic relevant to coupling with the atomic electronic

states.

To express the matrix element in terms of multipolar

contributions, the effective operator needs to be expanded in

powers of rq . This can be achieved by invoking the addition

theorem for Bessel functions again in order to achieve a

separation of the dependence on the atomic electron position

variable (rq ) from that of the EV (rc). This is conveniently done

by introducing a relative position vector s = rc − rq . After

some algebraic manipulation, the integral can be written as

Ip,p′

c =
∞

∑

u,u′=−∞

F p−u,p′−u′

q I u,u′

s , (10)

where I u,u′

s is given by

I u,u′

s =
∫

d3rs

Ju(k⊥ρs)Ju′(k′
⊥ρs)e

i(u−u′)φs ei(kz−k′
z)zs

(ρ2
s + z2

s )1/2
. (11)

The integral I u,u′

s can be evaluated by expressing each Bessel

function as a coherent superposition of plane waves with

the phase angle dependent on the topological charge [17].

The linear momentum transfer wave vector is defined

as Q(β) = kf − ki , where ki is the wave vector of the

plane-wave components of the incident Bessel beam, and

kf is that of the outgoing Bessel beam, with β = φ − φ′ the

relative azimuthal angle between ki and kf . The integral over

the vortex-beam spatial variables may now be evaluated as

the Fourier transform of the Coulomb potential, leading to the

conclusion that I u,u′

s = 0 for u �= u′ and for the case u = u′:

I u,u
s = I u

s =
1

√
2π3

∫ 2π

0

eiuβ

Q2(β)
dβ. (12)

We note that 1/Q2(β) is the familiar kinetic factor arising in

Coulomb scattering and is the chief reason for the importance

of dipole active transitions in electron-atom interaction.

The result for the effective operator of the electron-vortex

beam can now be determined by combining Eqs. (8), (10),

and (12):

Ô
l,l′ = Ô

z

√

k⊥k′
⊥

4π2

∞
∑

p,p′=−∞

∞
∑

u=−∞
F

l−p,l′−p′

R F p−u,p′−u
q I u

s ,

(13)

where Ôz = ei(kz−k′
z)(zR+zq ) is the effective operator for out-of-

plane excitations. Equation (13) allows a clear description of

the effect of the EV-beam expansion—contained in the FR
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factors—and its implications for the OAM transfer between

the EV and the atomic electron—contained in the Fq factors.

We illustrate this by considering the implications for chiral-

specific electron-vortex-beam spectroscopy.

Since the effective operator Ôl,l′ acts on the electronic states

only through terms containing components of rq , only the

terms involving Ôz and Fq are relevant. It is clear from the form

of Ôz that this factor has no chirality feature. On the other hand,

the term F
p−u,p′−u
q depends on the in-plane components of rq ,

and contains the phase factor ei(p−p′)φq which is important for

chiral-specific spectroscopy. This becomes clear if we consider

the simplest case of an atom located on the beam axis, in which

case ρR = 0. We then see that FR is nonzero only for p = l and

p′ = l′, so that the summation over p,p′ in Eq. (13) amounts

only to a single term with p = l and p′ = l′, and FR = 1.

Using the series expansion of the Bessel functions [17], the

simplified operator can then be written, in ascending powers

of ρq ,

Ô
l,l′ =

√

k⊥k′
⊥

2π
e−i(kz−k′

z)zq ×
[

I l
sδl,l′ + (A+1eiφq δl,l′+1

+A
−1e−iφq δl,l′−1)ρq + O

(

ρ2
q

)]

, (14)

with A±1 = 1
2
(±k⊥I l∓1

s ∓ k′
⊥I l

s ). Focusing on the dipole-

active atomic transition is equivalent to restricting CEVBS

to the limit in which the transverse wave vector of the beam is

small compared to the inverse size of the systems investigated,

a condition often observed in high-energy electron energy-loss

spectroscopy of atoms [21]. In such cases, the dipole terms

in Eq. (14), containing the factors ρqe
±iφq δl,l′±1 operating

on the atomic state, cause the magnetic quantum number

m of the electronic state to change by one as a result of

the transfer of one unit of OAM from or to the EV beam,

leading to the dipole selection rule l − l′ = −m + m′ = ±1.

It is reassuring that this is precisely the result obtained by

Lloyd et al. [12,15] using a completely different approach.

The analysis can be extended to higher powers of ρq , leading

to higher multipolar excitations and the associated selection

rules. This situation is depicted in Fig. 1(a). For l = 0, we have

A+1 = −A−1∗
. Thus, besides the phase factor, the effective

dichroic operator for a vortex beam interacting with an atom

is directly comparable to the operator associated with the

absorption and emission of either a right (+) or left (−)

handed photon, Ô± ∼ (ǫ̂ǫǫx ± iǫ̂ǫǫy) · rq = xq ± iyq = ρqe
±iφq

[12]. Because of this formal equivalence, our result is then

applicable to any quantum system. In this regard, CEVBS

is similar to electron energy loss magnetic chiral dichroism

(EMCD) [22] but would be much more practical because

only small-angle (i.e., small Q) scattering is required in

the vortex-beam case [Eq. (12)], so the signal-to-noise ratio

should be much improved. The case of CEVBS with an atom

located near the beam axis is achievable, for example, with

a confocal microscopic arrangement [23] adapted for OAM

filtered imaging Fig. 1(d), with atomic-scale imaging formed

by scanning the sample relative to the beam axis.

We can now address the physical meaning of the double

summation over p and p′ in Eq. (13) and the implications of

this for the chiral-specific spectroscopy of atoms located away

from the vortex-beam axis. The off-axis case is illustrated in

l

l -1 l +1l

incident 

vortex beam

vortex 

analyzer

atom/sample

measured

vortex 

output

Δm = 1

Δm = 1

Δm = -1

Δm = -1

Δl = -1 Δl = -1

Δl = 1 Δl = 1

ii

iii

i

iv

ρ
R

l

l -1 l+1lp :

l -1l -2 l l+1 l+2 l+3l’ :

z

p -1 p p+1 p+2p’ :

l

l -1 l l+1l’ :

(c)

(a) (b)

(d)

FIG. 1. (Color online) Exchange of OAM in an atom-vortex

interaction in the cases when the atom is situated (a) on the beam

axis and (b) off axis. In (a) the resulting l′ states relate directly to an

interaction in which l − l′ units of OAM are exchanged; however, it

is not possible to determine, for example, whether an interaction for

which l − l′ = 1 is due to a dipole interaction or a higher multipole. In

(b), the final states l′ arise due to a set of transitions in which varying

quantities of OAM are exchanged with the different p modes the atom

“sees.” (c) The spatial distribution of inelastic scattering signals for

the incident beam with l = 0 and the outgoing beams with l′ = ±1,

induced by dipole excitation of magnetic sublevels corresponding

�m = ±1. The images are calculated assuming a 200-keV electron

beam and the size of the image is 0.4 × 0.4 nm2, and k⊥ = 0.22 nm−1

and k′
⊥ = 0.11 nm−1. (d) A confocal arrangement of vortex beams

allowing localization of chiral signals from atoms located near the

beam axis.

Fig. 1(b). It can be seen that the features uncovered above

as regards OAM transfer from the EV to the atomic electron

still apply locally at the atom sites, except that now the vortex

states with which the off-axis atom interacts are characterized

by the winding number p, not l, and the outgoing states after

the electronic transition within the atom are characterized by

p′ rather than l′. This is the mode broadening effect of the

incoming and outgoing EV beams, as described by Eq. (7).

Since CEVBS is normally conducted with respect to the beam

axis, summed over atoms at various off-axis positions, the

spectral changes observed in different OAM components of

the outgoing EV beam in general cannot be exactly related to

the change in OAM of the atomic electronic system, as has

been assumed in the case of Ref. [3].

031801-3
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However, the radial profiles of the incident and outgoing

vortex beams can still be chosen to allow individual multipole

excitations in the atoms to be probed in such a general

case, aided with the knowledge of the effective operator

given in Eq. (13). To illustrate this point, we have taken the

simplest case of exciting an atomic magnetic sublevel dipole

transition using an incident Bessel electron beam of l = 0

and examining the probability of finding the outgoing Bessel

beams with l = ±1. The results are shown in Fig. 1(c). For

clarity of detail the images have been individually intensity

normalized. �m = ±1 refer to the change in the magnetic

quantum number induced in the atom. The probabilities of

inducing “allowed” dipole transitions (�m = −�l = ±1) are

seen to be strongly peaked at the atom center [Figs. 1(c)(i)

and 1(c)(iv)], which is located at the center of the images, with

the leading contribution of the order of |J0(k⊥ρR)J0(k′
⊥ρR)|2.

The probabilities of inducing ‘forbidden’ dipole transitions

(�m = �l = ±1) are, as expected, only significant for off-

axis atoms [Figs. 1(c)(ii) and 1(c)(iii)], with a much reduced

amplitude of the order of |J0(k⊥ρR)J2(k′
⊥ρR)|2 and a peak

intensity about 3% of the allowed intensity in our simulation.

The dominance of the allowed dipole transition for on-axis

atoms is due to the narrow radial extent of the incoming and

outgoing co-axial Bessel beams involved, a scenario that can

be approximated experimentally by the confocal arrangement

described in Fig. 1(d). More importantly, the allowed and

forbidden dipole transitions can be further discriminated

as their relative excitation probabilities can be adjusted by

varying k⊥ and k′
⊥. Higher multipole atomic transitions can

also contribute to the outgoing vortex beams, as indicated in

Fig. 1(b), but with reduced intensities because of Eq. (12). The

complementarity of the images from the l′ = 1 [Figs. 1(c)(i)

and 1(c)(ii)] and l′ = −1 [Figs. 1(c)(iii) and 1(c)(iv)] channels

is just an extension of the complementarity of A+1 and A−1

factors in Eq. (14) mentioned above.

Detailed knowledge of the effective operator from which the

matrix element can be derived can also be used to interpret the

general spectroscopic signal in terms of a linear combination

of dipole, quadrupole, and higher multipole contributions

with known prefactors, allowing each multipole contribution

to be recovered by statistical multivariate analysis of the

experimental datasets [24].

An interesting case is that of an atom whose center of

mass is in a pure OAM state, such as in a Bose-Einstein

condensate [25,26]. The OAM states of the atoms would then

contribute a factor ei(L−L′)φR within the matrix element and

we must integrate the factor FR with respect to the dynamical

variable φR:
∫ 2π

0

ei(l+L−p−l′−L′+p′)φRdφR. (15)

This gives rise to a selection rule for OAM transfer involving

the atomic center of mass such that �p − �L = �l. �p then

corresponds to the net OAM change induced in the atomic

system and so we recover the selection rules derived in [12,15].

We have indicated in [27] that the work by [19] is not equipped

to derive this selection rule as it misses the φR dependence in

the matrix element. One way to understand our result is to view

the azimuthally delocalized state of the atom as interacting

coherently with the vortex beam. The cold-atom gas has been

subjected to electron beams [28]; our result suggests that

CEVBS can be used as a test for determining whether the

atoms involved are in an OAM coherent state.

In summary, we have presented an analysis of OAM transfer

in inelastic atom-vortex interactions and derived the effective

operator exhibiting quantized OAM transfer via multipolar

excitations of the atom. We have demonstrated that the

simplistic interpretation [3] of dichroic spectroscopy based

on the equivalence of OAM change in the vortex beam to

the corresponding change in the atomic internal (electronic)

system is inappropriate without due consideration in specific

experimental situations of the possible mode broadening

effect. However, we have shown that the effect maybe

minimized so that nanoscale resolution chiral spectroscopy and

spectral imaging are feasible, either through the optimization

of the experimental setup or through statistical multivariate

analysis. We have also shown that dichroic spectroscopy

is equivalent to circular dichroism absorption and optical

circularly polarized microscopy including those with x rays.

This will allow magnetic materials, chiral metamaterials, or

other chiral molecules to be studied in real space and in high

resolution. In addition, our results can be used to test for

the coherence of cold-atom systems through the dependence

of the spectroscopic selection rules on the nature of the

center-of-mass dynamics of the atoms.
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