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The secular variation of the geomagnetic field as observed at the Earth’s surface results from the complex
magnetohydrodynamics taking place in the fluid core of the Earth. One way to analyze this system is to use
the data in concert with an underlying dynamical model of the system through the technique of variational data
assimilation, in much the same way as is employed in meteorology and oceanography. The aim is to discover
an optimal initial condition that leads to a trajectory of the system in agreement with observations. Taking
the Earth’s core to be an electrically conducting fluid sphere in which convection takes place, we develop the
continuous adjoint forms of the magnetohydrodynamic equations that govern the dynamical system together
with the corresponding numerical algorithms appropriate for a fully spectral method. These adjoint equations
enable a computationally fast iterative improvement of the initial condition that determines the system evolution.
The initial condition depends on the three dimensional form of quantities such as the magnetic field in the
entire sphere. For the magnetic field, conservation of the divergence-free condition for the adjoint magnetic field
requires the introduction of an adjoint pressure term satisfying a zero boundary condition. We thus find that
solving the forward and adjoint dynamo system requires different numerical algorithms. In this paper, an efficient
algorithm for numerically solving this problem is developed and tested for two illustrative problems in a whole
sphere: one is a kinematic problem with prescribed velocity field, and the second is associated with the Hall-effect
dynamo, exhibiting considerable nonlinearity. The algorithm exhibits reliable numerical accuracy and stability.
Using both the analytical and the numerical techniques of this paper, the adjoint dynamo system can be solved
directly with the same order of computational complexity as that required to solve the forward problem. These
numerical techniques form a foundation for ultimate application to observations of the geomagnetic field over
the time scale of centuries.

DOI: 10.1103/PhysRevE.84.056321 PACS number(s): 47.65.−d, 05.45.−a, 41.20.−q

I. INTRODUCTION

In 1919, the British scientist Larmor first proposed that
the magnetic fields of the Sun and Earth are generated and
sustained by a complex and nonlinear magnetohydrodynam-
ical (MHD) process [1], known as dynamo action. In the
Earth’s dynamo system, the magnetic field is generated by,
for example, a buoyancy-driven convecting flow of molten
iron, confined to the spherical shell between the Earth’s inner
core and overlying solid mantle. In order for the geomagnetic
field to be sustained, the amplifying influence of induction
due to the electrically conducting flow must overcome the
natural tendency of the magnetic field to decay (e.g., [2]).
In general, the magnetic field reacts back on the convecting
iron through the Lorentz force resulting in a highly complex
nonlinear system.

In order to understand more aspects of the Earth’s dynamo
system, such as the spatial distributions of the velocity, mag-
netic, and temperature fields [3], the convection pattern [4],
possible MHD wave propagation in the core [5], and magnetic
secular variation, more studies from different perspectives are
required, for instance, by tackling the inverse problem. The
Earth’s dynamo system continuously creates a magnetic field,
which is recorded in rocks, lavas, and sediments and also
observed by observatories and satellites. These observations
are represented by two models: gufm1 (for the past 400
years) [6] and cals7k (for past 7000 years) [7]. For Earth,
the electrical conductivity of the mantle is several orders of

magnitude weaker than that of the core; hence Earth’s mantle
is assumed as an insulator and thus, the surface observed data
represented by gufm1 and cals7k can be downward projected
onto the core mantle boundary (CMB). Continuous data in
time of the radial component of the magnetic field at the CMB
are thus given as a function of spherical harmonic degree l and
order m, where l � 13 [8]. These data provide information
on the dynamo system and help to infer the inner working of
Earth’s core. Notice that the magnetic field is divergence-free
and Earth’s mantle is assumed as an insulator, thus a scalar
observation in the radial direction is equivalent to observation
of the magnetic field in all three directions at the CMB.

When simplifying assumptions about the material prop-
erties of the core are made, the evolution of the magnetic
field becomes an initial-value problem, whose trajectory at all
times is governed by the initial conditions. Such a system
lends itself well to the technique of data assimilation, in
either its variational or sequential forms. Data assimilation is a
powerful tool for understanding the evolution of a time-varying
physical system. For example, it can be used to determine
properties of control parameters, e.g., in seismology [9,10],
in meteorology [11], and recently in fluid control [12] for
retrieving unknown control parameters or the initial conditions
of the dynamic system. In meteorology, it has become a
standard approach to use observations in conjunction with a
dynamical model to attempt to find the correct initial condition
that leads to an evolution of the atmosphere in best agreement
with the observations. The final state in this evolution, derived
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using observations necessarily earlier than the present, is then
evolved into the future, generating predictions of the future
state of the atmosphere, the weather forecast.

Despite the wide application of variational data assimilation
in other fields of Earth science, its application to Earth’s
dynamo system only recently began [13]. In this landmark
paper [13], the authors carried out a one-dimensional (1D)
toy model study as a proof of the possibility of applying a
discrete variational method to the MHD system. This work
was further advanced by Canet et al. [14], who developed
a variational formalism for a specific dynamical model of
the core, the quasigeostrophic model. This work focuses on
short time scale dynamics, and thus approximates the core as a
perfect electrical conductor; is has been the basis for the recent
remarkable discovery of torsional oscillations in the core with
time scales on the order of six years [15]. The common thread
to these works is the setting of the problem in a discrete form
and the derivation of the adjoint system under this discrete
form. Because of the large storage requirement and heavy
computational burden in solving the discrete adjoint nonlinear
problem [13], it is our purpose to develop the adjoint dynamo
system in terms of continuous functions and also design the
corresponding algorithms, which carry out the computation of
the adjoint model more efficiently.

An allied, equally influential strand of data assimilation has
been developed in a geomagnetic context in parallel with the
variational approach, based on sequential data assimilation
(see, e.g., [16]). This effort began with the work of Sun
et al. [17] and Liu et al. [18] and has been recently reviewed
in Fournier et al. [19] and Kuang and Tangborn [20]. This
approach is based on the use of classical sequential data assim-
ilation methods being applied to a geodynamo model [21] to
create a framework for guiding the trajectory via observational
constraints [22,23]. The results are so encouraging that the
approach has culminated in a sequential data assimilation
model [24] contributing to the predicted secular variation of the
most recent International Geomagnetic Reference Field [25].

A criterion must be introduced measuring the agreement
between physical observations and predictions of the model.
There is considerable flexibility in the way this agreement
is measured [e.g., [10,26] but a very convenient measure
is based on a weighted squared deviation, often termed
χ2. Regardless of the definition of goodness of fit between
the observations and the model prediction, the process of
estimating the parameters governing a dynamical system
by taking into account observations is usually termed data
assimilation (4Dvar).

The functional χ2 is called the misfit and the optimal predic-
tion occurs at the global minimum of χ2; finding this minimum
is, in general, a nonlinear process. Generally speaking, the
adjoint assimilation relies on deriving the adjoint system of the
forward model, which is, mathematically speaking, the total
derivative of χ2 with respect to the unknowns constrained
by the forward model. The adjoint model is driven by the
combination of observations and predictions backward in time,
and its value at the initial time is the downhill direction of
the misfit with respect to the unknown control parameters
which define the initial condition. The current values of
the unknown control parameters are updated recursively in
this downhill direction. Hence, a most important aspect of

the analysis involves deriving and computing the adjoint
model.

The format of the paper is as follows. In Sec. II, we
discuss the fundamental mathematics, including the general
mathematical framework of the adjoint method for the initial-
value problem, the choice of the boundary condition of the
adjoint field, and the matrix representation of the linear
operator and its adjoint. Section III describes the applications
to a kinematic dynamo and to an illustrative Hall-effect
nonlinear problem, from which we understand the adjoint form
of the divergence-free equation of magnetic induction; we
also develop the proper numerical algorithm for computing
the adjoint system. Some numerical results are reported in
Sec. IV. Based on these results, we derive the adjoint system
of the dynamo problem in Sec. V. Finally, in Sec. VI, we draw
conclusions and discuss the outlook for further work.

II. MEASUREMENTS AND AN UNDERLYING
DYNAMICAL MODEL

A. Geomagnetic data

Variations of the magnetic field have been recorded either
by direct human observation for the last few hundred years
[6] or through the magnetization of rocks and artifacts over
the last few thousand years [7]. These observations have
sensitivity to the magnetic field originating in the core of
the Earth. We adopt the standard approximation of assuming
the mantle to be an electrical insulator. Then the vector
observations of the magnetic field at the Earth’s surface B
are related to the radial component of the magnetic field at
the core surface through a Green’s function appropriate for
the solution of Laplace’s equation in a spherical geometry,
subject to Neumann boundary conditions [27,28]. The ill-
posedness of this problem is clearly understood, and its
remedies through the technique of regularization [e.g., [29]
are routinely implemented. Geomagnetic data are inherently
imperfect measurements and are subject to the presence of
noise. Thus one normally chooses to fit the data under a
least-squares criterion where each datum is weighted inversely
by its estimated error.

For the purposes of our study we do not deal with the
intricacies of dealing with real data; instead we assume this
problem has been solved and that what is available is the
spherical harmonic expansion of the radial magnetic field Br

at the core-mantle boundary, or equivalently the values of the
spectral components of the poloidal scalar on the core surface
[see Eq. (14)]. This shortcut of sidestepping the difficulties
attendant to real data is in accord with the previous initial
work of others [e.g., [22]].

B. The variational data assimilation method
for initial-value problems

Consider a time-evolving physical system given by the
following governing equation:

∂

∂t
P = X(P), (1)

where P(r,t) is a vector from which observables can be
extracted, satisfying a given boundary condition, and X is
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a spatial operator. Depending on the physical system, X(•)
could be a linear or a nonlinear operator acting on a target
field •. Thus in the examples detailed in this paper, for
a diffusion process, X is a linear operator, namely, ∇2•;
for a kinematic dynamo, X is a linear operator given by
∇ × (u × •) + ∇2•, where u is the velocity of the flow;
and for a Hall-effect problem, X is nonlinear given by
∇ × [(u + ∇ × •) × •] + ∇2•.

The dynamical system is defined in the volume V and time
interval τ . The vector P is a function of the location r and
time t and is uniquely determined by the initial and boundary
conditions. Without losing generality, we assume the scalar
square integrable function y(r,t) is a measured property of the
dynamical system.

Our aim is to find the predictions from P(r,t) that agree best
with the observed data y. First, we define the inner product
in L2 (Lebesgue square integrable) as the integral over the
volume. For f,g ∈ L2, the inner product is

〈f,g〉 =
∫

V

wfg dV, (2)

where w is the integration weight, and hence we define a
misfit χ2, measuring the disagreement between observations
and predictions within the observation time window t ∈ [0,τ ],
as

χ2 = 1

2

∫
V

∫ t=τ

t=0
w [O(P) − y]2 dV dt

= 1

2

∫ τ

t=0
〈O(P) − y,O(P) − y〉dt, (3)

where O is the observation operator, which generates the
prediction O(P) at the same positions in space and time as
the measurements y(r,t).

In Eq. (3), the misfit χ2 depends purely on the initial
condition, and an optimal solution (i.e., a local or global
minimum) for the initial condition P0 = P(r,t = 0) is given
by ∇P0χ

2 = 0, where ∇P0χ
2 is known as the gradient of χ2

with respect to the initial condition P0.
However, in general, it is hard to compute ∇P0χ

2 directly,
since P is governed by the dynamic system (1) and the
associated boundary conditions. One standard approach is to
introduce a Lagrange multiplier P† [16,30] and define a new
constrained functional χ2 by augmenting Eq. (3) with the
dynamical constraints to give

χ2 = 1

2

∫ τ

t=0
〈O(P) − y,O(P) − y〉dt

+
∫ τ

t=0

〈
P†,

∂

∂t
P − X(P)

〉
dt. (4)

Mathematically speaking, P† is also known as the adjoint field
of P.

1. Continuous approach

The differential of a functional in a Banach space is called
Gâteaux differentiation [31] and is consequently so defined

in a Hilbert space too, e.g. L2. For example, the Gâteaux
differential of O(P) in the direction of q is defined as

D (O(P)) = lim
ε→0

O(P + εq) − O(P)

ε
= O(q). (5)

where D stands for Gâteaux differentiation and in order to
keep our discussion simple, we assume that the observation
operator O is linear in our paper. Notice that q is an arbitrary
direction and can be equivalently represented considering O as
the identity operator as q = limε→0

P+εq−P
ε

= DP, according
to the definition of Gâteaux differential in (5). Therefore,
we can write D (O(P)) = O(q) = O(DP). Differentiating the
constrained misfit χ2 in the direction DP, we have

Dχ2 =
∫ τ

t=0
〈O(DP),O(P) − y〉dt

+
∫ τ

t=0

〈
P†,

∂

∂t
DP − X′(DP)

〉
dt, (6)

where X′ is the linearized differential of X, known as the
tangent linear operator [13].

Integrating Eq. (6) by parts, we look for adjoint operators
∂
∂t

and [X′]† and find

Dχ2 = [〈DP,P†〉]τt=0

+
∫ τ

t=0

〈
DP,− ∂

∂t
P† − [X′]†(P†) + O† [O(P) − y]

〉
dt,

where O† is the adjoint observation operator satisfying

〈O(DP),O(P) − y〉 = 〈DP,O† [O(P) − y]〉
and [X′]† is the adjoint operator of X′ satisfying

〈P†,X′(DP)〉 = 〈[X′]†(P†),DP〉.
The boundary condition on P† must be chosen; see Sec. II D.
Further imposing the terminal condition that P† = 0 at t = τ ,
we have

Dχ2 = −〈P†
0,DP0〉

+
∫ τ

t=0

〈
DP,− ∂

∂t
P†− [X′]†(P†) + O†[O(P) − y]

〉
dt.

In a Hilbert space, Gâteaux differentiation can be further
written in the form of an inner product [31]. For example,
the Gâteaux differentiation of the misfit χ2 can be written
as Dχ2 = 〈∇P0χ

2,DP0〉. Hence the downhill direction with
respect to the current prediction of the initial condition is

∇P0χ
2 = −P†

0, (7)

where P† satisfies the following adjoint system:

− ∂

∂t
P† = [X′]†(P†) − O† [O(P) − y] . (8)

Notice that in mathematics, the term adjoint, denoted as †, is
applied in several situations. The Lagrange multiplier P† is also
known as the adjoint field of P; the operator [X′]† is known as
the adjoint operator of X′. Furthermore, in matrix language, the
adjoint of a matrix H is also named as the transpose conjugate
of the matrix H, denoted as H†.
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2. Discrete approach

Let {qi} be a complete set of vectors i → ∞ that can be used
to represent P in Eq. (1). The basis qi is orthogonal with an
inner product 〈 〉2 given by 〈qi ,qj 〉2 = ∫

V
w2qi · qj dV = δi,j ,

where the integration is over the volume V and w2 is a weight
function.

The differential equation (1) can be approximated by a finite
dimensional system and written in matrix form. And hence the
forward problem (1) can be written in the spatially discretized
form as

∂

∂t
f = Mf f, (9)

where f = [〈q1,P〉2,〈q2,P〉2, . . .]
T is the discrete form of

P and the matrix Mf ([Mf]i,j = 〈qi ,Xqj 〉2) is the matrix
representation of X. Notice that if the operator X is nonlinear,
the matrix representation of the operator X depends on the
current state of f.

Guaranteed by the Riesz representation theorem, the adjoint
of bounded operators, such as matrices, always uniquely exists
[32]. Hence, one can approximate the adjoint tangent linear
operator [X′]† in Eq. (8) by their matrix representations. Let us
denote the matrix representation of [X′]† by �, where �i,j =
〈qi ,[X′]†qj 〉2. The adjoint system in Eqs. (7) and (8) can be
written as

∇f0χ
2 = −f†0,

(10)

− ∂

∂t
f† = �f† − O†(Of − y),

where f† = [〈q1,P†〉2,〈q2,P†〉2, . . .]T is the discrete form of
P†, O is the discrete form of the observation operator O, and
y is the set of observations.

Notice that we derive the continuous adjoint system using
the inner product 〈 〉 and we discretize the continuous system
using 〈 〉2. If these two inner products are identical, i.e., 〈 〉 =
〈 〉2 (requiring w = w2), one can easily show

Zi,j = 〈qi ,X
′qj 〉 = 〈[X′]†qi ,qj 〉 = �j,i (11)

by the definition of the adjoint operator, where Z is the matrix
representation of the tangent linear X′. Hence � = Z† and
furthermore, the continuous adjoint and discrete adjoint are
entirely numerically equivalent.

C. Numerical approaches and their computational complexity

We have shown the equivalence of the continuous and
discrete approaches in solving the adjoint system in Sec. II B 2,
if X′ is discretized and [X′]† is derived and discretized in the
same Hilbert space. It means that the adjoint operator can
be treated as a black box. Instead of deriving the analytical
form of the adjoint operator [X′]†, one could solve the adjoint
system by simply taking the transpose conjugate of the matrix
representation of X′ [13].

Generally speaking, ordinary differential equations (ODEs)
or partial differential equations (PDEs) can be solved by the
following two different approaches using spectral methods
[33]: (1) a matrix-free algorithm, which requires computing the
forward and inverse spectral transforms and (2) a matrix-based

algorithm, which requires computing the matrix representation
of the operators in ODEs or PDEs.

Suppose we would like to evolve a three-dimensional (3D)
geodynamo and its adjoint system with the spatial truncation
Nmax = Lmax = mmax = k, where Nmax, Lmax, and mmax are
the maximal degree and order in the radial, colatitude, and
longitude directions in spherical coordinates. Using the first
method, at each time step, the spatial transform requires
εk4 operations [34,35], where ε is a prefactor. In contrast,
the matrix-based algorithm requires computing the matrix
representation of the spatial operators of dimension 2k2(k + 2)
[35]. Since the system is nonlinear, at each time step the
matrix representations of the nonlinear operators have to
be recomputed, and computing each column requires ε2k

4

operations. Therefore, at each time step the computational
complexity in computing the matrix representations is bounded
by ε3k

7, which is k3 slower than method (1), where ε3

is a prefactor. Typical spatial resolutions for geodynamo
calculations are several hundred basis functions in each spatial
direction [36]. If k = 100, solving the geodynamo and its
adjoint system using method (1) is 106 times faster than method
(2). Furthermore, the matrix dimension for k = 100 resolution
is about 2 × 106 and occupies more than 20 terabytes in
storage, which is extremely difficult for current computer
clusters to handle. Therefore, method (2) is not directly
applicable to large complex systems like the geodynamo
problem. The conventional way to solve the adjoint system
is to mechanically adjoint the forward code [37,38]. However,
the geodynamo is a very complex system and the computer
code is programed and parallelized in a sophisticated way.
It would be very challenging to adjoint the dynamo codes
by hand [19]. Therefore, we are interested in developing
the continuous adjoint dynamo system and the corresponding
numerical algorithm.

D. Updating the estimated initial condition

Having the derivative of χ2 in hand (Sec. II B), we can
now optimize the initial condition, so that the fit to the data is
improved. This can be carried out recursively by updating the
current initial condition estimate P(n)

0 using a simple descent
algorithm,

P(n+1)
0 = P(n)

0 − μ∇P(n)
0

χ2 = P(n)
0 + μP†

0, (12)

where μ is the searching length and P†
0 is the solution of the

adjoint system (8) at the nth iteration of P0.

1. Constraints on the adjoint field P† in 4Dvar

It must be noted that the boundary condition of P† is not
arbitrary. In Eq. (12), the uphill direction of the misfit is given
as ∇P0χ

2 = −P†
0, which leads to an update of the boundary

condition of P(n)
0 . Thus when deriving the adjoint system or

directly computing the matrix representation of the adjoint
operator, there are two principles that need to be satisfied:

(1) If the field P is a divergence-free or curl-free field,
i.e., ∇ · P = 0 or ∇ × P = 0, the adjoint field P† has to be
divergence-free or curl-free.

(2) The term adjoint field is not allowed to change the
boundary condition of the estimated initial condition of the
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forward problem. Let us use K(P) = c to represent the
boundary condition of P. For both linear homogeneous and
inhomogeneous boundary conditions of P, one can have
K(P + μP†) = K(P) + μK(P†) = c for any μ. Since K(P) =
c, the adjoint field P† has to vanish as K(P†) = 0. For example,
if the field ∂

∂r
P + P = H at the boundary r = 1, the adjoint

field P† has to satisfy ∂
∂r

P† + P† = 0 at r = 1.
We use a Galerkin method in this paper (see Sec. III A and

Appendix A) in which every one of the radial basis functions
satisfies the boundary conditions. This gives us the flexibility
to use a more general updating scheme than Eq. (12), whereby
μ in Eq. (12) is replaced by a preconditioning matrix [39].

III. DERIVATION OF ADJOINT OPERATORS
FOR INDUCTIVE SYSTEMS

In this section we introduce two problems of increasing non-
linearity to illustrate how the adjoint systems can be derived.
We evolve magnetic fields subject to specified physical laws,
and show how their initial conditions can be recovered. The
first example has a linear spatial operator X, and the second
has a nonlinear operator. The motivation for these examples
is the following. The example with a linear operator X (the
induction equation with a prescribed flow u) is the simplest
possible physically relevant example. Despite this, it of course
exhibits considerable complexity in its evolution. We devise
our second problem to have nonlinear evolution, since the
spatial operator in the given Hall-effect problem now depends
quadratically on the magnetic field. These examples serve to
illustrate the critical problems inherent in the full dynamo
equations, which are ultimately tackled in Sec. V.

A. Example 1: The kinematic dynamo and its adjoint

We nondimensionalize the magnetic induction equation
(e.g., [2]) by choosing U and L for the characteristic velocity
and length scales. Defining a magnetic Reynolds number,
Rm = UL/η, the induction equation including a possible
α-effect term (where α is a mean-field α effect parametrizing
the interactions of the small scales) is written as [2]

∂B
∂t

= Rm∇ × [u × B + α(r)B] + ∇2B, (13)

where B is the magnetic field, u is the velocity field, and the
general tensor α has been assumed to be isotropic. In our study,
the kinematic dynamo is defined in a unit sphere and we assume
the flow is incompressible, thus both u and B are divergence-
free and can be uniquely represented using a poloidal and
toroidal decomposition. For example, in a spherical geometry
with coordinates (r,θ,φ), the magnetic field can be written as

B =
∑

(n,l,m)

(
a(n,l,m) nSm

l + b(n,l,m) nTm
l

)
,

where {a(n,l,m)} and {b(n,l,m)} are spectral coefficients, the
poloidal and toroidal vectors are given by [28]

nSm
l = ∇ × ∇ × [

l
n(r)Ym

l (θ,φ)r̂
]
,

(14)
nTm

l = ∇ × [
�l

n(r)Ym
l (θ,φ)r̂

]
,

and where r̂ is the unit vector in the r direction; l
n and �l

n

are radial basis functions with degree n less than or equal to

Nmax, the radial truncation level. In colatitude θ and longitude
φ, the spherical harmonics Ym

l (θ,φ) [28] that we use are real
and fully normalized in solid angle and have degree l and
order m satisfying the truncation 0 � m � l � Lmax, for some
specified truncation Lmax. We may further indicate either a
cosine or sine azimuthal dependence of a nonaxisymmetric
harmonic by the addition of either “s” or “c” as a superscript:
e.g., nSmc

l .
When the sphere is surrounded by an electrical insulator,

the radial basis functions must obey the following boundary
conditions [40]:

dl
n/dr + ll

n = 0 at r = 1,
(15)

�l
n = 0 at r = 1,

where the definitions of l
n and �l

n can be found in
Appendix A.

For the sake of simplicity, we initially treat the case
where α = 0 and use nonslip boundary conditions for u,
thus u = 0 at r = 1. Let us denote L1(B) = Rm∇ × (u × B)
and L2(B) = ∇2B. Namikawa and Matsushita [41] found the
adjoint kinematic dynamo system, where the inner product is
defined by the energy norm, and in mathematical language the
adjoint operators can be written as

L
†
1(B†) = Rm(∇ × B†) × u and L

†
2(B†) = ∇2B†, (16)

where the diffusion operator L2 is self-adjoint and the
boundary condition for B† stays the same as that for B,
namely, the electrical insulating boundary condition (15).
However, of most interest is the adjoint operator L

†
1. Using

the vector identity ∇ · (a × b) = −(∇ × b) · a + (∇ × a) · b
and integrating by parts, we have

〈B†,∇ × (u × B)〉 =
∫

V

B† · [∇ × (u × B)] dV

=
∫

�

[(u × B) × B†] · d�

+
∫

V

B · [(∇ × B†) × u]dV, (17)

where the inner product 〈 〉 is defined in Eq. (2) with unit
integration weight w = 1 and d� is the surface element. Since
u = 0 at r = 1, the surface integral vanishes, thus we have

〈B†,L1(B)〉 = Rm

∫
V

B · [(∇ × B†) × u]dV = 〈L†
1(B†),B〉.

(18)

Notice that ∇ · B = 0 and ∇ · L1(B) = 0; hence L1 is the
linear mapping from divergence-free field back to itself.
Following our remarks in Sec. II D 1, the adjoint operator
L
†
1 has to be divergence-free for the initial-value problem.

However, the adjoint term (∇ × B†) × u does not satisfy such
a condition. Also notice that B is uniquely represented by the
poloidal and toroidal fields (14), hence the linear operator L1

is densely defined in L2 and its adjoint, L†
1 = Rm(∇ × •) × u,

is unique [42]. Therefore, we need to introduce another
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constraint, i.e., ∇ · B = 0 to the misfit functional χ2 in order
to annihilate the non-divergence-free part. We write

χ2 = 1

2

∫ τ

t=0
〈O(B) − y,O(B) − y〉dt

+
∫ τ

t=0

〈
B†,

(
∂

∂t
− L1 − L2

)
(B)

〉
dt

+
∫ τ

t=0
〈p†,∇ · B〉dt,

where p† is a new Lagrange multiplier.
Taking the Gâteaux differentiation, integrating by parts and

introducing the terminal boundary condition of B† = 0 at t =
τ , we have

∇B0χ
2 = −B†

0,

0 =
∫ τ

t=0

〈
DB,

∂B†

∂t

〉
dt +

∫ τ

t=0
〈DB,O† [O(B) − y]〉dt

+
∫ τ

t=0
〈DB,Rm(∇ × B†) × u + ∇2B†〉dt

+
∫ τ

t=0
〈DB, − ∇p† + r̂ p†δ(r − 1)〉dt, (19)

where the derivation of the last term on the right-hand side of
Eq. (19) is

〈∇ · DB,p†〉 =
∫

V

(∇ · DB)p† dV

= −
∫

V

DB · ∇p†dV +
∫

V

∇ · (DBp†)dV

= −
∫

V

DB · ∇p†dV +
∫

V

DB · r̂ p†δ(r − 1)dV

= 〈DB, − ∇p† + r̂ p†δ(r − 1)〉. (20)

Notice that Eq. (20) is true for any arbitrary boundary condition
of p†. However, the zero boundary condition, i.e., p†|r=1 =
0 is the simplest one, since the boundary term

∫
�

p†DB ·
r̂d� = 〈DB · r̂ p†δ(r − 1)〉 on the right-hand side of Eq. (19)
vanishes, where � is the core surface. Therefore the complete
form of the adjoint induction operator is

L
†
1(B†) = Rm(∇ × B†) × u − ∇p†, (21)

where the Lagrange multiplier p† plays the role of the adjoint
pressure and

∇2p† = Rm∇ · [(∇ × B†) × u]. (22)

Therefore, the adjoint dynamo model can be written as

∇B0χ
2 = −B†

0,

−∂B†

∂t
= Rm(∇ × B†) × u − ∇p† + ∇2B†

−O† [O(B) − y] ,

where the adjoint pressure term satisfies Eq. (22) with the
zero boundary condition p†|r=1 = 0. For a general 3D vector
field, there is a subset s, where each element in s is both
divergence-free and curl-free, i.e., ∇ × ∇ × [rl+1Ym

l (θ,φ)r̂] ∈
s in spherical coordinates. Hence, the adjoint pressure together
with its associated boundary condition determines how much

of the field in s belongs to the adjoint induction term L
†
1(B†)

and how much of that needs to be removed together with
the purely curl-free field from L

†
1(B†) in order to maintain

the divergence-free condition (21). It is pertinent to note that
adjoint dynamo equations were obtained by Roberts [43],
Gibson and Roberts [44], and Kono and Roberts [45], but
for an adjoint magnetic field in a finite conductor that obeys
different boundary conditions to the original magnetic field.
Thus these interesting adjoint equations cannot be applied to
the problem at hand.

In some situations, the flow is assumed to be stress-free
at the boundary or completely inviscid, thus the velocity field
does not vanish at the boundary, and only a nonpenetration
condition applies, i.e., ur = 0. Thus the adjoint operator L

†
1

has to contain a boundary term. Converting the surface term
into a flux injection term, we can rewrite the surface integral
in Eq. (17) as∫

�

[(u × B) × B†] · r̂ d�

=
∫

V

B · [(u · B†)r̂ − B†ur ]δ(r − 1)dV

=
∫

V

B · r̂(u · B†)δ(r − 1)dV,

where r̂(u · B†) is the flux injection which drives the adjoint
system.

We now consider the modifications to the inductive term
that are required when the α-effect term is present. The adjoint
system with an α effect can be written as∫

V

B† · ∇ × (αB)dV =
∫

�

(αB × B†) · d�

+
∫

V

B · α(∇ × B†)dV, (23)

where the boundary term can be further written as a flux
injection term as∫

�

(αB × B†) · d� =
∫

V

B · α(B† × r̂)δ(r − 1)dV.

Hence, the adjoint operator of the α-effect term reads

L†
α(B†) = Rm[α(B† × r̂)δ(r − 1) + α(∇ × B†)].

Equation (23) is considerably simplified when α is a constant:
the surface term vanishes, and indeed the operator Lα is
self-adjoint as we now demonstrate. Using the poloidal
and toroidal decomposition, we find that the two integrals
α

∫
V

B† · (∇ × B)dV and α
∫
V

B · (∇ × B†) dV are nonzero,
only if the following two conditions are satisfied [40]: (1)
l = l′ and m = m′, where l and m are the spherical harmonic
degree and order of B†, and l′ and m′ are the spherical harmonic
degree and order of B and (2) if B† is poloidal, B has to be
toroidal, and vice versa.

Since between B and B†, one field is toroidal and thus has
to vanish at r = 1, the surface integral vanishes at r = 1. Thus
the operator Lα is self-adjoint.
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In summary, the complete form of the adjoint magnetic
induction system reads

L
†
1(B†) + L

†
2(B†) + L†

α(B†)

= −∇p† + Rm[(∇ × B†) × u + α(∇ × B†)] + ∇2B†

+Rm[r̂ (u · B†)δ(r − 1) + α(B† × r̂)δ(r − 1)],

where Lα is the linear operator for the α-effect term [2].
Having the adjoint operator of the induction equation in

hand, we may write the adjoint system of Eq. (13) as follows:

∇B0χ
2 = −B†

0,

−∂B†

∂t
= Rm[(∇ × B†) × u + r̂ (u · B†)δ(r − 1)] + ∇2B†

+Rm[α(∇ × B†) + α(B† × r̂)δ(r − 1)] − ∇p†

−O†[O(B) − y], (24)

where O stands for the observation operator, y stands for the
observations, the boundary condition of B† stays the same
as B, namely, an electrically insulating boundary condition
(15), and p† vanishes at r = 1 and satisfies ∇2p† = Rm∇ ·
[(∇ × B†) × u].

B. Example 2: The Hall-effect dynamo model and its adjoint

The Hall-effect model of magnetic field evolution of a
neutron star was first proposed by Jonse [46], where the
nondimensionalized governing equation reads [47]

∂B
∂t

= RB∇ × [(u − ∇ × B) × B] + ∇2B. (25)

The Hall parameter RB [48] measures the ratio of the Hall-
effect time scale τH = B

eneR2 against the magnetic diffusion

time scale τD = R2/η, RB = τH

τD
= B

eneμ0η
in SI units, where

R is the radius of the star. The whole Hall system is nondi-
mensionalized using τD for the time scale. In the definition of
RB , B is the typical magnetic field strength, μ0 is the magnetic
permeability, e is the charge of the electron, ne is the electron’s
number density, and η is the magnetic diffusivity. In order to
focus on the Hall effect, we set u = 0.

We choose a vertical boundary condition on the magnetic
field, i.e., Bθ = Bφ = 0 at r = 1. It can be shown that the Hall-
effect term does not create or annihilate energy and the energy
of the whole system in the unit sphere will monotonically
decay. Integrating by parts, we have the energy of the system
in the unit sphere,

1

2

d

dt

∫
V

B2 dV = −
∫

V

RB B · ∇ × [(∇ × B) × B]

(26)
−B · ∇2B dV = −

∫
V

(∇ × B)2 dV < 0.

For this boundary condition, the radial basis functions I l
n(r)

and �l
n(r) of the poloidal and toroidal magnetic fields have to

satisfy

dI l
n(r)

dr
= 0 and �l

n(r) = 0 at r = 1. (27)

In Appendix A, we define the spectral basis functions I l
n(r)

and �l
n(r) for the whole sphere satisfying these boundary

conditions.
In light of the discussions of Sec. III A, we are in a position

to quickly derive the adjoint of Eq. (25). The misfit functional
χ2 constrained by the Hall-effect model and the divergence-
free condition of the magnetic field can be written as

χ2 = 1

2

∫ τ

t=0
〈O(B) − y,O(B) − y〉dt +

∫ τ

t=0
〈p†,∇ · B〉dt

+
∫ τ

t=0

〈
B†,

∂B
∂t

+ RB∇ × [(∇ × B) × B] − ∇2B
〉
dt,

where the inner product 〈 〉 is defined as the volume
integral over the unit sphere, the time integral is over
the whole observation time window t ∈ [0,τ ], and the
Lagrange multiplier p† is the adjoint pressure. Taking the total
derivative of χ2 with respect to B0, integrating by parts and
imposing the terminal condition that B† = 0 at t = τ and a
zero boundary condition on p† (p†|r=1 = 0), one finds

∇B0χ
2 = −B†

0,

0 =
∫ τ

t=0

〈
DB, − ∂B†

∂t
+ RB(∇ × B†) × (∇ × B)

+RB∇ × [B × (∇ × B†)] − ∇2B† + ∇p†

+O†[O(B) − y]

〉
dt + S1 + S2 + S3,

where the three boundary terms are

S1 = RB

∫ τ

t=0

∫
�

{[(∇ × DB) × B] × B†} · d� dt,

S2 = RB

∫ τ

t=0

∫
�

{[B × (∇ × B†)] × DB} · d� dt, (28)

S3 = RB

∫ τ

t=0

∫
�

{[(∇ × B) × DB] × B†} · d� dt.

The integrands of the three boundary terms are either
orthogonal to B or B†, thus they do not have radial
components and the boundary terms vanish. The adjoint
system can be represented as

∇B0χ
2 = −B†

0,

−∂B†

∂t
= −RB{(∇ × B†) × (∇ × B) + ∇ × [B × (∇ × B†)]}

+∇2B† − ∇p† − O†[O(B) − y], (29)

where

p†|r=1 = 0,

∇2p† = −RB∇ · [(∇ × B†) × (∇ × B)],

and the boundary condition on B† stays the same as that for
B, namely, Eq. (27).

C. Numerical method

We discretize the spatial part of the magnetic induction term
∇ × (u × B), the Hall-effect term ∇ × [(∇ × B) × B], and
their adjoints using the Galerkin method [33]. Each poloidal
and toroidal radial basis function satisfies the electrically
insulating boundary condition for the kinematic dynamo and
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a vertical boundary condition for the Hall-effect problem. A
similar approach can be found in [35]. The Laplace operator
∇2 is discretized using the same poloidal and toroidal scalars
at the same resolution.

As we discussed in Sec. II B 2, if the continuous adjoint
system is derived and discretized in the same Hilbert space,
the continuous and discrete approaches are numerically equiv-
alent. In our analysis, we derive the adjoints for the kinematic
dynamo and Hall-effect problems using the energy norm.
Hence if we discretize these two systems using the same energy
norm, the continuous and discrete adjoint are equivalent. In a
spherical geometry, the incompressible flow u can also be
expanded in poloidal and toroidal fields,

u =
∑
l,m

∇ × ∇ × [
sm
l (r)Ym

l (θ,φ)r̂
] + ∇ × [

tml (r)Ym
l (θ,φ)r̂

]
,

where sm
l and tml are poloidal and toroidal scalars, respectively.

We first check the numerical accuracy of the adjoint algorithm
for computing −∇p† + (∇ × B†) × u + r̂ (u · B†)δ(r − 1),
where the flow is incompressible and vanishes at the surface
of the sphere (r = 1) and we take the poloidal and toroidal
scalars for the representation of the flow u as [49]

s0
2 (r) = c2r

3(1 − r2)3, t0
1 (r) = c1r

2(1 − r2). (30)

The coefficients are c1 = 8.107 929 179 422 066 and c2 =
1.193 271 237 996 972 in fully normalized real spherical har-
monics. We demonstrate the equivalence of the discrete
and continuous approaches to this problem by computing
the matrix representation M of ∇ × (u × B) using the
algorithm in Appendix B2a and by computing the matrix
� of −∇p† + (∇ × B†) × u + r̂ (u · B†)δ(r − 1) using Ap-
pendix B2b, where analytically � = M†. Notice that the flow
is axisymmetric, thus M and � are block diagonal with each
block representing a different spectral order m. We compute
the largest numerical error of each nonzero entry of M† and
�, where the relative error is E = max |Mj,i−�i,j

Mj,i
|. For the

highest resolutions tested, Nmax = Lmax = 30 and m = 0, the
numerical algorithm exhibits machine precision, namely, the
relative error E is found to be less than 10−13. Notice that
the spectral transform in the φ direction is carried out via fast
Fourier transform using FFTW [50], which is a well known
stable and fast algorithm, thus there is no need to test the
nonaxisymmetric modes other than m = 0.

The time stepping is carried out via a Crank-Nicolson
scheme, where the diffusion term is treated implicitly and the
magnetic induction and Hall-effect terms are treated explicitly
for both forward and adjoint problems. For example, the
induction equation in time is discretized as

Bi+1 =
(

1 − �t

2
∇2

)−1

×
[

Bi + �tRm∇ × (u × Bi) + �t

2
∇2Bi

]
.

The minimization of the misfit is carried out using a limited
memory quasi-Newton method (L-BFGS). Approximating the
misfit χ2 up to the quadratic term, we have

χ2(P0 + �P0) ≈ χ2(P0) + ∇P0χ
2(P0) · �P0

+β 1
2�P0 · H · �P0,

where H is known as the Hessian and the parameter β is
chosen to satisfy the Wolfe conditions [39]. Then the Newton
step �P0 satisfies

∇P0χ
2(P0 + �P0) = ∇P0χ

2(P0) + βH · �P0 = 0. (31)

Hence the improvement of the initial condition is �P0 =
−βH−1∇P0χ

2(P0), where the inverse Hessian H−1 is esti-
mated and gradually improved in the minimization step. In
our numerical study, we have not directed much effort to
the optimal choice of parameters (e.g., β) in Eq. (31). We
simply use the algorithm to demonstrate gradual improvement
of the estimation of the initial condition. Our Galerkin method
ensures that the correct boundary conditions are always
adhered to. The numerical algorithm is based on Nocedal [51]
and the software package is acquired from [52].

IV. VALIDATION OF THE ADJOINT SYSTEMS

A. Synthetic data generation

In the following examples we demonstrate the ability
of our algorithms to correctly recover the initial conditions
of some physical systems. To do so we generate synthetic
data under two scenarios. In the first, which we refer to
as two-dimensional (2D) observations, we generate data
corresponding to the value of the spectral coefficients of the
poloidal scalar Sm

l on the core surface for all degrees and orders
of spherical harmonic up to the model resolution at regular time
intervals. This corresponds exactly to the real-life situation of
boundary value observations. In the second scenario we supply
values of the spectral coefficients of the poloidal scalar nSm

l

at regular time intervals. This corresponds to full knowledge
of the poloidal field within the core (hence we term this
3D observations), but there is no information concerning the
toroidal field. We use this test to discover whether we have
sufficient sensitivity to find the toroidal field in the core.

We perform the closed-loop testing by first defining the
true initial condition of the kinematic dynamo and Hall-
effect system. Starting from the truth, the dynamical system
generates a trajectory B(B0,t) in phase space, where B0 is the
initial condition of B. Although we carry out our computations
in terms of nondimensionalized variables, we will report our
results here in dimensional units (years), pertinent to the
Earth. The conversion requires specification of the magnetic
diffusivity and size of the conducting core; we take η =
1.5 m2 s−1 and r = 3500 km. The lowest decay modes for
a core with insulating or vertical boundary conditions have
eigenvalues λ = π2 and λ = 7.5, respectively; the correspond-
ing decay times r2

λη
are 26 000 and 34 000 years. Neglecting

this difference of 30%, we take the decay time of the slowest
mode to be 30 000 years in both cases. We choose different
combinations of observation time and different observation
techniques for study, where the observation time window is
either 7000 years or 30 000 years and the observation technique
is either 2D or 3D. We define the discrete misfit as

χ2 = 1

2

∑
i

[O · ai − yi]
T · [O · ai − yi], (32)

where ai is the coefficient list of the poloidal magnetic field and
the observed data at the CMB (r = 1) in spectral space (l,m) at
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time ti , yi is the list of observations at ti , andO is the discretized
observation operator. O splits in the spherical degree l and
m and hence is a block-diagonal matrix for both scenarios.
For 2D observations, each diagonal matrix is actually a row

vector, Ol,m = [ l(l+1)l
1

r2 ,
l(l+1)l

2
r2 , . . . ,

l(l+1)l
n

r2 ]r=1, and for 3D
observations, each Ol,m is also a diagonal matrix, Ol,m =
diag[l

1,
l
2, . . . ,

l
n]r=1, where l

n is the poloidal radial basis.

B. Example 1—Kinematic dynamo numerical results

We choose Eq. (30) as the velocity of the kinematic
dynamo. Notice the flow is axisymmetric, thus the magnetic
field decouples in spherical harmonic order m. When solving
axisymmetric induction problems, the spatial computation
complexity increases as the cube of the spatial resolution.
For fully 3D problems, the computational complexity scales
as spatial resolution to the power of 4 [35]. Furthermore,
the time step is a decreasing function of spatial degree,
max[Nmax,Lmax]. We set the true initial condition of B to be
a(1,1,1c/s) = 1 and b(1,1,1c/s) = 1, where a(n,l,mc/s ) and b(n,l,mc/s )

are poloidal and toroidal coefficients, and set the starting
estimate of the initial condition to be B(0)

0 = 0. Limited by
single CPU computing power, we choose the spatial resolution
for the kinematic dynamo to be Nmax = Lmax = 15 for the
m = 1 component (since the solution is entirely m = 1) and
the magnetic Reynolds number to be Rm = 50. The optimal
time step is about 10−4, found experimentally.

We observe the radial component of the magnetic field
everywhere exactly on the CMB (r = 1) for each spherical
harmonic degree l and order m up to the model resolution
every 100 years for 30 000 years.

The initial condition of the magnetic field can be retrieved
well. Figure 1 illustrates the true initial condition (dashed
black) and the rebuilt initial condition (solid gray) of the
magnetic field at the 500th iteration. The misfit drops by 11
orders of magnitude in 500 iterations (Fig. 2), where χ2 is
renormalized by its value at the first iteration. Notice that there
is no information concerning the toroidal field in the observed
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FIG. 1. The test case of a kinematic dynamo for Rm = R′
m = 50:

the true versus the rebuilt initial condition for an axisymmetric
kinematic dynamo represented by the poloidal and toroidal radial
scalars of the m = 1 component, where the dashed black lines stand
for the true initial condition and the solid gray lines stand for the
rebuilt initial condition after 500 iterations.

100 200 300 400 500 N

10 9
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10 5

0.001
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χ2

FIG. 2. For the test case of a kinematic dynamo problem for
Rm = R′

m = 50, the reduction of the misfit χ 2 as a function of the
number of iterations N , where χ 2 is normalized by its value at χ 2 of
the first iteration.

data. The toroidal field is retrieved, due to the inductive
coupling [40], where the poloidal velocity interacts with the
toroidal magnetic field and creates the poloidal magnetic field.

In the 4DVar framework, we implicitly assume that the
dynamical equations are a perfect description of the underlying
physics. However, we can illustrate the sensitivity to model
error by altering the value of Rm from its correct value. To
illustrate this we try to assimilate using an incorrect value
for Rm, namely, R′

m = 45. Figure 3 illustrates the true initial
condition (dashed black lines) and the rebuilt initial condition
(solid gray lines) of the magnetic field at the 200th iteration.
The misfit χ2 drops by five orders of magnitude in about
200 iterations (Fig. 4) and saturates at this level, where χ2

is renormalized by its value at the first iteration. We are still
able to retrieve the poloidal field well, since the observations
are directly of the poloidal magnetic field and R′

m = 45 is just
10% different from the true value Rm = 50. However, due to
the lack of direct observations of the toroidal field, the retrieved
toroidal field differs somewhat from the truth.
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FIG. 3. The test case of a kinematic dynamo for Rm = 50
and R′

m = 45: the true versus the rebuilt initial condition for an
axisymmetric kinematic dynamo represented by the poloidal and
toroidal radial scalars of the m = 1 component, where the dashed
black lines stand for the true initial condition and the solid gray lines
stand for the rebuilt initial condition after 200 iterations.
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FIG. 4. For the test case of a kinematic dynamo problem for
Rm = 50 and R′

m = 45, the reduction of the misfit χ 2 as a function of
the number of iterations N , where χ 2 is normalized by its value at χ 2

of the first iteration. The misfit saturates at the 10−5 level in around
200 iterations.

It is perhaps interesting to remark that both the initial con-
dition B0 and the control parameter Rm can be retrieved using
the variational data assimilation framework. The mathematical
derivation is similar to the pure initial-value problem that we
treat extensively here, where the only difference is that the
Gâteaux differential of χ2 is not only with respect to the
prediction of the initial condition B0 but also to the prediction
of Rm. However, it is not the main scope of this paper, and we
skip such mathematical derivations.

C. Example 2—Hall-effect problem

Eschewing for the present time a parallel approach, we use
a purely serial code and choose a modest truncation of Nmax =
Lmax = mmax = 5 as the spatial resolution, the maximum Hall
parameter is RB = 20, and the initial condition is set as in
Table I. The optimal time step in this setup is discovered to
be about 10−4 for RB = 5 and to be about 10−5 for RB = 20
by experiment. In the numerical experiments, we carry out
three test cases (see Table II), using two different observation
techniques.

Figures 5–10 illustrate the reconstructed initial conditions
compared with the true initial conditions and the reduction
of χ2 for these three cases, where the dashed black lines
stand for the true state, and the solid gray lines are for the

TABLE I. The initial condition of the Hall-effect problem, where
{a(n,l,mc,s )} and {b(n,l,mc,s )} are the spectral coefficients of the initial
magnetic field B0.

a(1,1,0) = 0.4 b(1,1,0) = 0.4
a(1,1,1/c) = −0.25 b(1,1,1/c) = −0.25
a(1,1,1/s) = 0.25 b(1,1,1/s) = 0.15
a(1,2,0) = 0.35 b(1,2,0) = 0.35
a(1,2,1/c) = −0.1 b(1,2,1/s) =−0.1
a(1,2,1/s) = 0.15 b(1,2,1/s) = 0.05
a(1,2,2/c) = −0.05 b(1,2,2/c) = 0.15
a(1,2,2/s) = 0.1 b(1,2,2/s) = 0.1

TABLE II. Three test case setups for the Hall-effect problems,
where �τ is the time interval between two observations and τ is
the time window. RB is the Hall parameter and “obs” defines the
observations to be either 2D (at r = 1) or 3D. The e-folding time of
the Hall-effect problem with the vertical boundary condition is about
30 000 years.

Obs RB τ (yr) �τ (yr) Figures

Case 1 3D 5 7000 15 5, 6
Case 2 2D 5 30000 60 7, 8
Case 3 2D 20 7000 15 9–11

rebuilt state. The 3D observation strategy is more accurate
and efficient for rebuilding the initial condition, especially
for the toroidal fields. The rebuilt poloidal fields overlap
with the true states in Figs. 5, 7, and 9, due to the direct
observations on poloidal fields. However, for the toroidal
part, the 3D observation (Fig. 6) performs better than the 2D
observation strategy (Fig. 8), because of the full knowledge of
the poloidal field in space and time, which leads to stronger
convexity of χ2 for 3D observations. But with the help of
stronger advection (nonlinear term), one is able to find out the
nondirectly observable field (toroidal part) even in a shorter
time window. The Hall effect (convection) in test case 3 is
four times as strong as that for test case 2. Comparing these
two cases, we just need a quarter of the observation time
window (7000 years) for test case 3 to retrieve the poloidal
and toroidal scalar (Fig. 10) as accurately as in test case 2
(Fig. 8) over 30 000 years. Furthermore, the efficiency of the
inversion increases when increasing the nonlinearity (Figs. 6
and 8), and for 500 iterations, χ2 of case 2 with RB = 5
drops seven orders of magnitude, and in contrast, χ2 of case
3 with RB = 20 drops eight orders. Our ability to retrieve the
initial condition is shown for case 3 in physical, rather than
spectral space, in Fig. 11; the recovery of the |B| isosurface is
excellent.
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FIG. 5. For the Hall-effect problem, case 1: The rebuilt poloidal
initial condition (in solid gray) against the true state (in dashed black)
and the reduction of the misfit as a function of the iteration number N

for the Hall-effect problem for 500 equally spaced 3D observations
in 7000 years with RB = 5.
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FIG. 6. For the Hall-effect problem, case 1: The rebuilt toroidal
initial condition (in solid gray) against the true state (in dashed black)
and the reduction of the misfit as a function of the iteration number N

for the Hall-effect problem for 500 equally spaced 3D observations
in 7000 years with RB = 5.
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FIG. 7. For the Hall-effect problem, case 2: The rebuilt poloidal
initial condition (in solid gray) against the true state (in dashed black)
and the reduction of the misfit as a function of the iteration number N

for the Hall-effect problem for 500 equally spaced 2D observations
in 30 000 years with RB = 5.
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FIG. 8. For the Hall-effect problem, case 2: The rebuilt toroidal
initial condition (in solid gray) against the true state (in dashed black)
and the reduction of the misfit as a function of the iteration number N

for the Hall-effect problem for 500 equally spaced 2D observations
in 30 000 years with RB = 5.
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FIG. 9. For the Hall-effect problem, case 3: The rebuilt poloidal
initial condition (in solid gray) against the true state (in dashed black)
and the reduction of the misfit as a function of the iteration number N

for the Hall-effect problem for 500 equally spaced 2D observations
in 7000 years with RB = 20.
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FIG. 10. For the Hall-effect problem, case 3: The rebuilt toroidal
initial condition (in solid gray) against the true state (in dashed black)
and the reduction of the misfit as a function of the iteration number N

for the Hall-effect problem for 500 equally spaced 2D observations
in 7000 years with RB = 20.

a b

FIG. 11. (Color online) Isosurfaces for the Hall-effect problem,
case 3. Shown is the |B| = 0.45 isosurface for (a) the true initial state
and (b) the recovered initial state from 2D observations.
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V. CONTINUOUS ADJOINT OF THE BOUSSINESQ
INCOMPRESSIBLE DYNAMO

The geodynamo system is governed by three coupled equa-
tions for velocity field u, magnetic field B, and temperature
field Tc. The flow is assumed incompressible and vanishes
at the CMB, r = 1. The Earth’s mantle is a weak electrical
conductor compared with the Earth’s core, hence we consider
the mantle as an electrical insulator and the magnetic field
satisfies Eq. (15) at the CMB. We set the temperature field
Tc as a constant at the CMB, hence the temperature field
perturbation of the Earth’s core, T , can be set as T = 0 at
the CMB. The geodynamo system can be written as

Eq1:= ∂u
∂t

+ (u · ∇)u + 2� × u + 1

ρ
∇p

− 1

ρ
J × B − ν∇2u − αgT r̂ = 0, (33)

Eq2:= ∂B
∂t

− ∇ × (u × B) − η∇2B = 0, (34)

Eq3:= ∂T

∂t
+ u · ∇T − κ∇2T − h = 0, (35)

where J is the electrical current density, ρ is the mass density of
the core, ν is the kinematic viscosity, � is the angular velocity,
η is the magnetic diffusivity and κ is the thermal diffusivity,
g is the gravitational acceleration, α is the thermal expansion
coefficient, αgT r̂ is the buoyancy force, and h is the internal
heating. Applying the definition of the misfit and introducing
the PDE constraints of the dynamo system and divergence-free
conditions of u and B, where adjoint fields are denoted as u†,
B†, and T †, we have

χ2 =
∫ τ

t=0

1

2
〈O(B) − y,O(B) − y〉dt

+
∫ τ

t=0
[〈u†,Eq1〉 + 〈B†,Eq2〉 + 〈T †,Eq3〉]dt

+
∫ τ

t=0
[〈p†

1,∇ · u〉 + 〈p†
2,∇ · B〉]dt,

where the inner product 〈 〉 is defined in Eq. (2) and the
integration weight w is chosen as w = 1, u† vanishes at the
CMB, B† satisfies the same insulating boundary condition (15)
as B, the boundary condition for T † is T † = 0 at r = 1, and p

†
1

and p
†
2 are the adjoint pressure terms for u and B. Taking the

total derivative with respect to u0, B0, and T0, integrating by
parts and imposing the terminal condition that u† = 0, B† = 0,
and T † = 0 and the zero conditions for p

†
1 and p

†
2, we have

∇u0χ
2 = −u†

0,

∇B0χ
2 = −B†

0,

∇T0χ
2 = −T

†
0 ,

provided that u†, B†, and T † satisfy the adjoint system

0 = −∂u†

∂t
+ ∇ × (u × u†) + u† × (∇ × u) + 2u† × �

+∇p
†
1 − B × (∇ × B†) − ν∇2u† + T ∇T †,

0 = −∂B†

∂t
− (∇ × B†) × u + ∇p

†
2

− 1

ρμ0
[∇ × (B × u†) + u† × (∇ × B)]

− η∇2B† + O†[OB − y],

0 = −∂T †

∂t
− u · ∇T † − αgu† · r̂ − κ∇2T †, (36)

where both u† and T † vanish at r = 1, B† satisfies the insulating
boundary condition (15), and the adjoint pressure terms p

†
1

and p
†
2 with the zero boundary condition p

†
1|r=1 = p

†
2|r=1 = 0

satisfy

∇2p
†
1 = ∇ · [−u† × (∇ × u) − 2u† × �

+ B × (∇ × B†) − T ∇T †],

∇2p
†
2 = ∇ ·

[
(∇ × B†) × u + 1

ρμ0
u† × (∇ × B)

]
.

It is perhaps of interest to consider the geodynamo system
satisfying different velocity boundary conditions, e.g., stress-
free [21], and different temperature boundary conditions [3],
and to consider how our derivation could be implemented
in the situation where the setting is a spherical shell rather
than a full sphere. This situation is the most frequently
considered situation because of physical relevance for the
Earth (possessing, as it does, a solid inner core). By introducing
adjoint pressure terms and boundary driving terms, adjoints of
the Navier-Stokes equation, magnetic induction equation, and
temperature equation can be derived using the same techniques
as those used to obtain Eq. (36). However, deriving an adjoint
for the Laplace operator for different temperature boundary
conditions is slightly different and the detailed derivations can
be found in Appendix C.

VI. DISCUSSION

In our variational data assimilation problem, the downhill
direction for minimizing the misfit functional χ2 is computed
by solving the adjoint system. Our optimal approach is
obtained by solving the continuous system. Our focus in this
work has been to develop the adjoint geodynamo system and
to develop the corresponding numerical algorithms for solving
the geodynamo initial-value problem.

Interestingly, the adjoint dynamo system exhibits different
analytical properties than the forward problem. Hence it re-
quires different numerical algorithms for its solution. We apply
our analysis and numerical algorithm to solve a kinematic
dynamo and the Hall-effect initial-value problem and have
found very encouraging results.

The numerical algorithms described in Appendix B for
solving the forward dynamo problem and its adjoint are
compatible with most geodynamo codes. Solving the adjoint
dynamo system requires an extra Poisson solver. In a spherical
geometry and using a spherical harmonic expansion, the 3D
Poisson equation becomes a 1D ordinary differential equation
with a zero boundary condition at r = 1.

For Earth’s dynamo system, the velocity, magnetic, and
temperature fields are highly nonlinearly coupled together
and generate complex magnetic field variations in space and
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time. Although the toroidal magnetic field is hidden 3000 km
beneath the surface of the Earth, as we demonstrated in the
Hall-effect problem, one is still able to rebuild the initial
condition of the toroidal magnetic field. This is due to the
mechanism in which a poloidal velocity field interacts with a
toroidal magnetic field to create a poloidal magnetic field.
In cases 2 and 3 of the Hall-effect problem, we use 2D
observations of the radial component of the magnetic field at
the CMB to rebuild the poloidal and toroidal initial conditions.
In case 2, the convection due to the Hall effect is five times
faster than the magnetic diffusion and we need about one
diffusion time, or 30 000 years of magnetic data, to retrieve the
initial condition of the magnetic field. In contrast, for case 3,
the Hall effect is four times as fast as that for case 2 and we just
need 1/4 of a magnetic diffusion time for inversion. For Earth,
the magnetic Reynolds number Rm = UL/η is about 500,
where U is the typical velocity assumed to be 20 km/yr [53], L
is the radius of Earth’s core, and η is the magnetic diffusivity.
This means that, for Earth’s dynamo, it takes about 100 yr,
L/U , for the poloidal velocity field to push the toroidal
magnetic field at the top of the inner core to the CMB,
which is 25 times faster than the largest Hall-effect convection
rate in our model, and therefore proportionately less data
are required. Despite the geodynamo being a much more
nonlinear dynamical system than the Hall-effect problem,
we believe that historical magnetic data spanning several
convection times (several hundred years) are of a suitable
duration for geomagnetic data assimilation. Using these data,
we expect to quantify the initial condition of the velocity,
magnetic, and temperature fields. However, it still remains as
an open question whether these several hundred years of data
are sensitive enough to determine the initial condition of the
core fields or not. Nevertheless, as we observed in the inversion
of the kinematic dynamo model, without any knowledge of the
toroidal magnetic field, the toroidal part of the rebuilt initial
condition is somewhat sensitive to Rm. Presumably, for the
geodynamo problem, the retrieved toroidal part of the magnetic
field is sensitive not only to Rm but is also sensitive to the other
control parameters, such as the Ekman number (the ratio of
viscous force to Coriolis force) and the Rayleigh number (the
ratio of the buoyancy force to the viscous force). To answer
these questions, we need to implement the adjoint dynamo
model for further numerical studies.

Central to our derivation is the use of an inner product
defined in terms of volume integrals. In the case of a shell one
must remain with this definition, however, there is no longer
an obvious radial spectral basis i(r) with which to work. The
orthogonality of the basis over the interval [ri,ro] (where ri and
ro are inner and outer core radii, respectively) would require∫ ro

ri

r2n(r)m(r) dr = δnm,

and no set of orthogonal polynomials immediately presents
itself. One can of course use the Gram-Schmidt process to
create such a basis, most likely complete with satisfaction
of the boundary conditions, but the process does not appear
entirely straightforward. In our initial study, we discretize the
adjoint system in the same Hilbert space as we analytically
derive the adjoint system. Hence, the continuous approach
and discrete approach are numerically equivalent. However,

the solutions of the PDEs should not depend on the numerical
scheme. If the forward and the adjoint scheme are accurate
enough, one could solve the forward and the adjoint system
using a different method or different discretizations. This is
the subject of future work.
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APPENDIX A: POLOIDAL AND TOROIDAL FIELDS
DEFINED USING THE ENERGY NORM

We choose the toroidal and poloidal radial basis functions,
such that each mode is orthogonal to the others in the energy
norm,∫

V

�(n1,l1,m1) · �(n2,l2,m2)dV = δn1,n2δl1,l2δm1,m2 ,∫
V

�(n1,l1,m1) · �(n2,l2,m2)dV = δn1,n2δl1,l2δm1,m2 , (A1)∫
V

�(n1,l1,m1) · �(n2,l2,m2)dV = 0,

where dV = r2 sin θ dθ dφ dr is the volume element in
spherical coordinate, �(n,l,m) and � (n,l,m) are defined as

�(n,l,m) = ∇ × ∇ × (l
nY

m
l r̂)

�(n,l,m) = ∇ × (�l
nY

m
l r̂),

and l
n and �l

n are the radial basis. Integrating in θ and φ,
Eq. (A1) can be simplified as radial integrals for each l and m,

δn1,n2 = l(l + 1)
∫ 1

r=0

[
l(l + 1)

r2
l

n1
l

n2
+ ∂l

n1

∂r

∂l
n2

∂r

]
dr,

δn1,n2 = l(l + 1)
∫ 1

r=0
�l

n1
�l

n2
dr. (A2)

The unnormalized poloidal and toroidal radial basis func-
tions satisfying the insulating boundary conditions (15) are

l
n ∝ c0P

(0,l+1/2)
n (2r2 − 1) + c1P

(0,l+1/2)
n−1 (2r2 − 1) + c2

(A3)

and

�l
n(r) ∝ rl+1(1 − r2)P (2,l+1/2)

n−1 (2r2 − 1), (A4)

and the unnormalized poloidal radial basis for the vertical
boundary condition (27) is

I l
n ∝ rl+1

[
d0P

(0,l+1/2)
n (2r2 − 1) + d1P

(0,l+1/2)
n−1 (2r2 − 1)

]
,

(A5)

where

c0 = −2n2(l + 1) − n(l + 1)(2l − 1) − l(2l + 1),

c1 = 2(l + 1)n2 + (2l + 3)(l + 1)n + (2l + 1)2,
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a b

dc

FIG. 12. (Color online) Plots (a) and (b) illustrate the first three
radial basis functions of the poloidal field satisfying the insulating
boundary condition for l = 1 and l = 5, and (c) and (d) illustrate
the first five radial basis functions of the poloidal field satisfying the
vertical boundary condition for l = 1 and l = 5, in the order of red,
gray, and dashed blue for n = 1,2,3.

c2 = 3nl + l(2l + 1),

d0 = −(2n − 1)(n + l),

d1 = (2n + 1)(n + l + 1),

and P
(0,l+1/2)
n is the nth order Jacobi polynomial. The poloidal

radial basis functions l
n and I l

n are newly derived using the
method described in [54–56], where in Fig. 12, one can find
the plots of the first three poloidal radial bases l

n and I l
n for

l = 1 and l = 5. The toroidal radial basis �l
n is the same as we

introduced in [35].

APPENDIX B: ALGORITHMS FOR COMPUTING
THE FORWARD AND ADJOINT TERMS

1. Algorithm for discretizing forward magnetic induction

In order to discretize the induction term ∇ × (u × B) we
use the pseudospectral method. For the horizontal transform in
θ and φ components, we use the standard method [57]. Define

H =
(

�r,
�θ

sin θ
,

�φ

sin θ

)
and � = u × B. (B1)

The poloidal �m
l and toroidal scalar �m

l of the induction term
can be computed as follows:

�m
l = r2

l(l + 1)
[r · ∇ × (u × B)](l,m),

�m
l = r2

l(l + 1)
[r · ∇ × ∇ × (u × B)](l,m).

In spectral (l,m) space, the poloidal and toroidal scalars are
equivalent to

�m
l (r) = cm

l r

l
[Hφ](l−1,m)(r) − cm

l+1r

l + 1
[Hφ](l+1,m)(r)

− r

l[l + 1]

[
∂Hθ

∂φ

]
(l,m)

(r) (B2)

and

�m
l (r) = [Hr ](l,m)(r) + ∂

∂r

[
r�m

l (r)
]
, (B3)

as shown by Glatzmaier [57], where cm
l are normalization

coefficients and

�m
l (r) = cm

l r

l
[Hθ ](l−1,m)(r) − cm

l+1r

l + 1
[Hθ ](l+1,m)(r)

+ r

l[l + 1]

[
∂Hφ

∂φ

]
(l,m)

(r). (B4)

Having computed �m
l and �m

l , one can use the orthogonality
relation in Eq. (A2) to further transform �m

l and �m
l into the

spectral coefficients a(n,l,m) and b(n,l,m).

2. Algorithm for computing the adjoint magnetic induction term

a. Algorithm for computing (∇ × B†) × u − ∇ p†

For simplicity, in our discussion here we assume Rm = 1
but the extension for Rm 
= 1 is obvious. Computing the adjoint
induction term must be performed in a different manner to the
computation of the forward problem. Notice that (∇ × B†) ×
u − ∇p† is solenoidal, and the boundary condition on p† is
p† = 0 at r = 1. This means that if we can solve for p† first
and subtract ∇p† from (∇ × B†) × u, the remaining term is
the adjoint field. Mathematically speaking, the poloidal scalar
[�†]ml (r) of the adjoint field takes the following form:

[�†]ml (r) = r2

l(l + 1)
{r̂ · [(∇ × B†) × u − ∇p†]}(l,m) (B5)

and for toroidal scalar [�†]ml (r), one has

[�†]ml (r) = r2

l(l + 1)
{r̂ · ∇ × [(∇ × B†) × u − ∇p†]}(l,m)

= r2

l(l + 1)
{r̂ · ∇ × [(∇ × B†) × u]}(l,m). (B6)

Further projecting [�†]ml (r) and [�†]ml (r) onto Eqs. (A3) and
(A4) via Eq. (A2), one can get the spectral coefficients of
the adjoint induction term a

†
(n,l,m) and b

†
(n,l,m). Notice that

mathematically the adjoint toroidal transform (B6) is the same
as the forward poloidal transform, thus one can use Eq. (B2) in
computation. The only problem that remains is how to compute
p† for Eq. (B5). One way to do this is to solve a Poisson
equation by taking the divergence of the adjoint induction
term, namely,

∇2p† = ∇ · [(∇ × B†) × u]. (B7)
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This equation can be easily solved via a Galerkin method.
Similarly to Eq. (B1), we define

H† =
(

�†
r ,

�
†
θ

sin θ
,

�
†
φ

sin θ

)
and �† = (∇ × B†) × u.

(B8)

The right-hand side of Eq. (B7) is[
∂H

†
r

∂r

]
l,m

+ 1

r

(
2[H †

r ]l,m + (l + 1)cm
l [H †

θ ]l−1,m

− lcm
l+1[H †

θ ]l+1,m +
[
∂H

†
φ

∂φ

]
l,m

)
(B9)

in spherical harmonics (l,m). Hence, for Eq. (B7), one just
needs to solve an ordinary differential equation in r for each
spherical harmonic degree l and order m for p†. Since p† = 0
at r = 1, one can modify the toroidal B radial basis by reducing
l to l − 1 due to spherical continuity [28], where an unnormal-
ized basis set is �l−1

n = rl(1 − r2)P (2,l−3/2)
n−1 (2r2 − 1).

b. Algorithm for computing (u · B†)r̂δ(r − 1)

Notice that the boundary driving is in the radial direction,
thus this only influences the poloidal field. In the Galerkin
method, we have to project the term (u · B†)r̂δ(r − 1) onto the
spectral space (n,l,m) and we have∫

V
nSm

l · (u · B†)r̂δ(r − 1)dV

= [
l(l + 1)l

n

]
[u · B†](l,m)

∣∣
r=1, (B10)

where l
n is the radial basis function of the poloidal scalar,

l(l+1)
r2 l

n is the radial component of nSm
l and [u · B†](r,l,m) is

the radial function in spherical harmonic space (l,m).

APPENDIX C: ADJOINT TEMPERATURE DIFFUSION
TERM FOR DIFFERENT BOUNDARY CONDITION

In spherical geometry, the temperature field can be decom-
posed as Tc = ∑

l,m f m
l (r)Ym

l (θ,φ), where f m
l is the radial

scalar function and Ym
l is a spherical harmonic. Hence the

Laplace operator decouples in spherical degree l and order m.
As we discussed in Sec. II, if the temperature field

satisfies the linear boundary condition K(Tc) = c for both
homogeneous and inhomogeneous cases, the adjoint field T †

has to satisfy K(T †) = 0 for the adjoint data assimilation
of the initial-value problem. For the temperature field Tc

satisfying either (i), a constant flux boundary condition or
(ii), a heterogeneous boundary condition, one can represent Tc

as temperature perturbation T superimposed on a background
temperature Tb: (i) For a constant flux boundary condition,
∇Tc = cr̂, where c is a constant, the temperature field Tc can
be written as Tc = T + cr , where ∇T = 0 and ∇Tb = cr̂.
(ii) For a heterogeneous condition, Tc = ∑

l,m f m
l Ym

l , where
f m

l (r = 1) = dm
l are known constants, the temperature field

Tc can be written as Tc = T + Tb, where T (r = 1) = 0 and
Tb = ∑

l,m dm
l rlYm

l .
For both cases, we have ∇2Tb = 0 and the adjoint Laplace

operator obeys∫
V

T †∇2T dV =
∫

V

T ∇2T † dV + S1 + S2.

Denote d� as the surface element. The two boundary terms
S1 and S2 are zero,

S1 =
∫

�

T †∇T · d� = 0 and S2 = −
∫

�

T ∇T † · d� = 0,

since for case (i), we have ∇T = ∇T † = 0 at r = 1 and
for case (ii), we have T = T † = 0 at r = 1. Thus for both
cases, the Laplace operator for the temperature perturbation is
self-adjoint, (∇2)† = ∇2.
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