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Introduction

The companion paper (1) has deduced a transfer function model
describing the composition dynamics of tray-type binary distillation
columns analytically. It gave consideration to the effect of hydraulic
delay and predicted the dynamic behaviour of a more-or-less first order
lag nature.

Although that model was very tedious, the computed results showed that
the effect of the hydraulic factor was approximately equivalent to adding
a pare time lag unit into the model. Moreover, the Bode diagrams of the
elements of that transfer function matrix (T.F.M) showed that a betger way
to approximate this system was to use a first order lag unit in series with
a time lag.

In engineering design a complicated or unknown model is often reduced
to a first or second order lag in series with a pure time lag. So this
research has provided some support for it.

In this present investigation, which is a continuation of the préceding
companion paper (1), the dynamic behaviour of that transfer function model
is further analysed by both frequency and time domain techniques. The
inverse Nyquist loci and the numerical computing results further reveal their
dynamic behaviour to be of more or less first order-lag nature and moreover,

the
this behaviour is shown quantitatively by means of /feast Square Method
(L.S.M.).

A more exact transfer function model is deduced in the present research
by solving directly the difference equationswhich is the better way of
describing a tray-type distillation column because of its spatially discrete

nature in real life.

Frequency Domain Analysis

The transfer function matrix of the terminal compositions to the input

of terminal liquid and vapour flow rate has the form as follows(l):
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It is easty to prove from above results that when hydraulic delay T

equals to zero the following equalities are tenable:

¢2 =__¢3 and ¢4=_¢1'

This 1 = -G = - i i JFLUM.
is leads to G12 21 and G22 Gll and in this case the T.F.M. can

be reformed as a diagonal form, i.e.

Ql = GIFI
where
y - x' (v + &
o' = o] o P o= o %
y o+ x! v - 2 1
‘. [&] (@] (o]
G! !
G = il G12
] 1]
GZl G22
' = 0.5 + - G, -
Gy = 0-5(Gpy + Gy = Gyy = Gyl
G! = .5 (G — + G -
12 = 0:3(615 = Gy *Gyy = Gyy)
!
= 0.5 + G + +
GZl © (Gll 12 G21 G22)
1 = < - = +
G22 & 5(G12 Gll GZl G22)
rIrh lt = - — 1 — 1] i
e egqualities Gl2 G2l and G22 Gll lead to G12 G2l 3]

i.e. the T.F.M. (G') at ’I'2 = O is diagonal. In the general case, however
the hydraulic delay must be -involved and the T.F.M. (G') ceases to be

1 *
diagonal. In fact it is not even diagonally dominant. Let G = (G')

* *
By ploting the inverse Nyquist diagrams of the elements Gll and G22 of

*
the main diagonal of inverse matrix G , then superimposing on these diagrams

circles centred at each particular frequency value on these loci with

* *
radii equal to the IG12{m)| and |G21(m)| respectively, we can find (shown
in Fig, 3) that the band swept out by the circles on the locus of 652

(Fig, 3.2) contains the origin. This means the system denoted by G' is
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not to be diagonally dominant. Because only the liquid delay is involved,

the elements G12 and G which take bottom vapour flow as input are inde-

22

pendent of Tk'

" Inverse Nyquist Loci:

Tt was found from the Bode diagrams in the companion research (1) that
the composition-flow system denoted by T.F.M. (G) has very low corner fre-
guencies (wc 5_0.007*}. Furthermore if the vapour moler flow is set to be
v = 10 and the controller gain is Kc = 20 (this value is very big in prac-

E

tice) then under the conditions o = 1.1, T = 1.0, N = 10 and T2 = 0.2 (I
this case the composition gradient will be ¢ = 0.023), we can get the closed-

loop cut-off frequency by computing (w < 0.08). All these show the fact

cf
that this system (G) is a low-pass filter and therefore studying its low
frequency behaviour has more important significance. We choose the frequency
range from O to 0.2 which is wide enough.

From the inverse Nyquist loci (Fig. 1) of each element of G at the same
condition as above it can also be seen that they are all shaped like spirals

and the locus of the element G rotates more quickly than the others.

21
Therefore, just like the prediction from the Bode diagram as before, we

can conclude again from inverse Nyquist loci that the better way to approxi-
mate the complicated model is to use a first order lag unit in series with

a time lag, an@ that these time lags except for that of G21 are very small

in comparison with their time constants.

ILeast Square Analysis:

Using Least guare Method (Appendix 1) at low frequency under the con-

ditions o = 1,1 (¢ = 0.1), T=1.0, N = 10 and T2 = 0.2, we can get a set

*
All frequencies used in this research are the product of the true frequency
t and the stage residence time Tx whose value is from 5 to 30 sec. (4).



of first order lag models as follows:
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The complex correlation coefficients are very near to 1.0 (£ > 0.99) 1i.e.
the error is very small. In fact, the inverse Nyquist loci of these apﬁfoximate
models are very coincident with those of true models as shown in Fig. 1.
It can be seen from above results that the long distillation column
system is a slow process with large time constants and that the dead times

except for that of G are very small in comparison with the time constants

21
so that they can be neglected in practice. In fact these time lags are not
‘really existing, they are only the pseudo time lag used to reduce a high
order or other type of complicated model. Furthermore, the computing results
in different stage number and different hydraulic time constant show that the
dead time of the element G21 is in direct proportion to stage number N and
hydraplic time constant T£ p du@e PH= 2NT2. This is in accord with the
physical mechanism involved in which the reflux must pass through 2-N
stages to get to-the bottom of the column.

Fig. 4 shows the inverse Nyquist loci of element G21 in different
hydraulic time constant. TQ = 0.0, 0.2, 0.4 and 0.6 respectively. It can
be seen from this diagram that the phase angle difference 620 between the
locus of TE = 0.2 and that of TR = 0.0 is equal to the difference 842
between Tg = 0.4 and Tg = 0.2 at the same frequency w = 0.135 and so is
the difference 864 between TQ = 0.6 and TQ = 0.4. i.e. 820 = 842 = 864

2 20° and their magnitudes are roughly equal to one another. This further
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shows the time delay of element G to be directly proportional to hydraulic

21

time constant TR'

Taylor Series Expansion:

BAccording to the final walue theorem, the value of each element at
zero frequency (assume the input to be unit step) should be its steady state

gain which is independent of hydraulic delay.

2 2
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Now that the effect of hydraulic delay is equivalent to adding a time
lag into system [ﬁj and the dead time DT = 2NT, as above, we can first expand
each element of T.F.M as a first order lag (ignoring the hydraulic delay) at
low freguency then put a time lag into element G2l' Expanding the reciprocal
of each element of T,F.M (G) into Taylor series in the vicinity of zero fre-

0) and truncating second and higher terms yield:

quency (setting Ty
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where Tl and T2 are time constant.



In this way all the elements of T.F.M can be expanded into first
order lag whose steadystate gains and time constants can be calculated

directly from polynomials (2) and (4)

K -K
G = 2 G = -
11 T p+l. f 712 T op+l
1 2
-2NT p (5)
K. e -K
G, =2 g, =
21 T2p+l roTe2 Tlp+l

where DT = 2NT2

Under the condition: @ = 1.1 (e = 0.1), N =10, T = 1 and TE = 0.2

the computing results are as follows:

= 116.95 K, = 114.
Kl % 5 14.5
= 156.9 T =
Tl i 5 153
DT = 2¥10x0.2 = 4.0
These results are in accord with those approximate model (1). The

fact that there is only little difference between either Kl and K2 or Tl

and 'I‘2 means the interaction between top and bottom is very strong.
3. Time Domain Analysis:

It is very difficult to inverse transform the transfer function matrix.
Therefore the better way to get the time response correspending to the trans-
fer function is to solve the difference equations by using numerical
method.

As shown in the earlier research (1), the difference equations are:

w e %

._2~ +~ —_ = — =
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' —2~!+~l s ~'__ ~— I 7
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Turning above equations back into time domain yields
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Whilst Rn—l an Rn+l éan be expressed as:
Loy =4, vit - (-DT}
) . — i
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where v is unit step function.

By using finite difference approximation above equations can be rewritten
as explicit formula and for the sake of convenience we set the sampliég
time intervalhnh =T, .

Thus we get

c
= - (2-1/h + - = =

Yn,k+l hiy 1,k ( / )Yn,k yn+l,k v (v ﬂﬂn l)}
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n-1 o

1 ez . <
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where: k = INT(t/h.

Similarly the boundary conditions can be expressed as the form of
finite difference.

For feed boundary.

c o+l
1 — h L} ey 2__ + | — -
Y eer = PG T MBIy Y Vr( g Vel 2
) 2 _ (oo ' _c _ o+l 5
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For the terminal boundary:
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where T is the residence time of terminals.
Assuming zero initial conditions i.e. y, 5 = O %! . (120l M)
1, 1,
then setting v = o and c.!&o/vr = 1 yields the step response of Gl2 and

Similarly, if Eo = o and vC/Vr =1 are given, the response of G12

G21.
and Gél can. be computed from n = o to n = N.

It is noticeable however that if the hydraulic time constant TR is
greater than 0.5 we can no longer set the sampling interval h = Tg' other-
wise the solution will be divergent. In this case we can choose another
time interval h which is less than 0.5 and the liquid flow Rn—l is expressed

cas

L =9 vik - (n-1)r}
n-=1 e}

where r = Tﬂ/h is chosen to equal or approximately equal to a integer. The
plots of time response (60 = 1.1, N = 10, T = 1.0, TE = 0.4) are shown in
Fig. 2. These plots show again that the dynamic behavicur of this system
is very near to that of first order lag.

It is found from computing results that the steady state gains as

t » » are different from those of transfer functions as p * o. For example

as o = 1.1, N =10, T = 1.0 and T, = 0.4 the former are K, = 106.46 and

L 1
K2 = 104.04 while the latter are Kl = 117.09 and K2 = 114.39 (the error is
about 10 percent). These errors are caused from the improper differential

approximation of the difference equation of feed boundary conditions. In

fact it has been tested by computing that if we take g yN_1 = g% |
. n=N-1
instead of yN - yN_l = g%— , the errors will vanish. The results of

n=N
solving difference equations (7) as below are in accord with that of

numerical method.



4.

Solution of Difference Equation

The usual method used to describe a tray-type column is difference
equations. Therefore solving them directly should be the better way to
get the T.F.M.

The difference equations (7) is rewritten as follows:

~ . . & —(n—l)pT£
~ (g gs == -
Yn-1 (p )yn Yn+1 Vr{V ¢ Qoe }
. -(2N—n)pT£
iy - FEVEN e T — o0
Xn—-l (p 2)Xn Xn+l Vr la v Qo © !
The terminal boundary condition is:
- " %
y, = (p a)y
x' = (pT + a)x'
. o)
The feed boundary condition is:
- (N-1)pT
~ ~ ~ c g+l ~ = 2
'~ +2 + = —{——v -
Xy T PRy v, vr{ g VoA, }
- NpT, }
~ ~ ~ ~ +1 2
- +2 Voo \ = B o B
T e R W] v oo = S £ 8

This is a set of second order difference equations and can be solved by

ordinary technique (3). The solutions are listed as follows:
Q = GF
where
Q = yo F = Eo = %— as before
r
x' v
o

G. is the transfer function matrix from difference equation.

-1
Gd =A B (15)

And the matrix A and B have the forms as follows:

A = +2)F. - F -
(p)l 5 F1

i 4+2)F. -F
Fl (p )Fl
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The complex functions F1 = F8 can be expressed as:

el
I
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1
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The complex function ¢ is defined as;
P
d(n) = ]:_'1——]:_2 (16)
1 2
where:
T = (pt+2) * (p+2)2—4
1'72 2

They are the characteristic roots of above difference equations (2).

The hyperbolic function in the earlier research (1) is substituted
by the function ¢(n) here. These solutions are more exact than that of the
earlier one (1). Especially as TQ = O the T.F.M. can be reformed as a

diagonal form. The elements of its main diagonal line are



= IT =

~ {(p+3)¢ (N) - (p+4) p (N-1) +¢ (N-2) - 2} - 0.5¢

611P) = 1pa3) (pT+ @) § (M) — (pT+p+0+3) ¢ (N-1) +0 (N-2) (17)
e (Bf = -{(p+1)$ (N) - (p+2) ¢ (N-1) +¢ (N-2) } (a+1) /p - O.5¢
22 (p+1) (pT+a) ¢ (N) — pT+p+a+l) ¢ (N-1) +¢ (N-2)
Their zero frequency behaviour are
By S0 = %%E
G22(o) _ N(a+li+o.55 -

The numerators of above expression (18) are less than those of the results
in earlier research (2). In fact the computing results of T.F.M (Gd)
under the conditions o= 1.1 (¢ = 0.1), N =10, T = 1.0 and T£ = 0.2 show

an obvious difference between the solutions of this difference equation and
those of the differential equation (1). The error at zero frequency is
about 10% and increases with frequency.

The values of the T.F.M. (12) at zero frequency are exactly equal to
those results of numerical method as t - . This is in accord with the
final value theorem.

Conclusion and discussion

The analysis of the T.F.M. in the frequency domain predicts that the
distillation column system (compositions to terminal flow rate) is a low
pass filter with large time constants and low cut-off frequency (about
0.08) . So studying its low freguency behaviour has the more practical
significance.

The computed results in both freguency and time domains further
reveal the strong resemblance of the dynamic behaviour of this system to
that of first order lag both gqualitatively and quantilatively. Furthermore,
at low frequency the elements of the T.F.M. can be expanded by Taylor

theorem, into approximate analytical model of a first-order-lag type

whose steady-state gains and time constants can be calculated directly from
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those polynomials of'the parameters o, N and T. The dead time of the
elements G21 equals to the product of hydraulic time constant TR and
total stage number i.e. DT = 2NT while the time lags of the other elements
are negligible.

The fact that solving difference egquations directly can get more
exact results shows that the better way to describe a tray-type distillation
column in frequency domain is to use difference equation. There is no need
to use differential equations to approximate the difference equation.
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