promoting access to White Rose research papers

Universities of Leeds, Sheffield and York http://eprints.whiterose.ac.uk/

This is the author's post-print version of an article published in the **Quarterly** Journal of the Royal Meteorological Society, 139 (673)

White Rose Research Online URL for this paper:

http://eprints.whiterose.ac.uk/id/eprint/76601

Published article:

Davis, J, Knippertz, P and Fink, AH (2012) *The predictability of precipitation episodes during the West African dry season.* Quarterly Journal of the Royal Meteorological Society, 139 (673). 1047 - 1058. ISSN 0035-9009

http://dx.doi.org/10.1002/qj.2014

White Rose Research Online eprints@whiterose.ac.uk

1	
2	
3	The Predictability of Precipitation Episodes during
4	the West African Dry Season
5	
6	
7	Jenny Davis and Peter Knippertz*
8	School of Earth & Environment, University of Leeds, Leeds, UK
9	
10	Andreas H. Fink
11	Institute for Geophysics and Meteorology, University of Cologne, Cologne, Germany
12	
13	
14	
15	Keywords: ensemble prediction system, tropical-extratropical interactions, verification,
16	high-impact weather, TRMM, GPCP
17	
18	
19	*Corresponding author: Dr Peter Knippertz, School of Earth & Environment, University
20	of Leeds, Leeds, LS2 9JT, UK; E-mail: p.knippertz@leeds.ac.uk

21 Abstract

22 Precipitation episodes in tropical West Africa (7–15°N, 10°W–10°E) during the dry 23 season from November to March are rare, but can have significant impacts on human 24 activities reaching from greening of pastures to spoiling harvests and health implications. 25 Previous work has shown a link between these unseasonal rainfalls and extratropical 26 disturbances via a decrease of surface pressure over the Sahara/Sahel and a subsequent 27 inflow of moist air from the Gulf of Guinea. This paper supports the previously stated 28 hypothesis that the extratropical influence leads to a high rainfall predictability through a 29 careful analysis of operational 5-day forecasts from the European Centre for Medium-30 Range Weather Forecasts (ECMWF) Ensemble Prediction System (EPS), which are 31 evaluated using Global Precipitation Climatology Project (GPCP) and Tropical Rainfall 32 Measuring Mission (TRMM) precipitation estimates for the 11 dry seasons 1998/99-33 2008/09. The long-term regional average of ensemble-mean precipitation lies between the 34 two observational datasets with GPCP being considerably wetter. Temporal correlations 35 between the ensemble mean and observations are 0.8. Standard probabilistic evaluation 36 methods such as reliability and relative operating characteristic (ROC) diagrams indicate 37 remarkably good reliability, sharpness and skill across a range of precipitation thresholds. 38 However, a categorical verification focusing on the most extreme ensemble mean values 39 indicates too many false alarms. Despite the considerable observational uncertainty the 40 results show that the ECMWF EPS is capable of predicting winter rainfall events in 41 tropical West Africa with good accuracy, at least on regional spatial and synoptic time 42 scales, which should encourage West African weather services to capitalize more on the 43 valuable information provided by ensemble prediction systems during the dry season.

44 1. Introduction

45 Tropical West Africa is characterized by a monsoon climate with the largest portion of the annual precipitation falling in the boreal summer months (Hastenrath, 1991; 46 47 Buckle, 1996). The period from around the start of November to the end of March is 48 dominated by the dry and often-dusty northeasterly Harmattan winds and very sporadic 49 rainfall events, which contribute little to the annual total on average. Nevertheless, 50 impacts of these events on the local population can be manifold and include: (A) Harvests 51 such as cotton are often stored to dry outdoors and unexpected rain can cause them to rot 52 (Buckle, 1996; Knippertz and Fink, 2008; 2009). (B) If damp, staple foods such as 53 groundnut and maize can become contaminated by aflatoxins, fungal metabolites that can 54 cause sickness or death in humans and animals (Hell and Mutegi, 2011). (C) Unseasonal 55 rains can significantly improve grazing conditions, e.g. for the herds of kettle nomads, 56 and facilitate agricultural work such as ploughing or building moulds for yam due to 57 enhanced soil moisture. (D) Anomalously moist periods during the dry-season can help to 58 prevent epidemics of meningococcal meningitis, which is widespread in West Africa 59 (Sultan *et al.*, 2005; Thomson *et al.*, 2006). These examples show that reliable predictions 60 of dry-season rainfall events in tropical West Africa on synoptic timescales have the 61 potential to support decision-making processes for a wide range of mitigating actions. 62 Particularly points (A) and (B) above would clearly benefit from the establishment of an 63 early-warning system up to a week ahead. 64 Given the predominance of summer rainfalls for the annual totals, rather little work 65 has been dedicated to the dynamics and climatology of precipitation during the dry

season, mostly in the form of case studies of extreme events (e.g. Knippertz and Martin,

67 2005; Fall et al., 2007; Knippertz and Fink, 2008; Meier and Knippertz, 2009). Most of 68 these cases occurred over the western parts of tropical and subtropical West Africa, 69 which are occasionally affected directly by very deep upper-level disturbances over the 70 Atlantic Ocean (Fröhlich and Knippertz, 2008). Knippertz and Fink (2008; KF08 71 hereafter) were among the first to analyze the dynamics of extreme unseasonal rainfall in 72 southern West Africa. The mechanism they proposed is schematically depicted in Figure 73 1. The presence of a pronounced, positively tilted upper-level trough over northwestern Africa leads to a shift of the subtropical jet (STJ) and a decrease of surface pressure over 74 75 the Sahara and Sahel. In the particular case KF08 investigated, two low-pressure centres 76 formed, one close to the base of the trough over Algeria associated with unusual 77 precipitation over the northern Sahara and one over tropical West Africa. The latter can 78 be regarded as an intensified and northward shifted wintertime continental heat low. This 79 pressure configuration leads to a significant break in the Harmattan winds and the inflow 80 of moist southerlies from the Gulf of Guinea, which shifts the Intertropical Discontinuity 81 (ITD), the surface boundary between moist maritime and dry continental air, northwards 82 and feeds the unseasonal rainfalls.

A follow-up study by Knippertz and Fink (2009; KF09 hereafter) contains the firstever statistical analysis of dry-season rainfall events over southern West Africa (7–15°N, 10°W–10°E), based on pentad precipitation from the Global Precipitation Climatology Project (GPCP) and 5-day forecasts made as part of the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA-40 re-analysis project (Uppala *et al.*, 2005) for the period 1979/80–2001/02. The main conclusions from this work are that (A) the schematic shown in Figure 1 is representative for many of the identified events, (B) the

90 ECMWF model shows skill in predicting event occurrence on a regional scale up to a 91 week ahead and (C) predictability appears to be enhanced in cases of a clear connection 92 to the extratropics. The latter is typically manifested through a well-defined and persistent 93 upper-level trough or the succession of two troughs, accompanied by an elongated 94 southwest-northeast oriented band of upper- and midlevel clouds stretching from the 95 Tropics to the subtropics along the equatorward side of the STJ. Such bands are often 96 referred to as "Tropical Plumes" (see Knippertz, 2005 and references therein). 97 This study builds on those by KF08 and KF09, and expands them in the following 98 ways: (A) In order to test the hypothesis of enhanced predictability formulated in KF09, 99 operational ensemble predictions from ECMWF are investigated instead of ERA-40 data. 100 This allows a combination of conventional and probabilistic verification measures to be 101 used. (B) KF09 amongst other authors have demonstrated problems with the old pentad 102 product of the GPCP (Xie et al., 2003) over data-sparse West Africa. The present study 103 uses a new daily version of GPCP (1DD) together with rainfall estimates from the 104 Tropical Rainfall Measuring Mission (TRMM), which includes information from space-105 born rainfall radar, to assess aspects of observational uncertainty. These improvements in 106 the data quality come at the expense of reduced data availability, which limits this 107 analysis to the 11 dry seasons 1998/99-2008/09. Section 2 provides more information on 108 the datasets used in this study. The results are presented in sections 3 and 4 focussing on 109 evaluation of the ensemble mean and probabilistic analysis, respectively. Section 5 110 provides a short discussion of the results and gives the main conclusions. 111

112

113 **2. Data**

114 Most analyses presented in this paper are based on gridded datasets of estimated 115 and forecast precipitation, respectively, as detailed in the following sections 2.1 and 2.2. 116 Following KF09, these fields are averaged spatially over $7-15^{\circ}N$, $10^{\circ}W-10^{\circ}E$ and 117 accumulated over 5 days to give a regional precipitation index. As shown in KF09, the 118 ECMWF model is generally capable of forecasting accurately at much finer scales, but a 119 grid-point based verification of the predominantly convective rainfalls is generally 120 difficult, which has motivated several authors to develop object-based methods, all with 121 their different advantages and problems (e.g. Wernli et al., 2008). Such an approach is 122 beyond the scope of this paper. Instead this study focuses on the question whether the 123 ECMWF model can accurately predict moist episodes during the dry-season on a regional 124 scale, which in our view is sufficient for many of the applications discussed in the 125 Introduction, particularly for early-warning systems. The time period covered is the entire 126 dry-season from 1 November to 31 March.

127

128 2.1 Observational data

Daily precipitation estimates used in this paper are from the GPCP 1DD and
TRMM 3B 42 Version 6 datasets. The former is largely based on a monthly combined
satellite-gauge product, which is used to calibrate daily estimates derived from
geostationary and polar-orbiting infrared sensors (Huffman *et al.*, 2001; Roca *et al.*,
2010). Microwave and gauge estimates are not used explicitly owing to sampling
limitations. It is provided with a spatial resolution of one degree. The TRMM daily
product is derived from a combination of TRMM microwave imager, radar and visible-

136 infrared scanner data and other satellite infrared observations (e.g. Meteosat; see

138 infrared calibration parameters, which are then applied to 3-hourly precipitation estimates

Huffman et al., 2007). Among other things, the TRMM data are used to produce monthly

139 from the other satellite infrared datasets. The daily totals are estimated from the 3-hourly

140

precipitation data between 00Z and 21Z. Finally the daily totals are scaled so that the

141 monthly total matches that of the satellite-gauge TRMM Combination 3B 43 Version 6.

142 These data have a spatial resolution of 0.25 degrees. Both datasets are averaged

143 regionally as explained above and accumulated over five days starting at 0000 UTC each

144 day. This results in 147 pentads for one entire dry season with the first ranging from 1-5

145 November, the second from 2–6 November and so on, the last covering 27–31 March.

146 This gives 1617 pentads for the 11 dry seasons under study here. Note that for the sake of 147 simplicity, 29 February was ignored for the leap years during the study period 1998/99–

148 2008/09.

137

149 A scatter plot of all GPCP pentad precipitation values against their TRMM 150 counterparts (Figure 2) shows a clear positive bias in the GPCP data. Such discrepancies 151 between rainfall estimates illustrate the challenge in evaluating short-term forecasts in the 152 light of large observational uncertainties. Intercomparison studies at 10-day and monthly 153 scales over West Africa (Nicholson et al., 2003a, b; Ali et al., 2005; Lamptey, 2008; Jobard et al., 2011; Paeth et al., 2011) have also found substantial differences between 154 155 the two datasets. For more details, see the recent comprehensive review by Parker et al. 156 (2011), which also includes daily products. Despite the bias, the correlation between 157 TRMM and GPCP is 0.92. In interpreting this value, however, it should be kept in mind 158 the data points in Figure 2 are not independent due to the overlap of adjacent pentads.

- In addition to the precipitation data discussed above, ECMWF ERA-Interim reanalysis (Dee *et al.*, 2011) and Meteosat infrared satellite images are used in section 3 for the discussion of example case studies (e.g. Figure 8).
- 162

163 2.2 Ensemble predictions

164 The forecast dataset under investigation comes from the operational ECMWF 165 ensemble prediction system (EPS; Buizza et al., 1997; 2007). It was designed to cope 166 with uncertainty in initial conditions and is now also taking into account uncertainties in 167 model physics (Buizza et al., 1999). The EPS became operational in 1992 and has had 50 168 members since 1996. As a fully operational system, it went through a number of model 169 and configuration changes in the course of our investigation period 1998–2009, so that 170 the forecasts studied here are not a homogeneous dataset in the strictest sense. It is, 171 however, one of the longest and arguably best available EPS datasets to study 172 predictability today. The EPS is currently run twice daily at 0000 and 1200 UTC, but as 173 this was not the case during the first part of our study period, we restrict the analysis to 174 the latter time only. In order to match the TRMM and GPCP pentad data, differences 175 between total precipitation accumulations (convective plus large-scale) at +132h and 176 +12h are considered for each day and then averaged over $7-15^{\circ}N$, $10^{\circ}W-10^{\circ}E$. 177

1//

178 **3. Analysis of the ensemble mean**

179 It has been shown that for forecast ranges beyond three days predictions based on 180 the mean of a well-calibrated EPS outperforms a deterministic forecast with the same 181 model after about 3 days (e.g. Buizza *et al.*, 1997). Therefore, this section concentrates on

assessing forecast quality based on the ensemble mean only, while section 4 will focus on
probabilistic measures. Section 3.1 analyzes the mean seasonal cycle and correlations
between the observational and EPS data, while section 3.2 focuses on an event-based
verification. Finally, section 3.3 discussed exemplary cases of subjectively selected
successful and unsuccessful forecasts.

187

188 *3.1. Mean seasonal cycle and correlations*

189 Figure 3 shows the seasonal cycle for the EPS, TRMM and GPCP datasets 190 averaged over the 11 dry-seasons 1998/99 to 2008/09. All three datasets show the 191 characteristic decrease from above 2 mm per pentad in early November to very small 192 values in late December and then a gradual increase to values above 3 mm per pentad at 193 the end of the period in late March. Although the overlapping pentad accumulation 194 causes a smoothing of the curves, single significant events still stand out from the 11-year 195 background as for example a period in mid-February. Overall, GPCP shows considerably 196 higher values (on the order of 50%) during the early and late parts of the dry season, 197 while agreement with the other two datasets is better during the middle part. TRMM 198 agrees remarkably well with EPS during the first half of the dry season and shows some 199 tendency for lower values than EPS later on. Averaged over the entire dry season and all 200 years, differences between EPS and TRMM (GPCP) are 0.12 mm (-0.41 mm) per pentad. 201 An analysis of the reasons for these discrepancies is beyond the scope of this paper. They 202 show, however, that there is a considerable uncertainty in the observations, which pose a 203 significant problem to evaluation and model development. Part of this problem is

certainly related to the sparse network of surface stations that hampers the calibration and
evaluation of satellite retrievals (see also the discussion at the end of section 2.1).

206 Despite the biases discussed above, the temporal behaviour found in the 207 observational datasets is overall well reproduced by the EPS with linear correlation 208 coefficients reaching a remarkable 0.80 for both observational datasets (Figure 4). Part of 209 this strong relation is certainly associated with the general moistening in February/March 210 (Figure 3), but as we will show below there are significant events that stand out well from 211 the background during all parts of the dry season, which are mostly well reproduced by 212 the ensemble mean. Correlations with positive and negative lags show consistently lower 213 values, indicating that the model does not tend to trigger precipitation too late or too early 214 in a systematic way. It is interesting to note that the regression lines in both panels of 215 Figure 4 are below the diagonal despite the slightly lower mean values in TRMM. This 216 indicates that the EPS shows a general tendency to underestimate the wettest events and 217 overestimate low-intensity events. This finding is consistent with results by KF09 using 218 ERA-40 data.

219

220 3.2 Event-based verification

Given the strong seasonal cycle displayed in Figure 3, an event definition based on absolute values (either total or anomaly thresholds) is problematic. To circumvent this problem, KF09 defined events as anomalies of more than 200% relative to the mean seasonal cycle. This method biases the event identification to the driest part of the season when such large values are reached with much smaller absolute precipitation amounts. To

avoid this effect, a new approach is proposed here that involves a moving block of 10pentads in the following way:

Identify the maximum of the first 10 pentad accumulations of the season (1–5
 November, 2–6 November, 3–7 November, and so on until 10–14 November) of all 11
 dry-seasons (110 values in total).

• Shift by 5 days and identify maximum of the 110 pentads 6–10 November, 7–11

November, 8–12 November and so on until 15–19 November of all dry-seasons.

• Repeat shift by 5 days 26 times until the end of the dry-season. The last 10-pentad

block contains 16–20 March, 17–21 March, 18–22 March and so on until 25–29

235 March. This way the last two days, 30 and 31 March, cannot be considered.

In principle this procedure finds 28 maxima evenly distributed across the dry season. However, the overlap between the 10-pentad blocks used to find maxima leads to double counting, giving 20 actual maxima in TRMM and 21 in GPCP and EPS. In

addition, if identified maxima are four days or less apart from each other in time, they are

considered part of the same meteorological event and only the pentad with the larger

241 precipitation value is retained. This reduces the final numbers of events to 16 (TRMM)

and 17 (GPCP and EPS), thus about one and a half event per dry-season (results are listed

in Table I). The two dry-seasons 2000/01 and 2004/05 stand out as the ones without any

events in any of the datasets. Remarkably, TRMM and GPCP only agree on 12 events

245 (75% and 71% of all, respectively), underlining the substantial observational uncertainty.

The definition of events as explained above enables the identification of forecast hits, missed events and false alarms. In matching events from two different datasets, a time shift of 1 or 2 days was tolerated. Table II gives the results of this analysis. 7 events

249 were found with all three datasets matching, while additional 2 had at least a match 250 between EPS and TRMM (see shadings in Table I). Given the observational uncertainty, 251 these can be regarded as 9 hits. 5 events are identified in both TRMM and GPCP, but not 252 in the EPS data and therefore qualify as missed events. Interestingly these are 253 predominantly during the early part of the study period (1998/99, 1999/2000, 2 in 254 2001/02, 2008/09). It may indicate that improvements to the operational system in the 255 course of the study period have led to a reduction of misforecasts. There are 7 situations 256 in which only one of the two observational datasets shows an event. These could be 257 interpreted as partial misses, but we would argue that they should be considered correct 258 negatives in the light of the observational uncertainty. The biggest problem with the event 259 forecasts is the high number of false alarms (8 during the 11 seasons). Some of these 260 clearly stand out as significant outliers in Figure 4. Given the impacts of dry-season 261 rainfalls as discussed in the introduction, it is probably tolerable to have more false 262 alarms than missed events, but such a high number points to some fundamental problem 263 in terms of predicting rainfall quantities.

264 Given the relatively small number of events and the particular nature of the 265 identification routine that is designed to give fairly equal numbers for each datasets, the 266 authors decided not to take this analysis any further by computing standard verification 267 measures such as frequency bias, hit rate, false-alarm ratio etc. However, it is interesting 268 to view the results for the categorical evaluation of the ensemble mean in a more 269 probabilistic sense. To do this, it is necessary to see to what extent the false alarms and 270 missed events discussed above are consistent with the ensemble spread for the given 271 period. Situations where the observations lie outside of the spread are undesirable and

272 should occur rarely for a well-tuned EPS. Results show that four out of five missed 273 events (all but that in 1998/99) fall inside of the ensemble spread with one even inside the 274 interguartile range. This suggests that most of these cases are only 'missed' in the sense 275 of the event definition based on the ensemble mean, but that they can still be considered 276 successful forecasts in a probabilistic sense. Five of the eight false alarms fall inside of 277 the spread with three inside the interquartile range. The remaining three can be 278 considered as misforecasts. This simple analysis suggests that probabilistic measures as 279 discussed in section 4 will most likely evaluate the performance of the EPS more 280 positively than the event-based one presented here.

281

282 *3.3 Example cases*

To illustrate this further, Figure 5 shows time series of the three considered datasets for four selected example dry seasons. TRMM and GPCP data are plotted as lines with crosses; the EPS data is depicted with box-and-whiskers plots (see caption for more details). Identified events are marked with bold horizontal lines. There is a generally very low ensemble spread during many observed dry periods, which could be capitalized on in terms of impacts.

289 The first season 2001/02 shows four conspicuous rainfall periods (Figure 5a):

• The event in mid-November qualifies as a miss, but at least the EPS forecasts

unseasonal rainfall around the right time with all members above 2 mm per pentad and

- 292 TRMM estimates well within the ensemble spread. The quantitative disagreement
- between GPCP and TRMM is remarkable.

294	• The weaker event in late November is only flagged by GPCP, while TRMM is well
295	within the interquartile range of the EPS, which starts precipitation too early in this
296	case, possibly related to problems with representing shallow stable layers (see KF09).
297	• The event in early January is a clear hit with remarkable agreement between the three
298	datasets. This case brought heavy rainfall across large parts of West Africa and severe
299	flooding in Senegal and Mauritania (outside of our study region; see Knippertz and
300	Martin, 2005; Fall et al., 2007). Figure 6 shows the horizontal distribution of rainfall
301	for the three datasets. The overall spatial agreement is good, but GPCP tends to extend
302	very light rainfall far into the Sahel and Sahara and smears out the localized maximum
303	over the Ivory Coast (Figure 6b). The ensemble-mean forecast (Figure 6c) is
304	expectedly rather smooth and shows the advance of the rainfalls into the southwestern
305	part of the domain very clearly. Meier and Knippertz (2009) also noted the high
306	predictability of this case in their model sensitivity experiments.
307	• The event in the first half of March qualifies as a miss. This event brought unusual
308	early rains in central Benin between 9 and 11°N (Fink et al., 2006). Again, there is a
309	large disagreement between GPCP and TRMM, which falls just inside the interquartile
310	range of the EPS. An underestimation of March rainfalls is not observed for most
311	other years, which might be connected to a soil moisture or vegetation bias after the
312	unusual rainfalls in January.
313	The dry season 2003/04 had four wet events (Figure 5b). The first (early
314	November), third (late January) and fourth (early March) are classified as hits, despite a
315	significant underestimation for the former two (recall that event identification occurs
316	relative to each dataset). This is clearly a disadvantage of the event identification

317 proposed here, suggesting that it should only be used in combination with other, more 318 continuous measures. The event in mid-January (Figure 7) is the case discussed in detail 319 in KF08, which first instigated research into this phenomenon. TRMM clearly shows 320 very unusual, heavy precipitation reaching from Ivory Coast into Nigeria (Figure 7a). 321 GPCP shows a coarse-grained and somewhat weaker pattern, again with light rains 322 spreading far away from the main rainfall event (Figure 7b). The ensemble mean gives a 323 clear indication of a general northward shift of the rain zone, but fails to reflect the full 324 detail and magnitude (Figure 7c), largely consistent with the ERA-40 forecasts in KF08. 325 The event in mid-November 2003 (Figure 5b) and the very last pentad of this dry season 326 (not identified as an event) show a remarkable disagreement between GPCP and the other 327 two datasets..

328 The dry season 2005/06 (Figure 5c) again shows large disagreement between the 329 two observational datasets over longer periods, particularly in November, December and 330 March. The first event in late January is remarkably well forecast, but the second one in 331 mid-February is the most significant false alarm of the study period with both 332 observational datasets well below the driest ensemble members. The synoptic situation 333 during this event was characterised by a very pronounced, strongly tilted upper-level 334 trough located over northwestern Africa and the adjacent Atlantic Ocean, which is 335 associated with an area of low surface pressure reaching from Burkina Faso to 336 southwestern Algeria (Figure 8a). As a consequence the ITD shifts northward (thick line 337 in Figure 8a). The satellite image on 17 February 2006 (Figure 8b) shows a subtropical 338 cyclone-like cloud structure over the Sahara with some patchy convection to the south of 339 it in the Tropics, which locally brought precipitation exceeding 50 mm (e.g. on 15

340 February 2006 around 9.5°N, 2°E; Pospichal et al., 2010). According to TRMM there are 341 two separated areas of rainfall of moderate intensity: one associated with the cyclonic feature (mostly outside the study area) and one associated with the northward shifted ITD 342 343 (Figure 8c). GPCP shows a coarse-grained version of this with very widespread light 344 precipitation over the Sahel and Sahara (Figure 8d). Surprisingly, the main band over the 345 Sahara is shifted eastwards in the GPCP data with respect to TRMM. In the EPS mean 346 the two precipitation areas are connected, leading to too much and too widespread 347 precipitation (Figure 8e). It appears that the model triggers convection too easily in this 348 situation of enhanced low-level moisture and supposedly upper-level forcing for uplift. It 349 is also conceivable that evaporation of precipitation in the dry desert air is not handled 350 well in the model. The frequent occurrence of false alarms suggests that these problems 351 are potentially systematic.

The last example, the dry season 2008/09, was one of the most active seasons with 5 identified events (3 hits, one missed event and one false alarm; Figure 5c). The latter underlines again the problems with the event definition, which can indicate a misforecast, although the absolute precipitation amounts agree rather well with each other. The most remarkable event in this season is the heavy rainfall in mid February 2009 (see Waliser *et al.* 2012). Other events mentioned in that paper are 5–6 December 2008 and 8–9 January 2009.

359

360 4. Probabilistic analysis

In this section the full probabilistic information content from the EPS is exploredwith two standard evaluation methods, using the available TRMM and GPCP data for the

11 dry seasons 1998/99 to 2008/09 (as described in section 2.1) as the observed 'truth'.
This analysis complements the categorical evaluation based on extreme values in the
ensemble mean presented in section 3. It is assumed here that each ensemble member
carries the same probability of occurrence.

367 The first method is the relative operating characteristic (ROC) diagram (e.g. Joliffe 368 and Stephenson, 2003). It is constructed using a set of simple four-cell contingency 369 tables. For the observations an event is defined through exceedance of a certain 370 precipitation threshold. For the EPS, the event/no event decision is made based on a 371 given forecast probability threshold (here 2, 20, 40, 60, 80 and 98%) for the chosen 372 precipitation amount. The hit rate, H, is then defined as the ratio of the number of correct 373 forecasts divided by the total number of observed events. The false alarm rate, F, is 374 defined as the ratio of the number of false alarms divided by the total number of non-375 events in the observations. In this way, a single point can be plotted on a graph of H376 against F. Plotting this for a set of probability thresholds creates a ROC curve, which has 377 several important characteristics. The bottom left corner represents a situation of no 378 warnings at all and therefore H = F = 0. The top right corner describes a situation of 379 always warnings and therefore H = F = I. Typically the area underneath the ROC curve 380 is taken as a measure of skill (Buizza *et al.*, 1999). A perfect forecast will have H = I and 381 F = 0 and therefore a ROC area of 1.

The reliability of an EPS is its ability to forecast accurate probabilities (Palmer, 1999). This can be simply tested by plotting forecast probability against observed frequency, again for a given precipitation threshold. The diagonal in this diagram indicates perfect reliability. Circles of varying sizes represent the frequency of forecast

386 probabilities. Largest circles in the centre of the diagram indicate clustering around the 387 climatological average and therefore low predictability. The property of an EPS to spread 388 away from the climatological average is called "sharpness".

389 Examples of ROC and reliability diagrams for different thresholds are shown in 390 Figure 9 for both TRMM and GPCP observations. For a threshold of 0.5 mm per pentad 391 both datasets are relatively close to the diagonal indicating good reliability (Figure 9a). 392 There is a general tendency to underestimate observed frequencies for low forecast 393 probability, particularly in GPCP. This could be partly related to the spurious widespread 394 low-intensity rainfall evident from Figures 6b, 7b and 8d. On the other hand observed 395 frequencies are overestimated for high forecast probability. This might be a reflection of 396 the EPS triggering convection too easily if the general conditions are favourable 397 consistent with the high number of false alarms discussed in the previous section. The 398 positive bias of GPCP with respect to TRMM leads to a general upward shift to higher 399 observed frequencies in the diagram. The differences in behaviour between low and high 400 observed frequencies do not make it possible to improve reliability greatly through a 401 general bias correction. The distribution has good sharpness with largest circles in the top 402 right corner, representing situations of successful forecasts where all ensemble members 403 exceed the threshold. The corresponding ROC diagram (Figure 9b) shows good skill for 404 both observational datasets with ROC areas of 0.90 (TRMM) and 0.91 (GPCP), with 405 differences again reflecting the different biases as discussed previously. 406 Figures 9c and 9d show the corresponding analyses for a precipitation threshold of

1 mm per pentad. Overall the results are very stable with only a slight shift to more

408 frequent events of low forecast probability as expected for a higher precipitation

threshold. This general behaviour continues for higher thresholds, so that for 3 mm per
pentad only few events in the top right corner of the reliability diagram are recorded
(Figure 9e). However, ROC scores continue to remain above 0.9, even for these relatively
extreme events (Figure 9f). Overall this analysis shows that EPS forecast of dry-season
precipitation are in fact of high quality and usefulness.

414

415 **5 Discussion and conclusions**

416 Dry-season precipitation events in tropical West Africa are rare, but have important 417 ramifications for the local population. This work extended previous studies on this 418 subject by KF08 and KF09 in two ways: (A) Forecasts of these events considered here 419 are from operational ECMWF ensemble predictions that allow an assessment of 420 predictability. (B) More recent and high-resolution precipitation datasets are used for 421 evaluation. The study region corresponds to that of KF09 and spans 7–15°N, 10°W– 422 10°E. The 11 dry seasons (November–March) 1998/99–2008/09 were investigated. EPS 423 forecasts and observations were compared on the basis of pentads, using +132h minus 424 +12h predictions. Evaluations are done both for the ensemble mean and using 425 probabilistic methods. The most important conclusions from this work are: 426 ٠ There is a considerable observational uncertainty for this region during this time of 427 year. GPCP has a substantial positive bias with respect to TRMM and tends to show 428 widespread low-intensity rainfall. Although the overall temporal correlation is 0.92, 429 deviations during single events can be remarkably high, practically impeding a 430 forecast evaluation for some individual cases.

The agreement of EPS is generally better with TRMM than with GPCP. This holds for
the mean seasonal cycle, temporal correlations, event evaluation and ROC scores.
Temporal correlations between EPS mean and the observational datasets reach 0.8.
ROC scores are on the order of 0.9. Sharpness and reliability are satisfactory with a
general tendency of too high (low) forecast probabilities for high (low) observed
frequencies.

437 Categorical evaluation of extreme events identified from the ensemble mean is much ٠ 438 more sensitive to small variations in precipitation amounts and therefore indicates less 439 skill. There is a moderate number of missed events, but the biggest problems are too 440 many false alarms and a tendency of the EPS to start precipitation too early. Both may 441 indicate that convection is triggered too easily in the typical dry-season rainfall 442 situation with upper-level forcing and high low-level moisture. 443 Overall the results presented here indicate a general ability of the ECMWF EPS to 444 provide reliably forecast information of dry-season rain events in tropical West Africa on 445 the pentad timescale. It would be interesting to explore whether there is also some 446 seasonal predictability, for example related to the influence of El Niño on upper-level 447 troughs and tropical plumes over the eastern North Atlantic (Luise Fröhlich, University of 448 Cologne, pers. comm., 2012). One of the important limitations of this study is the large 449 observational uncertainty related to the disagreement of different precipitation products 450 on daily timescales (see Parker et al., 2011). The evaluation of rainfall products is

451 generally focused on the rainy season, such that biases during the dry season are

452 particularly large (Adeyewa and Nakamura, 2003). More targeted efforts are needed to

453 understand the origin of such biases and to explore retrievals designed for precipitation

outside of the main rainy season. Other research in the future should explore how the
predictability found in this study can be used to inform decision makers in West Africa,
particularly in the health, agriculture and water sectors. This will most likely require
investigations on finer spatial scales than used in this study and include the identification
of optimal forms of communicating uncertainty in ensemble predictions to a given enduser community.

460

461 Acknowledgments

462 This work was funded by the German Science Foundation (DFG) Emmy Noether

463 program (grant KN 581/3-2). The TRMM and GPCP data were provided by the

464 NASA/Goddard Space Flight Center's Laboratory for Atmospheres. We thank the UK

465 Met Office for providing access to the ECMWF archive and the Dundee Satellite

466 Receiving Station for providing access to Meteosat imagery. We are grateful to two

467 anonymous reviewers whose comments helped to substantially improve an earlier version

468 of this manuscript.

469 **References**

- 470 Ali A, Amani A, Diedhiou A, Lebel T. 2005. Rainfall estimation in the Sahel. Part 2:
- 471 Evaluation of raingauge networks in the CILSS countries and objective
- 472 intercomparison of rainfall products. J. Appl. Meteorol. 44: 1707–1722.
- 473 Adeyewa ZD, Nakamura K. 2003. Validation of TRMM radar rainfall data over major
- 474 climatic regions in Africa. J. Appl. Meteorol. **42:** 331–347.
- 475 Buckle C. 1996. Weather and Climate in Africa. Longman, London, UK, 312pp.
- 476 Buizza R. 1997. Potential forecast skill of ensemble prediction and spread and skill
- distributions of the ECMWF Ensemble Prediction System. *Mon. Weather Rev.* **125**:
- 478 99–119.
- 479 Buizza R, Hollingsworth A, Lalaurette F, Ghelli A. 1999. Probabilistic predictions of
- 480 precipitation using the ECMWF Ensemble Prediction System. *Weather Forecast.* 14:
 481 168–189.
- 482 Buizza R, Bidlot J-R, Wedi N, Fuentes M, Hamrud M, Holt G, Vitart F. 2007. The new
- 483 ECMWF VAREPS. *Q. J. R. Meteorol. Soc.* **133**: 681–695.
- 484 Dee DP and Coauthors. 2011. The ERA-Interim reanalysis: configuration and
- 485 performance of the data assimilation system. Q. J. R. Meteorol. Soc. **137**: 553–597.
- 486 Fall S, Niyogi D, Mohanty UC, Kumar A. 2007. Application of weather prediction
- 487 models for hazard mitigation planning: A case study of heavy off-season rains in
- 488 Senegal. *Nat. Hazards* **41:** 227–243.
- 489 Fink, AH, Vincent DG, Ermert V. 2006. Rainfall types in the West African Soudanian
- 490 Zone during the summer monsoon 2002. *Mon. Weather Rev.* **134:** 2143–2164.
- 491 Fröhlich L, Knippertz P. 2008. Identification and global climatology of upper-level
- 492 troughs at low latitudes. *Meteorol. Z.* **17(5):** 565–573.

- Hastenrath S. 1991. *Climate dynamics of the tropics*. Kluwer, Dordrecht, Netherlands,
 512pp.
- Hell K, Mutegi C. 2011. Aflatoxin control and prevention strategies in key crops of SubSaharan Africa. *Afr. J. Microbiol. Res.* 5(5): 459–466.
- 497 Huffman GJ, Adler RF, Morrissey M, Bolvin DT, Curtis S, Joyce R, McGavock B,
- 498 Susskind J. 2001. Global precipitation at one-degree daily resolution from multi-
- 499 satellite observations. J. Hydrometeor. 2: 36–50.
- 500 Huffman, GJ, Adler RF, Bolvin DT, Gu G, Nelkin EJ, Bowman KP, Stocker EF, Wolff
- 501 DB. 2007. The TRMM multi-satellite precipitation analysis: Quasi-global, multi-year,
- 502 combined-sensor precipitation estimates at fine scale. J. Hydrometeorol. 8: 38–55.
- Jobard I, Chopin F, Berges JC, Roca R. 2011. An intercomparison of 10-day satellite
- 504 precipitation products during West African monsoon. *Int. J. Remote Sensing* **32**:
- 505 2353–2376.
- 506 Joliffe IT, Stephenson DB. 2003. Forecast verification: a practitioner's guide in
- 507 *atmospheric science*. Wiley and Sons, Chicheseter, UK, 240 pp.
- 508 Knippertz, P., 2005: Tropical-extratropical interactions associated with an Atlantic
- tropical plume and subtropical jet streak. *Mon. Weather Rev.* **133**: 2759–2776.
- 510 Knippertz P, Fink AH. 2008. Dry-season precipitation in tropical West Africa and its
- relation to forcing from the extratropics. *Mon. Weather Rev.* **136:** 3579–3596.
- 512 Knippertz P, Fink AH. 2009. Prediction of dry-season precipitation in tropical West
- 513 Africa and its relation to forcing from the extratropics. *Weather Forecast.* 24:1064–
- 514 1084.

515	Knippertz P, Martin JE. 2005. Tropical plumes and extreme precipitation in subtropical
516	and tropical West Africa. Q. J. R. Meteorol. Soc. 131: 2337-2365.
517	Lamptey B. 2008. Comparison of gridded multisatellite rainfall estimates with gridded
518	gauge rainfall over West Africa. J. Appl. Meteorol. Climatol. 47: 185–205.
519	Nicholson S and Coauthors. 2003a. Validation of TRMM and other rainfall estimates
520	with a high-density gauge dataset for West Africa. Part 1: Validation of GPCC rainfall
521	product and pre-TRMM satellite and blended products. J. Appl. Meteorol. 42: 1337-
522	1354.
523	Nicholson S and Coauthors. 2003b. Validation of TRMM and other rainfall estimates
524	with a high-density gauge dataset for West Africa. Part II: Validation of TRMM
525	Rainfall Products. J. Appl. Meteorol. 42: 1355–1368.
526	Meier F, Knippertz P. 2009. Dynamics and predictability of a heavy dry-season
527	precipitation event over western Africa - Sensitivity experiments with a global model.
528	Mon. Weather Rev. 137: 189–206.
529	Paeth H, Fink AH, Pohle S, Keis F, Mächel H, Samimi C. 2011. Meteorological
530	characteristics and potential causes of the 2007 flood in sub-Saharan Africa. Int. J.
531	<i>Climatol.</i> 31: 1908–1926.
532	Palmer TN, 1999. Predicting uncertainty in forecasts of weather and climate. ECMWF
533	Technical Memorandum No. 294, available online:
534	http://www.ecmwf.int/newsevents/training/rcourse_notes/pdf_files/Uncertainty_predi
535	<u>ction.pdf</u>

- 536 Parker D, Good E, Chadwick R. 2011. Reviews of observational data available over
- 537 Africa for monitoring, attribution and forecast evaluation. *Hadley Centre Technical*
- 538 *Note* **86**, available at: www.metoffice.gov.uk/media/pdf/b/o/HCTN 86 revised.pdf.
- 539 Pospichal B, Bou Karam D, Crewell S, Flamant C, Hünerbein A, Bock O, Säid F. 2010.
- 540 The diurnal cycle of lower boundary-layer wind in the West African monsoon. Q. J.
- 541 *R. Meteorol. Soc.* **136(s1):** 92–106.
- 542 Roca R, Chambon P, Jobard I, Kirstetter P-E, Gosset M, Bergès JC. 2010. Comparing
- satellite and surface rainfall products over West Africa at meteorologically relevant
- scales during the AMMA campaign using error estimates. J. Appl. Meteorol.
- 545 *Climatol.* **49:** 715–731.
- 546 Sultan B, Labadi K, Guégan J-F, Janicot S. 2005. Climate drives the meningitis
- 547 epidemics onset in West Africa. *PLoS Med.* **2:** 43–49.
- 548 Thomson MC, Molesworth AM, Mamodou, HD, Yameogo KR, Belanger F, Cuevas LE.
- 549 2006. Potential of environmental models to predict meningitis epidemics in Africa.
- 550 *Trop. Med. Int. Health* **11:** 781–788.
- 551 Uppala S and Coauthors. 2005. The ERA-40 re-analysis. *Q. J. R. Meteorol. Soc.* 131:
 552 2961–3012.
- 553 Waliser DE and Coauthors. 2012. The "Year" of Tropical Convection (May 2008 to April
- 2010): Climate variability and weather highlights. *Bull. Amer. Meteorol. Soc.*, in
 press, doi:10.1175/2011BAMS3095.1.
- 556 Wernli H, Paulat M, Hagen M, Frei C. 2008. SAL A novel quality measure for the
- 557 verification of quantitative precipitation forecasts. *Mon. Weather Rev.* **136:** 4470–
- 558 4487.

- 559 Xie P-P, Janowiak JE, Arkin PA, Adler RF, Gruber A, Ferraro R, Huffman GJ, Curtis S.
- 560 2003. GPCP pentad precipitation analyses: An experimental data set based on gauge
- 561 observations and satellite estimates. *J. Climate* **16:** 2197–2214.

- 562 <u>Tables</u>
- 563 Table I: List of identified extreme pentads in the three datasets considered. Light shading

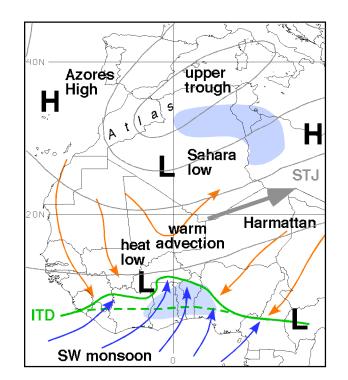
564 indicates agreement between TRMM and GPCP, intermediate shading between EPS and

EPS	TRMM	GPCP			
14—18 MAR 1999	06—10 DEC 1998	05—09 DEC 1998			
17-21 NOV 1999	15—19 FEB 1999	30 DEC 1999-03 JAN 2000			
23-27 NOV 1999	25—29 NOV 1999	16—20 MAR 2000			
01-05 JAN 2000	31 DEC 1999-04 JAN 2000	11-15 NOV 2001			
05-09 JAN 2002	16—20 MAR 2000	23-27 NOV 2001			
03-07 NOV 2002	11-15 NOV 2001	06—10 JAN 2002			
06-10 DEC 2002	06—10 JAN 2002	07—11 MAR 2002			
07-11 NOV 2003	07—11 MAR 2002	13—17 FEB 2003			
19-23 JAN 2004	05-09 NOV 2003	05-09 NOV 2003			
01-05 MAR 2004	19—23 JAN 2004	16-20 NOV 2003			
26-30 JAN 2006	27 FEB-03 MAR 2004	19—23 JAN 2004			
13-17 FEB 2006	26—30 JAN 2006	26 FEB-02 MAR 2004			
07—11 FEB 2007	01-05 DEC 2008	22-26 DEC 2004			
03-07 DEC 2008	14-18 DEC 2008	26-30 JAN 2006			
15-19 DEC 2008	02—06 FEB 2009	20—24 MAR 2008			
16-20 FEB 2009	25—29 MAR 2009	13-17 DEC 2008			
16—20 MAR 2009		01—05 FEB 2009			

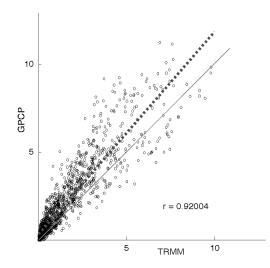
565 TRMM and dark shading between all three datasets.

566

567


568 Table II: Results from the event-based evaluation. Situations where the two observational

569 datasets disagree can be interpreted in two different ways. For more details see section


570 3.2.

Event in	All	EPS	EPS	EPS	TRMM	TRMM	GPCP
	three	TRMM	GPCP		GPCP		
Number	7	2	0	8	5	2	5
Interpretation	hit	hit / false alarm		false alarm	miss	miss / correct neg.	

576 Figure 1. Schematic depiction of the mechanism of tropical-extratropical interaction 577 responsible for many dry-season precipitation events (modified version of Figure 14 in 578 KF08). Thin solid lines depict upper-level geopotential height with the subtropical jet 579 (STJ) marked with a thick arrow. Thin arrows depict the predominantly northerly 580 (southerly) low-level flow of dry Saharan (moist tropical) air masses. 'H' and 'L' mark 581 high- and low-pressure centres, respectively. The thick dashed and solid lines show the 582 climatological and the actual positions of the Intertropical Discontinuity (ITD). Areas of 583 precipitation are shaded.

Figure 2. Comparison between GPCP and TRMM rainfall estimates. The scatter diagram

586 shows pentad precipitation (mm) for each day during the 11 dry seasons (November-

587 March) 1998/99–2008/09 averaged over the study area (7–15°N, 10°W–10°E). The linear

588 regression line (thick dashed), the diagonal (thin solid) and the linear correlation

589 coefficient are also given in the plot.

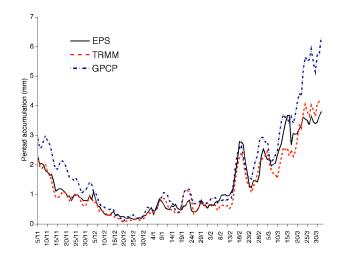


Figure 3. Mean seasonal cycle in EPS ensemble means, TRMM and GPCP data. Shown
are pentad precipitation values for each dry-season day (November–March) averaged
temporally over 1998/99–2008/09 and spatially over the study area (7–15°N, 10°W–
10°E). The dates underneath the x-axis give the end date of the respective pentad.

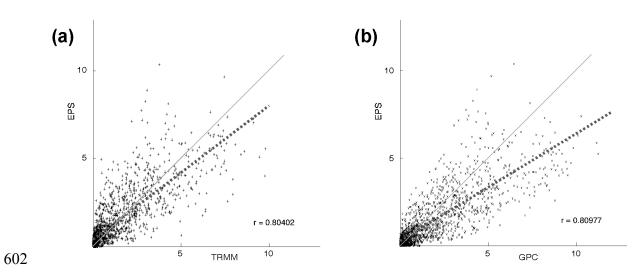
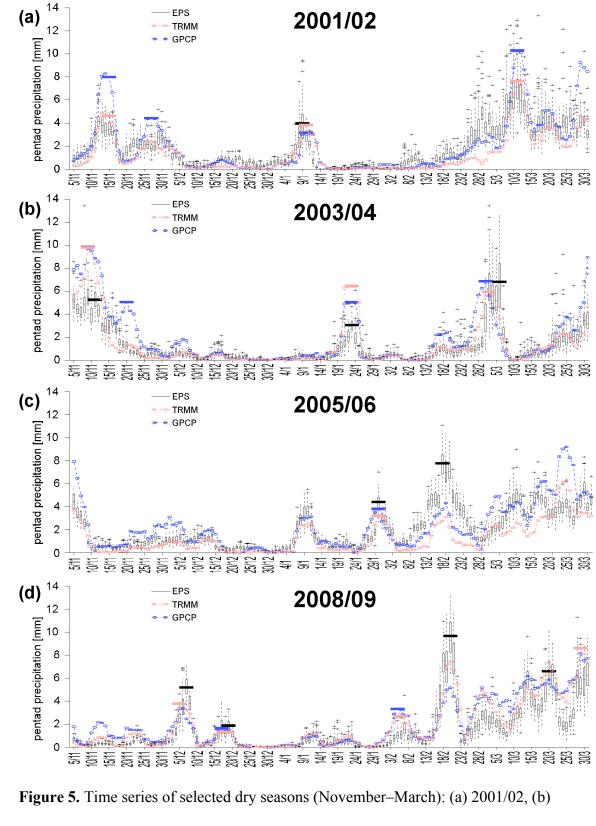
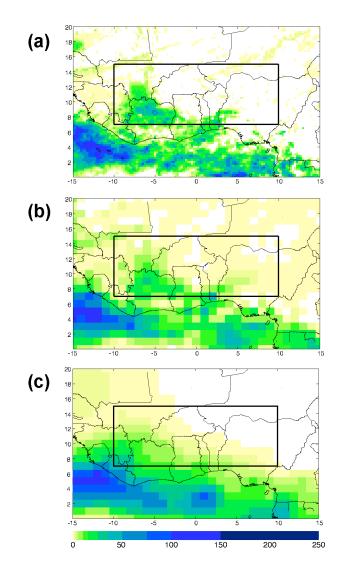
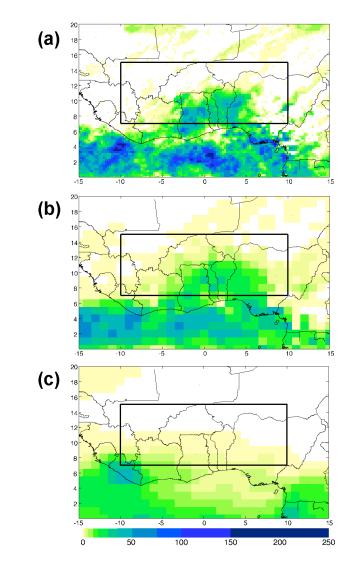




Figure 4. As Figure 2 but for EPS ensemble mean precipitation forecasts and (a) TRMMand (b) GPCP.

607 2003/04, (c) 2005/06 and (d) 2008/09. Shown are daily pentad precipitation values

averaged over the study area (7–15°N, 10°W–10°E) with the end dates given underneath
the x-axis. EPS forecasts are depicted as box-and-whisker plots (the box indicates the
interquartile range, the central line is the median, and '+' represent outliers). Ellipses
(rectangles) represent GPCP (TRMM) observations. The heavy horizontal lines represent
pentad rainfall for extreme events, as further detailed in section 3.2.

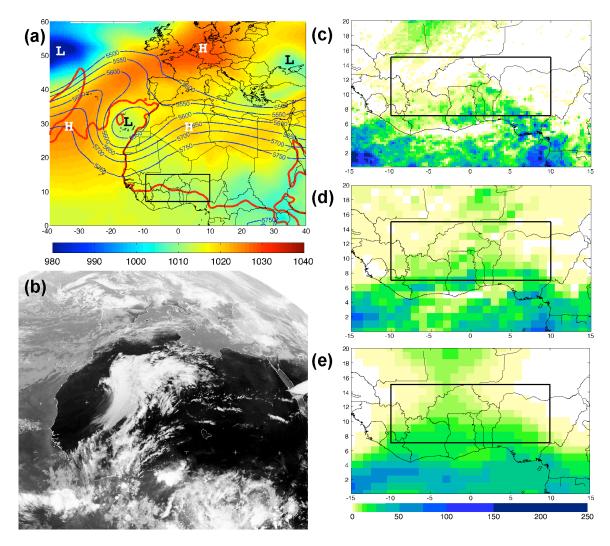
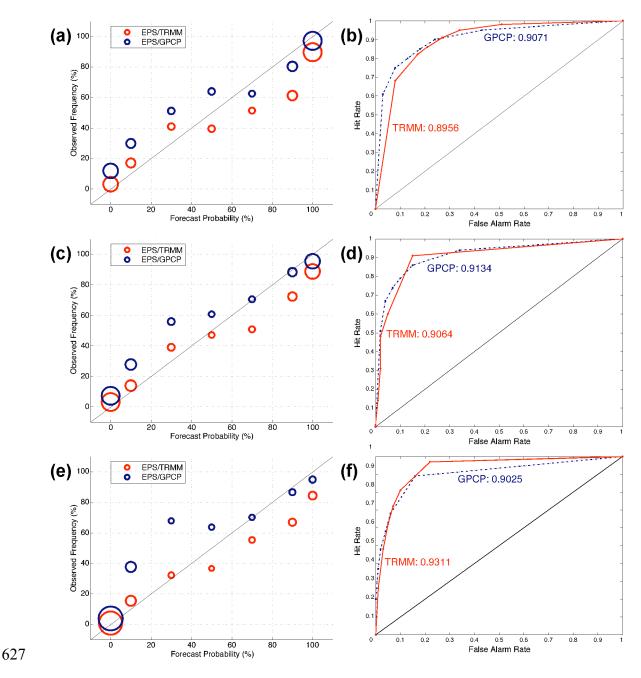
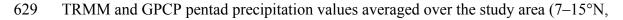


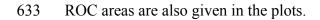
615 **Figure 6.** Example case I. Pentad precipitation (mm) for 5–9 January 2002 showing

616 (a) TRMM, (b) GPCP and (c) EPS mean. The black boxes indicate the study area used

617 for averaging in Figures 2–5.

Figure 7. Example case II. As Figure 6 but for 19–23 January 2004.


Figure 8. Example case III. (a) Geopotential height at 500 hPa (contours every 50m),
mean sea-level pressure (hPa, shading) and the position of the ITD as indicated by the
14°C contour of the 2m dewpoint (dashed line) at 0000 UTC 15 February 2006. 'H' and
'L' mark high- and low-pressure centres, respectively. (b) Meteosat infrared satellite
image at 1200 UTC 17 February 2006. (c)–(d) as in Figure 6 but for 13–17 February
2006.

628 Figure 9: Probabilistic forecast evaluation. Reliability (left) and ROC (right) diagrams for

- $10^{\circ}W-10^{\circ}E$) for the 11 dry seasons 1998/98–2008/09. Thresholds are (a), (b) 0.5 mm,
- 631 (c), (d) 1 mm and (e), (f) 3 mm. The size of the circles in the reliability diagrams
- 632 indicates the number of cases in each bin (e.g. 1088 for the largest circles in Fig. 9e).

