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ABSTRACT

On 2 March 2004 a marked upper-level trough and an associated surface cold front penetrated into the

Sahara. High winds along and behind this frontal system led to an extraordinary, large-scale, and long-lived

dust outbreak, accompanied by significant precipitation over parts of Algeria, Tunisia, and Libya.

This paper uses sensitivity simulations with the limited-area model developed by the Consortium for Small-

Scale Modeling (COSMO) together with analysis data and surface observations to test several hypotheses on

the dynamics of this case proposed in previous work. It is demonstrated that air over central Algeria is cooled

by evaporation of frontal precipitation, substantially enhancing winds at the leading edge of the cold front.

This process is supported by very dry low-level air in the lee of the Atlas Mountains associated with a foehn

situation. Flattening the mountain chain in a sensitivity experiment, however, has complex effects on the

wind. While reduced evaporative cooling weakens the front, the elimination of the orographic blocking ac-

celerates its penetration into the Sahara. The simulations also indicate high winds associated with a hydraulic

jump at the southern slopes of the Tell Atlas.

Feeding the simulated winds into a dust emission parameterization reveals reduced emissions on the order

of 20%–30% for suppressed latent heating and even more when effects of the increased precipitation on soil

moisture are considered. In the experiment with the Atlas removed, effects of the overall increase in high

winds are compensated by an increase in precipitation. The results suggest that a realistic representation of

frontal precipitation is an important requisite to accurately model dust emission in such situations.

1. Introduction

In March 2004 extraordinarily widespread and long-

lasting dust emission over large parts of the Sahara,

paired with rapid transport to the south and west, led to

the creation of an enormous dust plume, which during its

final stages covered the subtropical and tropical Atlantic

Ocean from Morocco to the Gulf of Guinea. Figure 1

shows the extent of the dust front on 1200 UTC 3 and 6

March. This spectacular case instigated a lot of research

interest on the dynamical background, the dust emission

and transport, and the dust’s impacts on precipitation

and aerosol optical depth (Knippertz and Fink 2006,

hereafter KF06; Min et al. 2009; Shao et al. 2010; Mangold

et al. 2011). According to Shao et al. (2010), the amount

of dust emitted from North Africa during this whole

major dust outbreak is in the range of the total annual

emission from the Sahara Desert. KF06 analyzed the

synoptic evolution of this case in detail. Dust emissions

were first observed over central Algeria in connection

with the crossing of an upper-level trough and associ-

ated surface cold front over the Atlas Mountains. The

strong increase in pressure in the cool air behind the

front then led to sustained strong northerly flow and dust

emission across large parts of the Sahara. Between 1500

and 1800 UTC on 2 March 2004 the central Algerian

synoptic station Adrar reported a reduction in visibility

to 100 m, a wind speed rise from 9 to 18 m s21, a tem-

perature drop from 258 to 128C, a dewpoint rise of 128C,

and a pressure rise of 5.3 hPa. The further development of

this dust outbreak was associated with a Harmattan surge
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reaching the Guinea Coast, where it caused a breakdown

of the land–sea breeze and produced maximum tempera-

ture records (KF06).

KF06 hypothesized that the evaporation of cold

frontal precipitation south of the Atlas Mountains and

the associated increase in density accelerated the low-

level winds at the leading edge of the cold front to cause

the initial dust mobilization. Such a dualism of cold

fronts and density currents is extensively discussed in

Smith and Reeder (1988). KF06 further speculated that

foehn effects might have enhanced dryness on the lee

side, which supported the evaporation.

Studies of idealized cold fronts have shown that dia-

batic effects can have a considerable impact on the dy-

namical structure of the front (e.g., Thorpe and Nash 1984;

Barth and Parsons 1996). Diabatic effects have been found

to modify frontal systems in different ways, causing a more

rapid propagation of the front, prefrontal pressure troughs

and wind shifts, or prefrontal stable layers that can slow

frontal movement (Schultz 2005). Case studies of cold

fronts in subtropical or arid regions show that subcloud

evaporational cooling can be either frontogenic or fron-

tolytic (Ryan et al. 1989; Katzfey and Ryan 1997; Schultz

and Trapp 2003; Chen et al. 2007).

The large interest in cases like the March 2004 event is

intimately related to the important role of Saharan dust

in the climate system. Mineral dust accounts for about

60% of the global aerosol mass burden (Textor et al.

2006)—about half of which is emitted from the Sahara

(Ginoux et al. 2004; Tanaka and Chiba 2006). Once air-

borne, dust affects radiation (Haywood et al. 2001) and

cloud microphysics (Richardson et al. 2007). According to

Yin and Chen (2007), the absorption-induced heating in

lower-tropospheric dust layers can lead to less cloud cover

and less precipitation, while dust particles in altitudes

above the 258C level may promote the development of

clouds and precipitation. Dust provides the strongest sig-

nature in the aerosol optical depth and perturbation to the

clear sky radiation budget over the ocean and thus poses a

challenge to satellite retrieval algorithms (Haywood et al.

1999, 2001). Furthermore, mineral dust particles are

known to be efficient ice nuclei (Klein et al. 2010). As such,

they can have impacts on the upper parts of cold clouds

(Richardson et al. 2007) and on tropical deep convection

(Gong et al. 2010). For example, the dust outbreak dis-

cussed here influenced the microphysical processes of

a deep convective cloud system over the Gulf of Guinea,

shifting the size distribution of hydrometeors to smaller

particles (Min et al. 2009). Refined treatment of dust in

numerical models tends to improve model climatologies

and forecast skills. Studies with an advanced aerosol cli-

matology within the European Centre for Medium-Range

Weather Forecasts (ECMWF) model show positive ef-

fects on the forecasts of the African easterly jet (Tompkins

et al. 2005) as well as on the West African monsoon, tro-

picwide precipitation, and the mean extratropical circu-

lation errors (Rodwell and Jung 2008). Using the National

Centers for Environmental Prediction (NCEP) limited-

area Eta Model, Pérez et al. (2006) demonstrate significant

improvements of the atmospheric temperature and the

mean sea level pressure (MSLP) forecasts if the radiative

effects of mineral dust are incorporated in the model.

The mobilization of desert dust occurs in sparsely or

nonvegetated areas depending on surface properties and

is highly dependent on the near-surface wind speed. A

certain local threshold value has to be exceeded that

depends on the soil particle size (Cornelis et al. 2004).

The emission of mineral dust is initiated by the process of

saltation, which produces the fine dust particles that can

be transported over large distances (Iversen and White

FIG. 1. European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) Meteosat Second

Generation (MSG) dust red–green–blue (RGB) composite for (a) 1200 UTC 3 and (b) 1200 UTC 6 Mar 2004. Airborne

dust is indicated by pinkish colors. The RGB composite is produced using the following MSG infrared channels: 12.0–

10.8 mm (red), 10.8–8.7 mm (green), and 10.8 mm (blue).
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1982). Saltation is approximately proportional to the

horizontal friction velocity to the power of 3 (White 1979;

Alfaro and Gomes 2001). For the investigation of the mis-

cellaneous consequences of airborne dust and the modeling

of the entire dust cycle within numerical models a good

handling of the dust emission is essential (Tegen and Fung

1995; Heinold et al. 2008). Improvements in the numerical

modeling of the dust cycle therefore require a better un-

derstanding of the processes that produce strong surface

winds over dust source regions.

The objectives of this paper are therefore to test the

hypothesis of KF06 on front intensification through

evaporation in the lee of the Atlas and to assess the

impacts of this mechanism on dust emission. Since such

hypotheses are difficult to test with observational data

alone, carefully designed sensitivity experiments with

a limited-area numerical model will be carried out to

investigate the fully nonlinear effect of subcloud dia-

batic cooling and the flow across the Atlas Mountains.

Moreover, we will look more generally into the effects of

the Atlas Mountains for this case, including an investigation

of downslope windstorms associated with hydraulic

jumps (e.g., Lin 2007) in the lee of the Atlas chain. The

remainder of this paper is structured as follows. The nu-

merical model setup, the dust emission model, and the

observational data used in this study are described in

section 2, followed by an evaluation of the control sim-

ulation in section 3. Section 4 contains a detailed analysis

of the impact of the evaporative cooling on low-level

wind speed distribution and dust emissions, while the

influence of the Atlas Mountains is discussed in section 5.

A summary and conclusions are provided in section 6.

2. Data and model

a. The COSMO model

In this study we analyze output from the regional,

nonhydrostatic model developed by the Consortium for

Small-Scale Modeling (COSMO), which is currently

used for operational numerical weather prediction at the

German and several other European weather services

(Schättler et al. 2008). Details about the setup used in

this work are summarized in Table 1. The model was run

with horizontal grid spacings of 7 km (COSMO7) and

2.8 km (COSMO2.8) on two different model domains

(Fig. 2). COSMO2.8 is nested into COSMO7, which in

turn receives initial and boundary data from ECMWF

operational analyses (see section 2b). Simulation pe-

riods cover 0000 UTC 1 March to 0000 UTC 7 March

2004 for COSMO7 and 0600 UTC 2 March to 0000 UTC

3 March for COSMO2.8. In COSMO7 deep moist con-

vection is parameterized using the Tiedtke mass flux

scheme (Tiedtke 1989), while only nonprecipitating

shallow convection is parameterized in COSMO2.8.

The microphysics packages differ in the number of

TABLE 1. Setup of COSMO7 and COSMO2.8.

COSMO7 COSMO2.8

Model version 4.3 4.3

Initial and boundary data ECMWF analyses COSMO7 hindcasts

Simulation time span 0000 UTC 1 Mar to 0600 UTC 2 Mar to

0000 UTC 7 Mar 2004 0000 UTC 3 Mar 2004

Horizontal grid spacing 0.06258 ’ 7.0 km 0.0258 ’ 2.8 km

No. of grid points 780 3 632 5 492 960 441 3 341 5 150 381

Vertical layers 40 40

Time integration scheme Two-time-level Runge–Kutta Two-time-level Runge–Kutta

Time step 30 s 30 s

Parameterization of convection Tiedtke mass flux scheme Only shallow convection

Ice scheme Two-category Three-category

FIG. 2. Model domains of COSMO7 (exterior bold black line)

and COSMO2.8 (interior bold black line). The shading shows the

topography in meters above mean sea level of COSMO7. Black

dots indicate synoptic stations used in this study. The region, where

the model is modified in the first sensitivity experiment (NOLATC;

see section 4b), is surrounded by a dashed gray line. Thin black

lines mark political borders. The bold dotted line indicates the

location of the cross section shown in Fig. 8.

2522 M O N T H L Y W E A T H E R R E V I E W VOLUME 140



hydrometeor categories. COSMO7 simulates snow and

ice, while COSMO2.8 also includes graupel. The simu-

lations with these standard setups are termed control

simulations (CTRs). To quantify the impact of orography

and evaporation, sensitivity experiments are carried out,

which are described in detail in sections 4b and 5a, re-

spectively.

b. Observational and analysis data

ECMWF operational analyses with 18 3 18 grid spacing

are used as initial and boundary data of the COSMO

model simulations and for the evaluation of the control

runs. This dataset is considered to provide a reliable de-

scription of the dynamics and thermodynamics of the

event (KF06). The model output will also be compared to

synoptic surface observations (SYNOPs) of temperature

and wind from various stations in North Africa distrib-

uted by the World Meteorological Organization (Table 2

and Fig. 2).

c. Dust emission model

For a quantitative estimate of the impact of single

meteorological processes on dust emission, a separate

model driven by hourly (COSMO2.8) and 6-hourly

(COSMO7) model output is used. Time and size resolved

dust emission fluxes are computed for the individual

COSMO simulations applying the emission parameteri-

zation by Tegen et al. (2002) in postprocessing mode,

which has been used for mineral dust simulations at the

global (Tegen et al. 2004; Stier et al. 2005) and regional

scales (Tegen et al. 2006; Heinold et al. 2011). For the

dust emission computation, surface friction velocities are

calculated from the 10-m model winds, and threshold

friction velocities of initial dust mobilization are de-

termined for each soil size fraction. To compensate for

the lower surface winds in simulations with COSMO7

and to ensure similar dust emission fluxes for 2.8- and 7-

km grid spacing, the emission threshold velocity is re-

duced by 10% (as also described by Heinold et al. 2007).

Potential dust sources are prescribed on the basis of Me-

teosat Second Generation (MSG) satellite observations of

dust source activations (Schepanski et al. 2007, including

updates). Over active sources, the surface roughness is set

to a constant value of 0.001 cm.

Soil moisture largely impedes dust emission because

of interparticulate capillary forces that adhere single

particles to the ground (Fécan et al. 1999). The impact of

soil moisture on dust emission is tested here in a very

simplistic way. Dust emission is computed in three dif-

ferent ways: (i) assuming no influence of soil moisture,

(ii) suppressing dust emission over regions with 1 mm of

rain over the previous 24 h, and (iii) same as (ii) but for

5 mm.

3. Evaluation of the control simulation

The first step of the analysis is to evaluate the CTR

from COSMO7 with observational data. The model

output is interpolated to a regular 18 3 18 grid in order to

make it comparable to ECMWF analyses. Figure 3a

shows the 500-hPa geopotential height (Z500) as ana-

lyzed by ECMWF for 0000 UTC 5 March 2004—that is,

during the mature stages of the event, when the upper-

level trough extended from southeastern Europe to

Niger. Differences between the CTR and the ECMWF

analysis for this time, which corresponds to 4 days into

the simulation, are very small throughout most of the

domain with two notable exceptions. One is a dipole at

the southwestern end of the trough over Libya (258N,

108E), and the other is an area of slightly lower Z500 in

the CTR over the eastern Mediterranean Sea. The root-

mean-square error (RMSE) calculated for the area 108–

408N, 158W–258E (i.e., 1271 grid points; see box in Fig.

3a) for this time is 8.3 gpm. This area excludes the outer

parts of the model domain, where the simulations are

nudged to ECMWF data. During the simulation period

from 1 to 7 March 2004 the RMSE varies between 3.7 gpm

and a maximum of 11.3 gpm at 1200 UTC 4 March 2004.

In operational forecasts, RMSEs typically reach about

20 gpm after 2 days (J.-P. Schultz, German Weather Ser-

vice, 2008, personal communication). This and the lack of

a RMSE trend in the COSMO7 simulation indicate that

TABLE 2. Synoptic stations in North Africa that are used for the evaluation of the CTR (see Fig. 1 for location).

Station name Country World Meteorological Organization (WMO) No. Lat, 8N Lon, 8E Elev, m

Adrar Algeria 60620 27.53 20.17 263

Bir Moghrein Mauritania 61401 25.14 211.37 360

Djanet Algeria 60670 24.33 9.28 1054

El Golea Algeria 60590 30.34 2.52 397

Gafsa Tunisia 60745 34.25 8.49 314

Ghardaia Algeria 60566 32.23 3.49 450

Timimoun Algeria 60607 29.15 0.17 312

Tindouf Algeria 60656 27.40 28.08 431
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the boundary conditions keep the CTR fairly close to the

ECMWF analyses throughout the entire period.

Figure 3b shows the horizontal distribution of 10-m

wind speed from COSMO7 at 1200 UTC 3 March 2004.

There is an extensive, convex-shaped area with winds

well above 10 m s21 stretching from the Moroccan coast

to the Algerian–Libyan border. The southern and west-

ern fringes of this region correspond very well with the

leading edge of the dust front as identified and tracked by

KF06 from Meteosat satellite imagery (marked with

a bold black line in Fig. 3b; see also Fig. 1a). This suggests

that the propagation of the cold front and the associated

strong winds are well captured by COSMO7. This holds

in a similar way for prior and later times (not shown). The

second region of high winds in north-central Algeria in

Fig. 3b is also an area of dust mobilization according to

satellite imagery (see Fig. 1a).

Figures 3c and d show comparisons between observa-

tions of 2-m temperature and wind speed at the central

Algerian station Adrar (see Table 1 and Fig. 2) with the

corresponding values interpolated from the COSMO7

output grid to the station location. The comparison

covers the first 4 days of the simulation from 0000 UTC

1 March to 0000 UTC 5 March 2004. Adrar has a large

diurnal cycle of near-surface temperature with an am-

plitude on the order of 15 K (Fig. 3c). The COSMO

model shows close agreement during the day (,1-K de-

viation) and too-warm temperatures by up to 4 K during

the night. The mean error for the 4 days indicates a warm

bias of more than 1 K. A possible reason for this behavior

is an insufficient nocturnal radiation inversion caused by

too much diffusion in the model (Todd et al. 2008), but

a detailed discussion of this problem is beyond the scope

of this paper. The dusty cold front reached Adrar at about

1500 UTC 2 March 2004 associated with a temperature

drop of 13 K in 3 hours (see KF06 for more details). The

frontal passage is slightly delayed in COSMO7 with tem-

perature decreases of 5.3 K between 1500 and 1800 UTC,

FIG. 3. Evaluation of the CTR (COSMO7). (a) Geopotential height at 500 hPa as analyzed by the ECMWF

(contoured every 60 gpm) at 0000 UTC 5 Mar 2004. Shadings (negative values are bordered with dashed lines) show

the CTR (interpolated to a 18 3 18 grid) minus ECMWF analysis for the same time, which corresponds to 96 h after

initialization. The black dashed–dotted line borders the region of the RMSE calculation. (b) 10-m wind vectors and

speed from the CTR at 1200 UTC 3 Mar 2004 (60 h after initialization). The bold black line marks the dust front as

subjectively analyzed by KF06 from satellite imagery. (c),(d) Time series of (c) 2-m temperature and (d) 10-m wind

speed for 0000 UTC 1 Mar to 0000 UTC 5 Mar. Solid lines show the results of the CTR; diamonds are observations

from Adrar. The dotted line in (d) shows the maximum 10-m wind gusts in the model during the past hour. The

vertical gray line marks the observed frontal passage in Adrar between 1500 and 1800 UTC on 2 Mar.
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of 8.2 K between 1600 and 1900 UTC, and 10.4 K from

1600 to 2000 UTC. On the previous day the decrease

between 1600 and 2000 UTC is only 5.2 K, clearly in-

dicating the additional effect of the cold front.

Figure 3d shows the observed 10-min mean 10-m wind

speed at Adrar together with the mean and the maximum

gust simulated by the model. COSMO generally un-

derestimates the winds with a mean error of 23.18 m s21,

while the gusts agree much better with the observed

magnitude (mean error of 10.67 m s21). The arrival of

the front during the afternoon of 2 March with an ob-

served increase in wind speed from 9 to 18 m s21 be-

tween 1200 and 1800 UTC is reasonably captured with

model winds at 1900 UTC reaching 12 m s21 (mean) and

19 m s21 (gusts), respectively. In agreement with the tem-

perature data shown in Fig. 3c, the wind time series also

suggests a slight delay of the frontal passage in the model.

Comparisons with other stations from the region (see Table

2) largely confirm the conclusions drawn from the Adrar

data (not shown).

These results indicate that the model delivers a realistic

representation of the synoptic-scale evolution of the case,

while some more localized and planetary boundary layer

effects might not be fully captured. Our successful re-

production of the March 2004 dust outbreak legitimizes

further investigations of the event with sensitivity ex-

periments in sections 4 and 5.

4. Impact of latent cooling

In this section the influence of latent cooling on the

frontal movement and the low-level wind speed will be

investigated with two different approaches: one based

on diagnoses of the CTR data (section 4a) and the other

based on a sensitivity experiment in which latent cooling is

suppressed in the model (section 4b). Section 4c discusses

impacts on dust emission.

a. Control simulation

To study the dynamical details of the frontal zone, the

high-resolution COSMO2.8 runs are considered. For the

diagnostic part, a new model variable dTdp is defined

that contains the total temperature tendency due to all

phase changes of water accumulated to 1 h. Main con-

tributions to this parameter come from the cloud mi-

crophysics scheme and the saturation adjustment.

Figure 4a shows dTdp between 1700 and 1800 UTC on

2 March 2004 in a north–south vertical cross section

across the cold front from 278 to 338N along 48E (see line

A–B in Fig. 4b). The black line, which borders the area

where the sum of the mixing ratio of all hydrometeor types

(rain, snow, and graupel) exceeds 1 g kg21, is used to

delineate thick cloud and precipitation. Three different

zones can be distinguished: 1) Between 328 and 338N

clouds are rather shallow (mainly 700–600 hPa) and not

associated with large values of dTdp. 2) The main frontal

zone, which lies between 328 and 29.58N, shows a much

deeper layer of high hydrometeor concentrations. Be-

tween 720 and 470 hPa, dTdp indicates substantial latent

heating through condensation, freezing, and resu-

blimation with values of up to 2.5 K h21. Below the

cloud base, which is around 770 hPa in this area, is

a region of even larger negative dTdp due to evapora-

tion, melting, and sublimation of hydrometeors in the

dry desert air. At about 940 hPa, the subcloud air be-

comes moist enough so that the remaining precipitation

can reach the ground. 3) Between 29.58 and 27.58N, the

area of high hydrometeor concentration and the cloud

base rise to about 650 hPa. A smaller, slightly weaker,

and more elevated couplet of positive and negative dTdp

FIG. 4. Cold pool generation in the CTR (COSMO2.8) at 1800 UTC

2 Mar. (a) Diabatic heating rate (shading; negative values are bor-

dered with dashed lines) in a vertical cross section along 48E from

278 to 338N. The black line indicates where the sum of specific rain,

snow, and graupel content exceeds 1 g kg21. (b) 10-m wind vectors

and speed (shading) for the same time. A black ellipse marks the

cold pool, while a white rectangular box borders the region used to

characterize ‘‘undisturbed flow’’ (see text for more details).
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is found in the center of this region, indicating that all

precipitation evaporates before reaching the ground.

The corresponding 10-m wind field is shown in Fig. 4b.

There is a clear frontal structure stretching from circa

278N, 18W to 308N, 58E with maximum values of more

than 14 m s21 near 28.58N, 48E. In the central and

eastern part of the domain, where the wind change at the

front is sharpest, a conspicuous decrease in wind speed

occurs behind the front down to values of less than 2 m s21.

To the west of 08 the flow is much more uniform, especially

within the white box in Fig. 4b. The mean 10-m wind

speed in this region is 8.6 m s21. If one assumes this to

be a representative background flow, the positive and

negative signal in the wind field between 28 and 48E

would be on the order of 6 m s21. Such a pattern is

consistent with the horizontal spreading of a pool of

evaporatively cooled and therefore denser air (marked

in Fig. 4b) superposed on a northerly background flow.

The horizontal flow of air out of the cold pool is also

reflected in the wind direction. According to the MSLP

field (see Fig. 5a), the geostrophic wind direction over

the domain is mostly northeasterly. Over the western

parts, the flow is deflected by surface friction to become

north-northeast (Fig. 4b). In the area of the maximum

wind speed, a westerly component away from the as-

sumed cold pool is evident. The wind field is generally

less coherent in this region, which is consistent with

disturbances generated by evaporatively driven down-

drafts. The same mechanism turns the wind vectors into

a more northeasterly direction on the northwestern side

of the cold pool. Here, however, the wind field is

smoother, indicating weaker downdrafts in the moister

postfrontal region.

To further discuss the idea of a modification of the

frontal flow through evaporatively cooled air, the fol-

lowing thought experiment is conducted. Starting from

homogeneous conditions, it is assumed that the cooling

diagnosed in Fig. 4a persists for 1 h and that the resulting

cold pool subsequently spreads into a resting environ-

ment. This estimate will give a rough idea of the accel-

erations and decelerations associated with the cold pool.

The net negative buoyancy of an air parcel below the

cloud base in Fig. 4a can be determined by

B 5 g
dQ

Qs

1 0:61 dq
y

2 qc 2 qr

� �
, (1)

where dQ(dqy) is the difference in potential tempera-

ture (water vapor mixing ratio) between the air mass and

its surroundings; Qs is the ambient potential tempera-

ture; qc and qr are the mixing ratios of cloud water and

rainwater, respectively; and g is the gravitational con-

stant (Weisman and Rotunno 2004). The difference in

temperature due to diabatic processes dTdp is converted

to the potential temperature increment dQ. A constant

value of 290 K is assumed for Qs. The dominant con-

tribution in this equation comes from the first term with

cooling rates of more than 3 K h21 (see Fig. 4a). The

concomitant uptake of humidity compensates part of the

cooling effect, but is about one order of magnitude

smaller. Effects of qc and qr are another order of mag-

nitude smaller. Assuming symmetry along the front, the

net buoyancy B can be related to the speed of propa-

gation c of a two-dimensional gravity current through

c2 5 2

ðH

0
2B dz, (2)

where H represents the depth of the cold pool (Weisman

and Rotunno 2004) or, in other words, the vertical level

where dTdp goes to zero for a given grid point in Fig. 4a.

FIG. 5. The role of evaporative cooling. Shown are differences

between the CTR minus NOLATC (COSMO2.8) at 1800 UTC

2 Mar 2004 for (a) MSLP and (b) 10-m wind speed (negative values

are bordered with dashed lines). Isolines illustrate the absolute

values in the CTR [labeled in hPa in (a); 12.5 m s21 contour in (b)].

The cold pool is marked as in Fig. 4b.
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If we calculate c in this way for every grid point and

average over the ellipsoidal cold pool sketched in Fig.

4b, which features the grid points with the maximum c

values in its center, a value of 6 m s21 is obtained. Con-

sidering the horizontal scale of about 75 000 km2, this is

an impressively high value for a cooling period of only 1 h

and therefore in good qualitative agreement with the

wind modifications discussed above. Note that maximum

winds behind the leading edge of a density current are

even stronger than the mean propagation speed of the

system (Smith and Reeder 1988). This analysis strongly

suggests that the large evaporational cooling associated

with the penetration of a precipitating cold front into the

dry Sahara Desert can substantially modify the wind

structure at the front.

b. Sensitivity experiment NOLATC

To test the hypothesis discussed in the previous sub-

section in a fully nonlinear modeling framework, a sen-

sitivity experiment is carried out where evaporation,

melting, and sublimation are suppressed below the cloud

base throughout the entire simulation period. For

COSMO7 this modification is only applied in the hori-

zontal domain marked with a dashed gray line in Fig. 2

to minimize effects from outside the main cold front/

cold pool region. The results of this simulation are then

used as initial and boundary data for the COSMO2.8

simulation where the modifications are applied in the

entire model domain. This simulation will be referred to

as sensitivity experiment no latent cooling (NOLATC)

in the following.

Figure 5a shows the difference in MSLP between the

CTR and NOLATC together with the absolute values

from the CTR for 1800 UTC 2 March 2004, which is the

same time as in Fig. 4. There is a strong southeast–

northwest-oriented MSLP gradient across the domain.

The gradient is clearly sharpened in the region of the

cold pool (indicated with the same ellipse as in Fig. 4b)

with the 1016-hPa contour bulging much farther south-

eastward than in the surroundings. The differences be-

tween the two runs show a broad region with values of

just above 1 hPa in the area of the cold pool. Differences

abruptly increase to over 3 hPa at the southeastern

fringe of this region over a stretch of about 100 km. This

suggests that the cold pool in the CTR substantially

sharpens and accelerates the front in this area. The cross

section shown in Fig. 4a cuts right through this part of

the front. The impact of these MSLP differences on the

10-m wind field is shown in Fig. 5b. The 12.5 m s21

isotach from the CTR (black line) largely follows the

main frontal zone as seen in Fig. 4b. The suppression of

the cold pool in the model in NOLATC reduces wind

speeds along the entire front by more than 10 m s21 in

places. Not surprisingly, the largest values in Fig. 5b are

located in close proximity to the strongest signal in the

difference of the MSLP around 298N, 48E (Fig. 5a).

Within and to the north of the cold pool, the outflow of

cold air decelerates the northerly background flow in the

CTR, but this effect is much smaller in magnitude than

the acceleration farther to the southeast. Overall the

signals are on the same order of magnitude as discussed in

the previous subsection, but the asymmetry in the signal

suggests that the fully nonlinear response is more com-

plicated than a simple superposition of homogeneous

background flow with a symmetric cold pool circulation.

c. Impacts on dust emission

Feeding the 10-m winds from the CTR and NOLATC

into the offline dust emission parameterization described

in section 2c allows for a quantitative statement about

the influence of the evaporational cooling and pre-

cipitation on dust production along the front. Table 3

gives total dust emissions over the area 278–338N, 48W–

78E between 1200 and 2400 UTC on 2 March 2004.

Before this time very little dust is lofted in this region.

For COSMO2.8 the CTR winds lead to an emission of

1.14 megatons (Mt) over this 12-h period. Suppression of

latent cooling leads to a reduction of 19%. This result is

sensitive to the grid spacing. For COSMO7, the CTR

gives emissions of 1.15 Mt (recall that some tuning was

applied to match emission from the two different grid

spacings; see section 2c). The reduction in NOLATC is

now even more substantial with a value of 0.76 Mt

(234%).

Precipitation is very scarce in the Sahara Desert and

the soil moisture is usually very low. In this case, how-

ever, rainfall was observed and simulated. Including the

impact of soil moisture, the differences between the

CTR and NOLATC further increase because of the fact

that more precipitation reaches the ground in NOLATC.

If dust emission is suppressed at grid points where the

precipitation in the last 24 h was $5 mm (1 mm), the

difference between the two experiments increases to

36% (65%). This way, evaporational cooling supports

TABLE 3. Total dust emission in Mt in the region 278–338N, 48W–

78E (domain of Fig. 4) between 1200 UTC 2 Mar and 0000 UTC

3 Mar 2004. Values are given for the CTR and the two sensitivity

experiments for different model grid spacings and 24-h pre-

cipitation thresholds for dust suppression. In parentheses the rel-

ative difference to the CTR is given.

Dx RRthr CTR NOLATC NOATL

2.8 km — 1.14 0.92 (219%)

7.0 km — 1.15 0.76 (234%) 1.43 (124%)

7.0 km 5 mm 1.15 0.74 (236%) 1.10 (24%)

7.0 km 1 mm 0.92 0.32 (265%) 0.56 (239%)
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dust emission by both accelerating winds and keeping

the soil dryer.

5. Impact of the Atlas Mountains

This section investigates the influence of the Atlas

Mountains on the evolution of the dust front on 2 and 3

March 2004 using a combination of diagnostic and sen-

sitivity experiment approaches as in the previous sec-

tion. In section 5a, aspects such as the influence of the

mountains on frontal propagation, the generation of

a foehn situation, and lee cyclogenesis will be discussed.

Section 5b will then examine the potential of downslope

windstorms and hydraulic jumps. Impacts on dust

emission will be discussed at the end of each subsection.

First of all, it is notable that only the COSMO7 model

domain includes the entire Atlas Mountains. COSMO2.8

better resolves orographic details, but as the windward

side of the mountains is outside of the model domain, the

foehn is mainly driven by the COSMO7 boundary condi-

tions. On the lee side, the 2-m temperature, dewpoint, and

humidity hardly differ between the CTRs of COSMO2.8

and COSMO7, while the maximum wind speeds along the

front are 1–2 m s21 higher in COSMO2.8. Also, rain rates

are higher in COSMO2.8 on the lee side, which enhances

the impact of precipitation on dust emission, as discussed

in the end of section 5a. To include the driving factors of

the foehn and, as the interest in this case is on synoptic to

mesoscale effects, further analyses are restricted to

COSMO7.

a. Sensitivity experiment NOATL

To investigate the full nonlinear response of the at-

mospheric flow to the existence of the Atlas Mountains,

a second sensitivity experiment no Atlas Mountains is

carried out (referred to as NOATL). In NOATL the

model orography is flattened in the region of the Atlas

by linearly interpolating from a line from 258N, 128W to

348N, 108E northward to the North African coast line

(Fig. 6).

Again for 1800 UTC 2 March 2004, Fig. 7 shows dif-

ferences of the CTR minus NOATL of 2-m dewpoint

temperature (DTd), total precipitation of the past 6 h

(DRR), MSLP (DMSLP), and 10-m wind speed (Dy10m)

together with selected absolute values from the CTR as

in Fig. 5. The first thing to note is a blocking of the northerly

cold air advection in the CTR resulting in a positive

DMSLP signal east of 58W (Fig. 7c). The forced ascent of

nonblocked air is associated with orographic rainfall en-

hancement in the CTR reaching up to 6 mm close to the

northern Algerian Mediterranean coast (Fig. 7b). As

a consequence, the air in the lee is much drier with DTd

reaching values of less than 215 K around 328N, 58E

(Fig. 7a), clearly corroborating a foehn situation in the

CTR as hypothesized by KF06. The enhanced dryness at

low levels increases the potential for evaporation and

thereby reduces precipitation by as much as 6 mm in the

CTR as compared to NOATL (Fig. 7b). The resulting

intensified cold pool in the CTR is clearly reflected in

positive DMSLP up to 6 hPa (Fig. 7c) accompanied by

Dy10m as large as 6 m s21 (Fig. 7d) to the southeast of the

signal in DRR (i.e., around 298N, 68E). There is a clear

structural similarity to the results of NOLATC shown in

Fig. 5, but the pattern is shifted by 28–38 to the east and

the negative signal in Dy10m to the northwest of the cold

pool is larger in this case.

A striking feature in the Dy10m distribution is the

contiguous, convex band of negative values reaching

from about 288N, 88W to 278N, 58E (Fig. 7d). This is an

indication that the cold front propagates inland faster

and is more intense in NOATL than in the CTR. This

shift appears to be closely connected to an extended

negative signal in DMSLP of up to 26 hPa to the south of

the High Atlas Mountains (Fig. 7c), which is a clear sign

of lee cyclogenesis in the CTR. The circulation associated

with this feature opposes the generally northerly flow on

its southeastern side over western Algeria, leading to a

deceleration of winds in the CTR there. A corresponding

acceleration is found on the northwestern side of the lee

cyclone, just off the coast of Morocco (Fig. 7d). This

circulation is also reflected in DTd (Fig. 7a), indicating

that the advection of cold and moist air from the north is

inhibited in the CTR in the region southeast of the lee

cyclone while it is enhanced to the northwest of it. This

way the removal of the orographic barrier in NOATL

allows a more unimpeded penetration of the cold front

into the continent.

FIG. 6. The model orography for the NOATL sensitivity exper-

iment is flattened in the region of the Atlas by linearly interpolating

from the black line (258N, 128W to 348N, 108E) northward to the

North African coast line.
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NOATL confirms the hypothesis by KF06 that foehn

effects support the flow acceleration at the front through

enhanced evaporation. However, negative values over

large parts of the northern Sahara in Fig. 7d demonstrate

higher 10-m wind speeds in NOATL because of the

absence of the mountains.

The effect on dust emission is summarized in Table 3.

Twenty-four percent more dust is emitted in NOATL

than in the CTR if only wind effects are considered.

However, when including the effect of the increased

precipitation in NOATL on emissions, the signal is re-

versed. For a threshold of 5 mm in the last 24 h, the CTR

and NOATL produce almost the same total emission.

Reducing the threshold to 1 mm, NOATL produces

substantially less dust emission than the CTR (239%).

This demonstrates that the removal of the Atlas Moun-

tains influences dust emission positively through a more

unimpeded penetration of high winds into the continent

and negatively through an enhanced moistening of the

soil by stronger frontal precipitation. The enhancement

in the CTR through drier air and thus more evaporation

in the lee, suggested by KF06, is only local and over-

compensated by other effects.

b. Formation of a hydraulic jump

The difference in 10-m wind speed between the CTR

and NOATL (Fig. 7d) shows a number of areas over and

to the south of the Algerian Atlas where the mountains

cause higher near-surface wind speeds in the CTR. The

large signal to the south of 358N along 4.58E is probably

related to the channeling of the low-level flow through a

gap in the Saharan Atlas in this region (see 1000-m el-

evation in black in Fig. 7). In the previous subsection we

discussed the partial blocking of air in the CTR (see

DMSLP in Fig. 7c for example), which implies accu-

mulation of potential energy on the windward side of the

mountain ridge and, for reasons of continuity, conver-

sion into kinetic energy behind it, leading to high ve-

locities in a shallow layer over the lee slope (Lin 2007).

This shallow layer represents an unstable state that re-

establishes stable conditions (deeper layer and lower

velocity) in a turbulent process: the hydraulic jump. In

such a situation, isentropes usually bend downward

behind the ridge and rise suddenly at the position of

the jump (Miller and Durran 1991; Liu et al. 2000). For

1200 UTC 3 March 2004, when the northerly flow toward

FIG. 7. Role of the Atlas Mountains. Shown are differences between the CTR minus NOATL (COSMO7) at

1800 UTC 2 Mar 2004 (shading). Dashed lines show the absolute values in the CTR in each panel. (a) Td (258C

contour), (b) total precipitation of the past 6 h (contour 1 mm), (c) MSLP (contours labeled in hPa), and (d) 10-m

wind velocity (contour 12.5 m s21). Solid lines mark the 1000-m elevation.
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the Tell Atlas is strongest, a north–south height cross

section along 78E using COSMO7 data clearly shows

such a pattern (Fig. 8). Over the ridge at 358N, the 288-K

isentrope is located at 700 hPa. It then drops to 850 hPa

over the lee slope before rising again to 700 hPa. In the

region where the 288-K isentrope reaches its lowest

level, the wind velocity has a maximum of more than

25 m s21 directly above the lee slope. Farther south the

wind rapidly decreases to values of less than 15 m s21,

which is indicative of a hydraulic jump.

Lin (2007, p. 33) describes five fundamental regimes

of flows over mountains based on the Froude number F

and the nondimensional mountain height M according

to

F 5
Uffiffiffiffiffiffiffi
gH
p and (3)

M 5
hm

H
, (4)

with U the velocity and H the layer depth of the un-

disturbed upstream flow, g the gravitational constant,

and hm the mountain height. Figure 8 shows that typical

values in the model are on the order of U 5 14 m s21,

H 5 1500 m, and hm 5 1300 m, resulting in F 5 0.12 and

M 5 0.87. These values for F and M describe a flow in

the regime with a stationary hydraulic jump downstream

of the mountain. This result remains valid for U, varying

from 10 to 15 m s21 and H between 1300 and 1700 m.

Apart from the region discussed here, little evidence for

hydraulic jumps is found in the model, which is most

likely related to the less steep southern slopes of the

Sahara Atlas (see topography in Fig. 2).

The diagnostic dust model shows very high dust

emission fluxes of 15 521 kg s21 over the lee slope (348–

358N, 68–88E) at 1200 UTC 3 March (not shown). This is

38% of the emission that the CTR simulates in the

frontal region at 1800 UTC 2 March. However, emis-

sions decrease to 5000 kg s21 if suppressed at grid points

with more than 1 mm precipitation during the last 24 h.

The simulated rainfall is consistent with observations

at the nearby meteorological station Gafsa (34.258N,

8.498E), where 16-mm precipitation was recorded be-

tween 1800 UTC 2 March and 0000 UTC 3 March. Gafsa

and other stations in this region did not report dust

mobilization on this day. Unfortunately, clouds cover

the area to the immediate south of the Tell Atlas on

3 March (Fig. 1a) so that there is no information on

dustiness from space. Overall, the analysis suggests that

the formation of a hydraulic jump and the accompany-

ing strong low-level winds have the potential to mobilize

huge amounts of dust over the lee slope of the Tell Atlas.

In this particular case, however, precipitation impedes

dust emission to a large extent.

6. Discussion and conclusions

In this paper several dynamical aspects of the spec-

tacular Saharan dust outbreak in March 2004 have been

investigated based on numerical simulations with a re-

gional model using 7- and 2.8-km grid spacing. The con-

trol simulation compares well with surface data, the

ECMWF initial analyses, and satellite images on the

meso- to synoptic scale. However, the model struggles to

reproduce the very strong nocturnal inversion over the

desert observed at synoptic stations, which causes too-

high 2-m temperatures during night and in the morning

hours. The dynamical analysis is done using a combina-

tion of diagnostic investigations and sensitivity experi-

ments with the model. The focus of the study was on

understanding the processes that led to the very strong

winds on the southern side of the Atlas Mountains during

the early stages of the event. KF06 hypothesized that

evaporational cooling and a foehn situation were crucial

for triggering the initial dust emission.

Some of the main findings are schematically summa-

rized in Fig. 9. Cold frontal precipitation falls into the very

dry Saharan air and evaporates, enhancing the tempera-

ture contrast across the front and thereby accelerating the

near-surface winds at the front, while decelerating the

winds to the north of the precipitation zone. This effect

enhances dust mobilization along the front in the model.

Sensitivity experiments suggest a decrease in dust emis-

sion flux by about 20%–30% when subcloud evaporation

of precipitation is suppressed. This reduction increases

substantially if effects of an additional moistening of the

FIG. 8. Hydraulic jump at the Tell Atlas at 1200 UTC 3 Mar 2004.

Vertical cross section along 78E from 308 to 408N (see Fig. 2 for

location) showing potential temperature of the CTR (COSMO7;

shading) and 15 m s21 and 25 m s21 isotachs (black lines). Topog-

raphy is shown in white.

2530 M O N T H L Y W E A T H E R R E V I E W VOLUME 140



soil are taken into account. At least for the very early

stages of the event and parts of the cold frontal area, the

analysis presented here confirms KF06, who hypothesized

that evaporation of cold frontal precipitation accelerated

the low-level winds at the leading edge of the front.

The comparison of the CTR with results of another

sensitivity study, in which the Atlas Mountains were

removed, reveals that cold air is partially blocked by the

orographic barrier and partially forced to ascend, lead-

ing to enhanced rainfall on the windward side in the

CTR. This, in turn, creates a foehn effect in the CTR and

thus drier air masses and more evaporation in the lee,

resulting in less precipitation, a more distinct cold pool,

and stronger frontal winds. However, the mountains also

create a lee cyclone farther to the west that slows the

winds and the penetration of the cold front over Algeria.

These compensating effects hinder a straightforward in-

terpretation of the role of the Atlas Mountains for this

dust event. If only wind effects are considered, dust

emission is reduced because of the mountains. If effects of

the increased inland precipitation in NOATL are taken

into account as well, the wind effects can be compensated

or even overcompensated depending on the choice of

rainfall/soil moisture thresholds. In addition, the model

provides evidence for a hydraulic jump at the Tell Atlas

with near-ground wind velocities of 25 m s21. However,

it is rather unlikely that these winds mobilized large

amounts of dust because the soil in this area was wet from

previous rainfall.

In the future it would be interesting to apply the

methods developed here to comparable large-scale dust

outbreaks such as the ones that occurred in early March

2006 (Slingo et al. 2006; Tulet et al. 2008) and 2007 to see

how robust our findings are. In a third sensitivity study,

the influence of the Mediterranean Sea could be in-

vestigated. Sensible heat fluxes from the relatively warm

sea surface to the colder northern airstream potentially

destabilize the lower troposphere, causing a deeper

boundary layer. An experiment with reduced sea surface

temperatures would help to understand how changes of

boundary layer height and stratification affect the flow

across the Atlas and the inland penetration of the cold

front. Another important extension of this work would

be to simulate this case with an online dust model to test

effects of radiative feedbacks between dust and dynam-

ics, particularly on the later stages of the event. Stanelle

et al. (2010) simulated the dust episode in March 2006

using the online modeling system COSMO-Aerosols and

Reactive Trace gases (ART) and showed that the early

stages of the event with a strong decrease in 2-m tem-

perature were dominated by the passage of the cold front

and not by dust radiative effects. It should also be in-

vestigated to what extent coarser-resolution dust models

are capable of capturing the processes along the cold

front discussed here. Simulations of the March 2004 dust

outbreak with the Global and regional Earth-system

Monitoring using Satellite and in-situ data (GEMS) aero-

sol modeling system reveal that the assimilation of Mod-

erate Resolution Imaging Spectroradiometer (MODIS)

aerosol optical depth improves the model performance

significantly, suggesting that the model underestimates

the dust emission in the Sahara (Mangold et al. 2011).

This study has shown that an accurate treatment of oro-

graphic and diabatic effects in models has the potential to

improve simulations of synoptic-scale dust outbreaks.
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