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Abstract. 

Regulation of the resting membrane potential and the repolarisation of neurons are 

important in regulating neuronal excitability. The potassium channel subunits Kv7.2 and Kv7.3 

play a key role in stabilising neuronal activity. Mutations in KCNQ2 and KCNQ3, the genes 

encoding Kv7.2 and Kv7.3, cause a neonatal form of epilepsy and activators of these channels 

have been identified as novel antiepileptics and analgesics. Despite the observations that 

regulation of these subunits has profound effects on neuronal function, almost nothing is known 

about the mechanisms responsible for controlling appropriate expression levels. Here we 

identify two mechanisms responsible for regulating KCNQ2 and KCNQ3 mRNA levels. We show 

that the transcription factor Sp1 activates expression of both KCNQ2 and KCNQ3 while the 

transcriptional repressor, REST, represses expression of both of these genes. Further, we show 

that transcriptional regulation of KCNQ genes is mirrored by the correlated changes in M-

current density and excitability of native sensory neurons. We propose that these mechanisms 

are important in the control of excitability of neurons and may have implications in seizure 

activity and pain. 

 

Introduction 

Regulation of the resting membrane potential and the repolarisation of neurons are 

important in regulating neuronal excitability. One ionic current which plays a key role in 

stabilising neuronal activity is the M-current, a slowly deactivating, non-inactivating potassium 

current first identified nearly 30 years ago as the one underlying the excitatory effect of 

acetylcholine (Brown and Adams, 1980). The M-current is produced by the action of Kv7 

channels encoded by members of the KCNQ gene family KCNQ1-5, each of which encodes an 

individual potassium channel subunit Kv7.1-7.5 (Jentsch, 2000; Robbins, 2001). 

Of the five KCNQ gene family members, KCNQ2 and KCNQ3 are particularly important 

for regulating neuronal activity as these subunits are expressed widely throughout the central 

nervous system with expression patterns that almost entirely overlap (Tinel et al., 1998; Yang et 
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al., 1998). Kv7.2 and Kv7.3 form functional heteromultimers which are believed to represent a 

major M-channel isoform in central and peripheral nervous systems (Delmas and Brown, 2005). 

The importance of the appropriate functioning of Kv7.2 and Kv7.3 in the nervous system is 

highlighted by the fact that mutations in KCNQ2 and KCNQ3 are associated with benign familial 

neonatal convulsions (BFNC) an autosomal dominant neonatal epilepsy (Charlier et al., 1998; 

Singh et al., 1998; Yang et al., 1998; Biervert and Steinlein, 1999). The M-current is also one of 

the key players in nociceptive transmission; inhibition of M-current leads to membrane 

depolarisation and hyperexcitability of nociceptive neurons (Passmore et al., 2003; Crozier et 

al., 2007; Linley et al., 2008; Liu et al., 2010), an important determinant of many pain conditions. 

Pharmacological openers of Kv7.2/Kv7.3 channels therefore now represent important analgesic 

targets (Surti and Jan, 2005; Gribkoff, 2008; Wickenden and McNaughton-Smith, 2009) as 

current therapies are not efficacious for the majority of inflammatory and chronic pain 

conditions.  

Despite their importance, very little is known about the mechanisms responsible for 

regulating KCNQ2 and KCNQ3 expression. Here we use a functional assay to identify important 

regulatory regions within the KCNQ2 and KCNQ3 genes. We show that both KCNQ2 and 

KCNQ3 contain GC box motifs and provide evidence that their transcription is enhanced by the 

Sp1 transcription factor. We also show that expression of both KCNQ2 and KCNQ3 is 

repressed by the Repressor Element 1-Silencing Transcription factor (REST) and that 

expression of REST in neurons is sufficient to repress KCNQ2 and KCNQ3 expression, 

inhibiting functional expression of the M-current and resulting in hyperexcitable neurons. We 

show that REST levels are increased in DRG neurons in response to inflammatory mediators 

and that Kv7.2 levels and M-current density are reduced, suggesting a potential role in 

regulating inflammatory pain responses. Neuronal expression of REST is increased in response 

to sustained neuronal hyperactivity, i.e. in epileptic insults (Palm et al., 1998), cerebral 

ischaemia (Calderone et al., 2003) and in a model of neuropathc pain (Uchida et al.); we 

therefore suggest that by repressing KCNQ2 and KCNQ3 expression REST may contribute to 

chronic overexcitability of neuronal circuits seen in epilepsy and chronic pain. 
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Materials and Methods 

 

Cell culture 

SHSY-5Y and HEK293 cells were grown in Dulbecco’s modified Eagle’s medium/F12 

supplemented with 10% foetal calf serum (PAA Laboratories), 6 g/l penicillin, 10 g/l 

streptomycin, and 2 mM L-glutamine at 37°C and 5% CO2. Dorsal root ganglia (DRG) neurons 

were cultured as previously described (Crozier et al., 2007; Linley et al., 2008; Liu et al., 2010) ; 

briefly, ganglia were extracted from 7-10 day old rats from all spinal levels. Ganglia were 

enzymatically dissociated in Hanks balanced salt solution supplemented with collagenase type 

1A (1.5 mg/ml) and dispase (15 mg/ml, Gibco, UK) at 37ºC for 15-20 minutes. Cells were then 

mechanically triturated, washed twice by centrifugation (800 rpm for 5 minutes), resuspended in 

800 μl of growth medium and plated onto glass coverslips coated with poly-D-lysine and 

laminin. DRG neurons were cultured for 2-5 days in a humidified incubator (37ºC, 5% CO2) in 

DMEM supplemented with GlutaMAX I (Gibco, UK), 10% fetal bovine serum, penicillin (50 U/ml) 

and streptomycin (50 μg/ml). For the inflammatory conditions, cells were incubated with the 

following inflammatory mediators for 48 hr: 1 µM bradykinin, 1 µM histamine, 1 µM ATP, 1 µM 

Substance P and 10 µM PAR-2 activating peptide. For patch clamp experiments, cells were 

washed twice and media was replaced with fresh media that did not contain inflammatory 

mediators for at least 2 hr prior to experiments, to remove any acute effects of inflammatory 

mediators on the M-current. 

 

DNaseI hypersensitivity assay 

SHSY-5Y cells were washed twice with ice-cold PBS, resuspended in DNaseI buffer (10 mM 

Tris (pH 8.0), 50 mM KCl, 5 mM MgCl2, 3 mM CaCl2, 1 mM DTT, 0.1% Nonidet P40, 8% 

glycerol) and incubated on ice for ten minutes. Cells were counted and transferred to a Dounce 

homogeniser and lysed with 15 strokes of a type B pestle. Nuclei were divided into independent 

samples (~1.6x105 per reaction) and treated with 0, 1, 3, 5, and 10 U of DNaseI (Sigma) at 37°C 

for five minutes. Reactions were stopped by addition of equal volume of Stop/Lysis buffer (20 

mM EDTA, 1% SDS, 0.1 mg/ml proteinase K) and incubated at 55 °C overnight. DNA was 



 

 5

extracted several times with phenol/chloroform, once with chloroform and ethanol-precipitated. 

DNA was resuspended in water and the concentration was measured by spectrophotometry. 

Ten micrograms of each sample was digested overnight with the appropriate restriction 

enzymes in a final volume of 30 μl and electrophoresed through 1xTAE, 0.6% (w/v) agarose gel 

at 0.5 V/cm. DNA was transferred to Hybond XL membranes (Amersham) using alkaline 

capillary transfer. DNA fragments were radiolabelled using Prime-It kit, (Stratagene) and [α-

32P]dATP. Hybridisation to Hybond XL membranes was performed as per the manufacturer's 

instructions. 

 

Gel mobility shift assay 

Nuclear extracts were prepared from SHSY-5Y and JTC-19 cells using the method described in 

(Andrews and Faller, 1991). DNA probes were radioactively labelled by Klenow (New England 

Biolabs) fill in of a restriction enzyme generated overhang using [α-32P]dATP (Amersham) and 

incubated with protein extracts before electrophoresis through a 4% nondenaturing acrylamide 

gel. Specificity of DNA-protein binding was assessed by including 10 pmols of double-stranded 

oligonucleotides, or 1 μl anti-Sp1 (2 mg/ml, H-255 Santa Cruz Biotechnology) or 1 μl anti-REST 

(2 mg/ml, P-18, Santa Cruz Biotechnology) antibodies. Complimentary oligonucleotides with 

the following sequences were annealed and used for competition experiments: Consensus Sp1, 

5‘-GATCCCGATCGGGGCGGGGCG-3‘ Non Spec, 5‘-AATTCCCGCGAGGGGCGCCTAGTCC-

CCATG-3‘ CHRM4 RE1, 5’-GTACGGAGCTGTCCGAGGTGCTGAATCTGCCT-3’, Human 

KCNQ2 RE1 5’-GATCCTGGTCAGGACCATGGCCAGCACCCC, Dog KCNQ2 RE1 5’-GATC-

TGCTGCTCAGGACCACGGCCAGCGCCTC, Mouse KCNQ2 RE1 5’-GATCTTGAGTCCAGGA-

CCATGGTCAGCACCAC, Rat KCNQ2 RE1 5’-GATCTTTGCGTCCAGGACCATGGTCAGCGC-

CAC, KCNQ1 RE1 5’-GATCCGGGCCTGCACCCAGGACAGGGCC, KCNQ3 RE1 5’-GATCA-

GGCTCAGGACCTAGGACAGTTCC, KCNQ4 5’-GATCCTGTCCAGGACCTGAGCCAGGGCT, 

KCNQ5 RE1 5’-GATCCTTGTCAGCACCTAGGACAGAGAT 
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Luciferase assay 

Fragments of human KCNQ2 gene corresponding to -64/+179 and -416 /+151 regions were 

amplified by PCR with primers: Sp1s 5’-AAAAGATCTCATGGTGCCTGGCGGGAGG and Sp1a 

5’-AAGAGCTCAACGCGGGGCGGGGCGAG, and AscIs 5’-GGCGCGCCTCGGGCTCA-

GGCTCAG AscIas 5’-GGCGCGCCCTTGGTCCCTTCTGCC. Underlined nucleotides 

correspond to newly formed restriction sites. Additionally we introduced mutations into the Sp1 

binding site to prevent Sp1 binding using the primer Sp1sMut 5’- AAGAGCTCAACGCGGGGCA-

AGGCGAG containing a substitution of GG with AA (bold). Amplified fragments were digested 

with appropriate restriction enzymes and cloned into pGL3 Basic (Promega). Cells were 

transfected in 24-well plates with 250 ng pGL3 plasmid and 1 ng pRL CMV (Renilla luciferase; 

Promega) using 4 μl of Lipofectamine (Invitrogen). Each transfection was performed in triplicate 

for each experiment. Cells were harvested 48 hr post transfection into passive lysis buffer and 

luciferase and Renilla luciferase expression were quantified using a Dual Luciferase Assay Kit 

(Promega) on a Mediators PHL luminometer. 

 

Quantitative RT-PCR 

Total RNA was extracted from dorsal root ganglia cells using Tri-reagent (Sigma). DNase-

treated (Ambion) RNA was reverse transcribed by using M-MLV reverse transcriptase 

(Promega) and purified using Qiaquick columns (Qiagen). Quantitative PCR was performed 

using SYBR Green incorporation (Bio-Rad) for duplicate samples in each experiment. The 

specificity of PCR was verified by melt curve analysis of products obtained from cDNA as well 

as controls in which the reverse transcriptase was omitted. Levels of signal were normalized to 

levels of U6 small nuclear RNA, which were not different between any of the data sets. 

Significance was tested using Student’s t-test. Primers used were: U6s 5’-

CTCGCTTCGGCAGCACA, U6a 5’-AACGCTTCACGAATTTGCGT, KCNQ2s 5’-

GTGGTCTACGCTCACAGCAA, KCNQ2a 5’-AGGGTAAACGTCGCTGCTAA, KCNQ3s 5’-

GCCCACAGTCCTGCCCATCTTGAC, KCNQ3a 5’-CCGTTCCAGTTCCTCGTGGTTGACG,. 

RESTs 5’-CGAACTCACACAGGAGAACG. RESTa 5’-GAGGCCACATAATTGCACTG, SCN2As 

5’-GCTGCATGTCTCTCTTGCTG, SCN2Aa 5’-GGACCGATTTGCTTCACTTC. 
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Western blot and immunocytochemistry 

For western blots, 10 μg of protein extracts from Control and mithramycin A treated SHSY-5Y 

cells were electrophoresed through an SDS/10% (w/v) polyacrylamide gel using standard 

procedures and transferred to Hybond C-Extra (Amersham) and screened with 1:1000 dilution 

of anti-Kv7.2 (Alomone) antibody and a 1:1000 dilution of horse radish peroxidase conjugated 

anti-rabbit antibody. Antibody staining was visualised using an ECL plus detection kit 

(Amersham). For immunocytochemistry, cells were fixed and permeabilised in 

acetone:methanol 1:1 for 5 min on ice, followed by 0.1M PBS Triton X 0.1% for 5 min at room 

temperature and blocked with 10% donkey serum in PBS for 2 hr at room temp. Primary 

antibody incubation was carried out in 10% donkey serum 0.4 M PBS overnight at 4°C at 1:100 

dilution for rabbit anti-REST (H290, Santa Cruz), 1:1000 rabbit anti-Kv7.2 (kind gift from Dr Mark 

Shapiro) or 1:1000 guinea pig anti-TRPV1 (Neuromics) and followed by 1:1000 Alexa Fluor 555 

donkey anti-rabbit or Alexa Fluor 488 donkey anti-guinea pig secondary antibody (Invitrogen) in 

0.1 M PBS for 2 hr at room temperature. Coverslips were mounted in Vectashield with DAPI 

and imaged using a Zeiss LSM510 inverted confocal. Among comparisons between cell 

conditions, coverslips were mounted on the same slide and imaged with the same laser 

settings. Image analysis was carried out using ImageJ software 

 

Plasmid and adenoviral delivery 

The coding sequence for Sp1 was amplified using the primers 5’-GCGAATTCAATGAGCGAC-

CAAGATCACTCA and 5’-CGGAATTCTCAGAAACCATTGCCACTGAT and cloned into the 

expression plasmid pTARGET (Promega). Freshly isolated DRG neurons were transfected with 

pTARGET Sp1 or control plasmid using a Nucleofector device (Amaxa) and used 3–5 days after 

transfection. The green fluorescent protein plasmid pmaxGFP (Amaxa) was co-transfected as a 

marker of the efficiency of transfection. The adenoviral constructs have been described 

previously (Wood et al., 2003). Green fluorescent protein was a marker of the efficiency of viral 

infection. Cells were cultured and infected with adenoviral particles for 48 hr prior to harvesting 

and RNA or electrophysiological analysis. 
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Electrophysiology 

In patch clamp experiments the standard bath solution contained (in mM) NaCl (160), KCl (2.5), 

CaCl2 (2), MgCl2 (1), HEPES (10), pH adjusted to 7.4 with NaOH. For perforated patch 

experiments the patch pipette contained K-acetate (90), KCl (20), CaCl2 (1), MgCl2 (3), EGTA 

(3), HEPES (40), amphotericin B (400 μg/ml), pH adjusted to 7.4 with NaOH. Currents were 

amplified using an EPC-10 patch clamp amplifier (HEKA) and recorded using Patchmaster 

software (v2.2. HEKA). The current signal was sampled at 1 KHz and filtered online at 500 Hz 

using a software based Bessel filter. Patch pipettes were fabricated from borosilicate glass 

(Harvard Apparatus) using a horizontal puller (DMZ-universal puller, Zeitz-Instrumente GmbH) 

and heat polished to a resistance of 2-4 MΩ. Cells were mounted on an inverted microscope 

(TE-2000, Nikon) in a low profile perfusion chamber fed by a gravity perfusion system flowing at 

~2 ml/min resulting in a bath exchange time of ~15 s. Series resistance was corrected online by 

up to 70% using the Patchmaster software and liquid junction potentials were corrected. The 

magnitude of the neuronal M-current was measured from the deactivation current when 

stepping the membrane voltage from -30 mV to -60 mV and was calculated as difference 

between current amplitude at 10 ms into the voltage pulse and that at the end of the pulse. This 

analysis method was designed to minimise any contribution from other K+ currents and 

capacitance artefacts. XE991 was obtained from Tocris. All analysis of patch clamp data was 

conducted using Fitmaster software (v2.11, HEKA). 

 

Statistics  

All data are given as mean ± sem. Differences between groups were assessed by 

Student’s t test or 1-way ANOVA. The differences were considered significant at P ≤ 

0.05.
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Results 

Identification of DNase I hypersensitive sites in the human KCNQ2 gene 

In order to identify regions of the KCNQ2 gene that are important for regulation of 

expression in vivo we used a DNase I hypersensitivity assay. DNase I hypersensitive sites 

(HSS) correlate well with important transcriptional regulatory regions such as promoters, 

enhancer and repressor elements (Fritton et al., 1987; Steiner et al., 1987; Elgin, 1988; Wong et 

al., 1997) and map to regions that recruit transcription factors (Wong et al., 1995; Boyes and 

Felsenfeld, 1996). A DNase I HSS assay was performed in SHSY-5Y cells which are known to 

express KCNQ2 and KCNQ3 (Wickenden et al., 2008) and identified two HSS within the 

KCNQ2 gene (Fig 1A). We performed a bioinformatic analysis of the regions identified to look 

for transcription factor binding sites. An analysis of HSS1 identified a putative Sp1 transcription 

factor binding site (Fig 1B) that is conserved within the promoters of the human, rat and mouse 

KCNQ2 genes. It has previously been shown that regions of DNA that recruit Sp1 display 

hypersensitivity to DNase I (Philipsen et al., 1990; Pruzina et al., 1991; Jiang et al., 1997; Sinha 

and Fuchs, 2001). An analysis of the region surrounding HSS2 identified a putative binding site 

for the transcriptional repressor REST that is conserved within multiple mammalian species (Fig 

1C). REST binding to DNA is known to be sufficient to produce a DNase I HSS (Wood et al., 

2003).  

 

KCNQ2 and KCNQ3 genes contain similar regulatory elements  

To determine if the potential Sp1 factor binding sites are important for KCNQ2 gene 

regulation we used an in vitro DNA:protein interaction experiment to examine the recruitment of 

Sp1. A radiolabelled fragment of the KCNQ2 promoter containing the Sp1 site was incubated 

with nuclear protein extracts from SHSY-5Y cells. Incubation of this region of DNA with nuclear 

protein produced two slowly migrating bands (Fig 1D, lane 1 Sp1:DNA, Non spec) which could 

be competed by excess of an unlabelled Sp1 consensus sequence (Fig 1D, lane 2). The faster 

migrating DNA:protein complex could also be competed by an unrelated sequence (Fig 1D, lane 

3) indicating this complex is the result of non-specific protein:DNA interactions. The slower 

migrating protein:DNA complex could only be competed with a consensus Sp1 sequence and 
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was further retarded by an anti-Sp1 antibody (Fig 1D, lane 4 Sp1:Ab:DNA) indicating the 

presence of Sp1 protein within this complex. Binding of the radiolabelled probe was also 

competed by an excess of unlabelled wild type Sp1 sequence from the KCNQ2 promoter 

(Sp1wt, Fig 1D lanes 5, 6) but not by a KCNQ2 sequence containing mutations predicted to 

destroy the Sp1 site (Sp1mut, Fig 1D, lanes 7, 8). These data indicate that the Sp1 site within the 

KCNQ2 promoter can recruit Sp1 protein present in SHSY-5Y cells. Given the overlap of 

KCNQ2 and KCNQ3 expression and their shared evolutionary origin by duplication from a 

common ancestor gene (Hill et al., 2008), it is quite likely that these two genes would share at 

least some regulatory mechanisms. We therefore searched the KCNQ3 gene for potential Sp1 

and RE1 sites. We identified a conserved Sp1 site in the KCNQ3 gene just upstream of the first 

exon, at an equivalent location to the Sp1 site in the KCNQ2 gene (Fig 1E, F). We also 

identified an RE1 site in the KCNQ3 gene which is conserved across multiple mammalian 

species (Fig 1E, G). Thus the two regulatory elements that we identified within the KCNQ2 gene 

are also present in the KCNQ3 gene. 

  

Sp1 regulates KCNQ2 and KCNQ3 expression  

To determine if the Sp1 site is functionally important in regulating KCNQ2 and KCNQ3 

transcription we used a reporter gene assay with the KCNQ promoter regions. We cloned a 

region of the KCNQ2 promoter encompassing nucleotides -416/+151bp relative to the 

transcription start site into a luciferase reporter vector such that luciferase expression is driven 

by KCNQ2 promoter sequences. This 568bp region encompasses the Sp1 site and 137bp of 

the first exon. We also produced a truncated region that lacks some of the sequence upstream 

of the Sp1 site (-64/+179) and we introduced mutations into the Sp1 site that prevent Sp1 

binding (-64/+179 Sp1mut, Fig 1D, lanes 7, 8). We transfected these DNA constructs into SHSY-

5Y cells and measured the resulting luciferase activity. Luciferase activity from the -416/+151bp 

promoter fragment was 6 fold higher than the control plasmid (Fig 2A, compare -416 /+151bp 

with pGL3 Basic), suggesting that this region of the KCNQ2 gene and the Sp1 site within it 

elevate expression of KCNQ2. Removal of the upstream region did not result in a significant 

loss of expression suggesting that this region is not important in regulating transcription in 
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SHSY-5Y cells (Fig 2A compare –416/+151bp with -64/+179bp). Introduction of mutations that 

prevent Sp1 binding (see Methods, Fig 1D) however resulted in loss of over 50% luciferase 

activity (Fig 2A compare -64/+179 with -64/+179bp Sp1mut) consistent with the hypothesis that 

KCNQ2 expression is regulated by Sp1. In our bioinformatic analysis we noticed that the 

KCNQ2 gene contained a second Sp1 site that overlapped with the first though its score was 

less, suggestive of a lower affinity for Sp1 (Fig S1A). In gel mobility-shift experiments, this 

second site did indeed bind to Sp1, showing a lower affinity than our originally identified site (Fig 

S1B). This second Sp1 site is unlikely to be bound by Sp1 in the wild type promoter because 

the presence of Sp1 at the high affinity site, which overlaps with the low affinity site, would 

presumably occlude it. Mutation of the high affinity site however would uncover this second site 

and the low level of promoter activity seen for the construct, -64/+179 Sp1mut is likely to be due 

to low levels of Sp1 recruitment. To determine if the KCNQ3 gene could also be regulated by 

Sp1 we conducted a bioinformatic search of the human KCNQ3 promoter region. We identified 

a sequence matching a consensus Sp1 site that was highly conserved between the human, 

mouse and rat genomes (Fig 1F). To determine if this potential Sp1 site is functional we cloned 

an 876 bp region of the human KCNQ3 gene encompassing nucleotides -540 to +336 relative to 

the transcription start site and including the Sp1 site into the same luciferase reporter vector as 

for the KCNQ2 promoter. We also cloned a region of the promoter encompassing nucleotides -

169 to +336 which lacks the conserved Sp1 site. Luciferase activity from the -540/+336 

promoter region drove high levels of luciferase expression in SHSY-5Y cells (Fig 2B) which was 

reduced by approximately 80% when the region containing the Sp1 sites was removed (Fig 2B). 

Together these data suggest that Sp1 can regulate both KCNQ2 and KCNQ3 promoter activity. 

 

Sp1 regulates the endogenous KCNQ2 and KCNQ3 genes  

Having shown that Sp1 can be recruited to the KCNQ2 promoter in vitro and the Sp1 site 

within the promoter is important for driving reporter gene activity we wished to test the relevance 

of Sp1 transcription factor activity to endogenous KCNQ2 and KCNQ3 expression. To do this 

we took advantage of mithramycin A, a compound that binds to Sp1 binding sites (GC box) and 

inhibits the function of Sp1 (Ray et al., 1989; Liu et al., 2002; Kim et al., 2006). Transfection of 
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KCNQ2 and KCNQ3 luciferase reporter constructs into SHSY-5Y cells in the presence of 

mithramycin A resulted in a 66% and 90% reduction in luciferase activity, respectively (Fig 2C). 

To determine the role of Sp1 on endogenous gene expression we incubated neurons isolated 

from dorsal root ganglia (DRG) in the presence of 200 nM of mithramycin A for 48 hours and 

measured mRNA expression using quantitative PCR. In the presence of mithramycin A KCNQ2 

and KCNQ3 levels were reduced by 90% (Fig 2D), suggesting that Sp1 is critical for driving 

endogenous KCNQ2 and KCNQ3 expression. Expression of the SCN2A gene, which encodes 

the type II sodium channel was unaffected by mithramycin A suggesting the effect on KCNQ 

expression was not the result of a global change in gene expression (Fig 2D). Incubation of 

SHSY-5Y cells with mithramycin A also resulted in a reduction of Kv7.2 protein (Fig 2E).  As an 

alternative approach to determine if Sp1 was important in regulating expression of KCNQ2 and 

KCNQ3 we transfected DRG neurons with an Sp1 expression plasmid and measured Kv7.2 

expression and M-current densities. We transfected a plasmid expressing GFP alongside either 

the Sp1 expressing or the control plasmid to identify transfected neurons (Fig 3A). In whole cell 

voltage clamp experiments, M-current (IM) was measured from a standard square voltage pulse 

protocol stepping to -60 mV from a holding potential of -30 mV (Fig. 3B Inset) as an amplitude 

of deactivating tail current at -60 mV sensitive to specific M channel blocker XE991 (3 μM) 

applied at the end of each recording. M-current density was significantly larger in Sp1 

transfected compared to control neurons (Fig 3B and C, 1.54 ± 0.34 pA/pF n=8, compared to 

0.91 ± 0.12 pA/pF p<0.05,). Consistently the Kv7.2 immunoreactivity was greater in Sp1 

transfected than in control neurons (Fig 3A and D, relative pixel intensity of 9.53 ± 2.15 n=4, 

compared to 5.49 ± 0.85 n=3, p<0.05). Together these data implicate an important role for Sp1 

in promoting both KCNQ2 and KCNQ3 gene expression and enhancing levels of the M-current 

in neurons. 

 

KCNQ genes are regulated by the Repressor Element 1-Silencing Transcription 

Factor (REST)  

Bioinformatic analysis of the second DNase I hypersensitive site (Fig 1A, HSS2) in the 

KCNQ2 gene identified a putative repressor element 1 (RE1) binding site for the Repressor 
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Element 1-Silencing Transcription factor (REST). The sequence for this site is conserved 

between multiple mammalian species (Fig 1C), suggesting that it is functionally important. 

REST was first identified as a repressor of neuronal gene expression (Chong et al., 1995; 

Schoenherr and Anderson, 1995) but also has roles in heart, blood vessels and epithelial cells 

(Ooi and Wood, 2007). We used a gel mobility shift assay to determine if the RE1 site identified 

in the KCNQ2 gene can recruit REST protein. Incubation of a radioactive, RE1 containing, 

SCN2A promoter region with nuclear extracts resulted in DNA:protein complexes (Fig 4A, lane 

1). One of these (indicated with an arrow on Fig 4A) was competed by an RE1 sequence from 

the CHRM4 gene but not by an unrelated sequence (Fig 4A, lanes 2 and 3). Furthermore an 

anti-REST antibody produced an additional shift of this complex indicating the presence of 

REST protein (Fig 4A, lane 4). Oligonucleotides containing RE1 sequences from human, dog, 

mouse and rat were all able to compete for REST binding indicating that the KCNQ2 gene 

contains an evolutionary conserved, functional RE1 site (Fig 4A, lanes 5-12).  

 

To determine if RE1 sites are present in other KCNQ genes we used our position 

specific scoring matrix (Johnson et al., 2006) to scan each of the 5 KCNQ genes for the best 

match to an RE1. High scoring RE1s were identified in KCNQ2, KCNQ3 and KCNQ5 while the 

closest sequences in KCNQ1 and KCNQ4 to an RE1 site had low scores with our matrix, 

suggesting they would not bind REST. We tested each of these potential RE1 sequences in a 

gel mobility shift assay to determine which would bind REST with high affinity (Fig 4B). The RE1 

sequences from KCNQ2, KCNQ3 and KCNQ5 were each able to compete for REST binding 

while the sequences in KCNQ1 and KCNQ4 could not (Fig 4B). To determine if REST could 

regulate the KCNQ2 and KCNQ3 promoters we cloned the RE1 sequences upstream of the 

luciferase reporter constructs (Fig 2A) and transfected them into two cell lines, HEK293, which 

express robust levels of full length REST natively and SHSY-5Y which express low levels of 

REST as well as a truncated version of REST resulting from an alternative splice variant 

(unpublished observations). Inclusion of the RE1 site resulted in robust repression of luciferase 

activity for both KCNQ2 and KCNQ3 promoters in HEK293 (Fig 4C), indicating that recruitment 

of REST to the RE1 site represses KCNQ2 and KCNQ3 expression. Consistent with the 
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observation that SHSY-5Y cells express less REST protein, inclusion of the RE1 site resulted in 

only modest repression of luciferase activity for the KCNQ3 promoter in SHSY-5Y while the 

KCNQ2 promoter did not show a significant reduction in activity (Fig 4D). REST is normally 

expressed in high levels in non-neuronal cells and only at low levels in neurons (Sun et al., 

2005; Olguin et al., 2006). Our luciferase data suggests that the absence or the low levels of 

REST in neurons may be important for permitting KCNQ2 and KCNQ3 expression. However  

following epileptic seizures, global ischemia, or neuropathic injury  – conditions characterized by 

periods of sustained neuronal hyperactivity - REST expression in neurons (Palm et al., 1998; 

Calderone et al., 2003; Uchida et al., 2010). To determine if such increased REST expression in 

neurons may affect KCNQ2 and KCNQ3 expression we infected cultured DRG neurons with 

either GFP alone (control) or REST and GFP expressing adenovirus particles. Infection of DRG 

neurons with control adenovirus had no effect on KCNQ2 mRNA whilst infection with 

adenovirus driving REST expression resulted in a significant reduction of KCNQ2 and KCNQ3 

mRNA (Fig 4E).  

 

Over-expression of REST reduces M-current density and changes firing properties 

of DRG neurons  

KCNQ2 and KCNQ3 encode two subunits Kv7.2 and Kv7.3 which together form a 

heterotetrameric potassium channel which is believed to be the most abundant M-channel 

isoform in the central and peripheral nervous systems (Delmas and Brown, 2005). The M-

current (IM), is a slowly activating and deactivating potassium current that provides a brake for 

repetitive action potential firing (Wang et al., 1998). To determine if increased neuronal REST 

expression could downregulate the endogenous M-current, we infected cultured DRG neurons 

with REST expressing adenovirus and examined the electrophysiological properties of these 

neurons. DRG neurons significantly differ in their function and channel expression profile, thus, 

in order to restrict our study to a more homogeneous population of neurons, we applied TRPV1 

agonist capsaicin (1 μM) at the end of each recording and only considered those neurons which 

were TRPV1-positive (nociceptive neurons). Whole cell currents were measured from small 

(whole cell capacitance of 23.7 ± 2.8 pF, n = 28) DRG neurons using a standard voltage 
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protocol for M-current (Fig 5A inset). In control cells infected with adenoviral construct coding for 

GFP alone, the hyperpolarizing test pulse resulted in a slowly deactivating whole cell current, 

characteristic of M-current, which was sensitive to the specific M-channel blocker XE991 (3 µM; 

62 ± 4% inhibition of deactivation current, n = 8). In neurons infected with Ad REST, IM was 

dramatically reduced to 14% of the value of control Ad neurons (p<0.01, n = 9 for GFP and n = 

11 for GFP + REST expressing neurons; Fig. 5C). We also compared responses of virally 

infected neurons to 1 μM of the TRPV1 agonist capsaicin (measured as the inward current at -

60 mV).  Capsaicin responses were unaltered by REST overexpression (control = -21.8 ± 8.9 

pA/pF, n = 9; REST = -26.6 ± 7.5 pA/pF, n = 11; ANOVA p = NS, data not shown) suggesting 

that the effect of REST was specific to its target genes. To further confirm that viral infection did 

not affect IM non-specifically, whole cell currents were measured from non-infected neurons 

from AdREST exposed neuronal cultures. In these cells, IM was not significantly different from 

Ad controls (2.21 ± 0.26 pA/pF vs. 2.37 ± 0.48 pA/pF, n = 8, p<0.05) but was significantly larger 

than REST infected cells (0.31 ± 0.10 pA/pF, n = 8, ANOVA, p<0.01, Fig. 5C). Thus increasing 

REST expression (Fig 5A, Ad REST) resulted in almost a complete absence of the M-current 

when compared to uninfected neurons from the same dish (Fig 5A, Ad REST (non-infected)) or 

neurons infected with a control Adenovirus (Fig 5A, Ad). 

M-current is known to contribute to the resting membrane potential and acts as a brake 

on neuronal firing of DRG neurons (Passmore et al., 2003; Linley et al., 2008). We therefore 

tested whether increasing REST expression affected the action potential (AP) firing properties 

and the resting membrane potential of DRG neurons. Using whole cell current clamp, the 

membrane potential was adjusted to -65 mV by injection of current. Injection of +400 pA 

produced 1 AP in the majority (7/9) of Ad infected cells and 2 action potentials in the remainder 

(2/9) of cells with a similar pattern of firing observed in non-infected AdREST cells (5/6 cells 

firing 1 AP). In contrast in REST over-expressing cells, 6/11 cells fired multiple action potentials 

(mean AP number = 6.5), which did not show accommodation (Fig 5B) indicating that the brake 

on neuronal firing had been removed. REST over-expressing neurons also were significantly 

depolarised compared with controls (Fig 5D, AdREST: -60.5 ± 2.4 mV; Ad: -67.6 ± 2.6 mV; Non 

–infected: -68.6 ± 2.3 mV; n = 8, ANOVA, p<0.01), consistent with a reduction in M-current in 



 

 16

these cells.  REST has many gene targets (Bruce et al., 2004; Johnson et al., 2009) in addition 

to the KCNQ genes and the change in the excitability profile of a DRG neuron following REST 

over-expression is likely to reflect multiple changes in the expression of ion channels at the 

neuronal membrane. However experimental data (Gamper et al., 2006) and modelling (Zaika et 

al., 2006) suggest that inhibition of M current alone is sufficient to explain the increase in DRG 

neuron firing rate observed here. In further support to this assumption, the selective Kv7 

blocker, XE991 produced an increase in AP firing when acutely applied to a non-transfected 

DRG neuron (Fig. 5E), the increase in excitability was similar to that produced by REST over-

expression.  These data suggest that the regulation of KCNQ gene expression levels underlies 

the increased neuronal excitability resulting from expression of REST. 

Though its levels are normally low neuronal REST expression was shown to increase 

following extended periods of neuronal over-activity seen in seizures, ischemia and neuropathic 

pain (Palm et al., 1998; Calderone et al., 2003; Uchida et al., 2010). Having shown that REST 

can regulate the expression of KCNQ2 and KCNQ3 in DRG neurons we sought to determine 

whether REST levels in DRG neurons may be increased physiologically. We recently reported 

inflammatory mediators increase the excitability of nociceptive DRG neurons via inhibition of the 

M-current mediated through short term G-protein signalling events (Linley et al., 2008; Liu et al., 

2010).  Long term changes in nociceptive neurons have been proposed to be important in the 

development of chronic pain (reviewed in (Basbaum et al., 2009; Linley et al., 2010) and are 

likely to be the result of changes in gene expression. We therefore cultured DRG neurons in the 

presence of a mix of inflammatory mediators to mimic inflammation (1 μM bradykinin, 1 μM 

histamine, 1 μM ATO, 1 μM Substance P and 10 μM PAR-2 activating peptide) and analysed 

the expression of REST and Kv7.2 specifically in the nociceptive, TRPV1 positive, neurons (Fig 

6A, B and C).  In control conditions REST levels in nociceptive neurons were very low but they 

increased significantly in response to inflammatory mediators (Fig 6A, C). The levels of TRPV1 

in nociceptive neurons did not change significantly (Fig 6C; TRPV1 is not a predicted target 

gene of REST). TRPV1-positive neurons cultured in inflammatory conditions showed lower 

Kv7.2 immunoreactivity than those in control conditions (Fig 6B, C). We also analysed M-current 

density in capsaicin responsive neurons. For patch clamp, inflammatory mediators were 



 

 17

washed out for at least 2 hr prior to experiments to remove any acute effects on IM. 

Inflammatory conditions dramatically reduced IM compared to control (0.25 ± 0.04 compared to 

0.95 ± 0.16 pA/pF; p≤0.01, n = 9 for control and n = 5 for inflammatory), consistent with a 

downregulation of KCNQ2 and KCNQ3. These data are consistent with a mechanism whereby 

REST levels are increased in nociceptive neurons in response to inflammatory signals, resulting 

in an increase in excitability brought about by the reduced expression of KCNQ2 and KCNQ3. 

Such a mechanism could contribute to a long-term peripheral sensitisation of inflamed sensory 

fibres.  
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Discussion 

 

In this work we have identified two common mechanisms that regulate expression of 

KCNQ2 and KCNQ3. We have identified consensus sequences for the Sp1 transcription factor 

in each of the promoter regions. These sequences are evolutionarily conserved and we show 

that Sp1 directly interacts with the KCNQ2 promoter in vitro and that removal or mutation of 

these sequences results in reduced activity of the promoters. Furthermore chemical inhibition of 

Sp1:DNA interactions result in reduced KCNQ2 and KCNQ3 mRNA expression while ectopic 

Sp1 results in increased M-current and Kv7.2 expression in cultured neurons. Our data 

implicating Sp1 as an important positive acting transcription factor which regulates KCNQ2 

expression are consistent with a previous report on the human KCNQ2 promoter (Xiao et al., 

2001). Xiao et al. used a bioinformatic analysis to identify GC boxes  in the proximal promoter of 

KCNQ2. Our new data show that these GC box regions are evolutionarily conserved and are 

also present in the KCNQ3 promoter. Furthermore, Sp1 does in fact interact with these GC 

boxes and this interaction is important for expression of the endogenous KCNQ2 and KCNQ3 

mRNA in neurons. The physiological relevance of Sp1 regulation of KCNQ2 and KCNQ3 

remains to be determined and although Sp1 is often thought of as a constitutive transcriptional 

activator recent evidence suggests Sp1 activity is important for mediating changes in neuronal 

gene expression in response to developmental or disease stimuli. For example induced 

expression of the reelin gene during neuronal differentiation is dependent upon Sp1 and 

mutation in the binding site for Sp1 within the reelin promoter is sufficient to prevent increased 

reelin expression (Chen et al., 2007). Sp1 is also important for the increased expression of the 

damage induced neuronal endopeptidase (DINE) gene in response to nerve injury (Kiryu-Seo et 

al., 2008). In this context Sp1 acts as a platform to which other transcription factors are 

recruited in response to nerve injury and activate expression of DINE (Kiryu-Seo et al., 2008).  

Our data also highlight a second conserved mechanism for the regulation of KCNQ2 and 

KCNQ3: repression by the repressor element 1-silencing transcription factor (REST). Both 

KCNQ2 and KCNQ3 contain evolutionarily conserved REST binding sites which can interact 

with REST in vitro and over expression of REST in neurons results in reduced KCNQ2 and 
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KCNQ3 mRNA and loss of M-current. Interestingly we also identified a functional binding site for 

REST in the KCNQ5 gene, suggesting that KCNQ5 may also be repressed by REST. Like 

KCNQ2 and KCNQ3, KCNQ5 is widely expressed throughout the nervous system and it has 

been suggested that Kv7.5 subunits may contribute to the M-current in vivo either on their own 

or in complex with Kv7.3 (Lerche et al., 2000; Schroeder et al., 2000). In a whole genome 

chromatin immunoprecipitation analysis to look at REST binding in human Jurkat cells, REST is 

enriched at the RE1 sites for KCNQ2 and KCNQ3 (Johnson et al., 2007). In that study REST 

was not found to be present at the KCNQ5 RE1 site we identified however this may be a cell 

specific effect because enrichment of REST at the KCNQ5 RE1 site has been identified in 

several other human cell lines (Bruce et al., 2009). Although REST was originally proposed to 

be important in silencing neuronal specific genes in non-neuronal cells (Chong et al., 1995; 

Schoenherr and Anderson, 1995) it clearly has a functional role within the nervous system. 

REST is expressed at low levels in neurons and regulates some target genes (Wood et al., 

2003). Neuronal REST expression is upregulated in response to epileptic insults and cerebral 

ischaemia resulting in reduced expression of brain derived neurotrophic factor (BDNF) and the 

glutamate receptor subunit gene, GRIA2 and increased expression of the substance P gene, 

PPT-A (Palm et al., 1998; Calderone et al., 2003; Garriga-Canut et al., 2006; Spencer et al., 

2006). In addition, nuclear levels of REST protein are elevated in neurons in Huntington’s 

disease, leading to reduced BDNF expression (Zuccato et al., 2003; Zuccato et al., 2007). 

Individuals who suffer an epileptic seizure become more susceptible to further seizure 

activity (Hauser and Lee, 2002). The molecular mechanisms underlying this long term change 

are not known, although like other features of the brain that show long lasting changes, eg. long 

term potentiation, they most likely involve changes in gene expression. The expression of 

several transcription factors has been shown to be increased in response to seizure activity in 

rodents. These include c-fos (Morgan et al., 1987; Hiscock et al., 2001), NF-κB, Ap-1 (Rong and 

Baudry, 1996), DREAM (Matsu-ura et al., 2002) and REST (Palm et al., 1998). One report has 

also shown that Sp1 levels increase after seizure (Feng et al., 1999), though another found no 

changes in levels of Sp1 (Rong and Baudry, 1996). Given our findings, an increase in 

expression of the transcriptional REST would result in a decrease in KCNQ2 and KCNQ3 
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expression resulting in an increase in the excitability of the affected neurons. REST represses 

gene expression by recruiting protein complexes that modify the post-translational marks within 

chromatin (Ooi and Wood, 2007). Thus any changes induced upon REST recruitment have the 

potential to be stably maintained even if REST expression is subsequently reduced, providing a 

prospective mechanism for long term changes in gene expression levels. In addition to 

repressing transcription by modifying chromatin REST has also been shown to interact with Sp1 

and inhibit the ability of Sp1 to enhance transcription (Plaisance et al., 2005). Such a model is 

consistent with our data in which the ability of REST to repress KCNQ2 and KCNQ3 appears to 

be dominant over the ability of Sp1 to activate these genes and suggests that interaction 

between REST and Sp1 may be important for regulating the expression of many neuronal 

specific genes. Consistent with such a hypothesis is the observation that in addition to KCNQ2 

and KCNQ3, many REST regulated genes are also known to be regulated by Sp1. For example 

Chrm4 (Wood et al., 1996), Nmdar1 (Bai et al., 1998), Gria2 (Myers et al., 1998), synatophysin 

(Lietz et al., 2003) and Bsx (Park et al., 2007) genes are all regulated by both REST and Sp1 

while regulation of the μ opiod receptor gene involves an interaction with REST and the Sp1 

family member, Sp3 (Kim et al., 2006).  

Recently much interest has been placed on Kv7 channels as a potential target for 

analgesics in pain (Passmore et al., 2003; Linley et al., 2008; Brown and Passmore, 2009; 

Wickenden and McNaughton-Smith, 2009). Activators of Kv7 channels had an analgesic effect 

in a hindpaw model of chronic pain (Passmore et al., 2003), inhibited ectopic firing of 

axotomised sensory fibres (Roza and Lopez-Garcia, 2008) and reduced behaviour associated 

with visceral pain (Hirano et al., 2007). Furthermore, pharmacological inhibition of M-channels 

at peripheral nerve terminals by acute injection of M-channel blocker XE991 produced 

spontaneous pain (Linley et al., 2008; (Liu et al., 2010). Our data suggest that REST expression 

increases while Kv7.2 expression and M-current density decreases in DRG neurons under 

chronic inflammatory treatment. All these findings suggest that transcriptional downregulation of 

M-channel expression in nociceptive pathways may result in painful phenotype and contribute to 

chronic pain conditions. Moreover, peripheral axotomisation in a rat model for neuropathic pain 

resulted in changes in the gene expression profile of DRGs (Xiao et al., 2002). Levels of neither 
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KCNQ nor REST genes were reported in this study, however two well known REST target 

genes, chromagranin A (CGA) and synaptosomal associated protein 25 (SNAP25) showed 

reduced expression in axotomised DRGs (Xiao et al., 2002). Recently expression of REST was 

shown to be upregulated following neuropathic injury (Uchida et al., 2010), thus it is tempting to 

speculate that the KCNQ-REST pathway discovered here may contribute to neuropathic pain 

pathophysiology. 

Here we identify two transcription factors, Sp1 and REST, which are important for 

regulating expression of the potassium channel genes, KCNQ2 and KCNQ3. Regulation of 

KCNQ2 and KCNQ3 by these transcription factors may be important for long term changes in 

expression levels in response to epileptic seizure activity and during chronic pain syndromes. 
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Figure legends 

 

Figure 1 DNaseI hypersensitive sites present in the KCNQ2 gene. A) Top shows a 

schematic representation of the 5’ of the KCNQ2 gene. Filled boxes represent exons, the 

transcription start site is marked by an arrow. The location of identified regulatory elements (Sp1 

and RE1) are shown as open boxes. Below shows two DNAse I hypersensitivity assays. Nuclei 

were isolated from SHSY-5Y cells and analysed for DNase I hypersensitive sites. DNA was 

digested with HindIII (upper panel) or AseI (bottom panel) and the Southern blot was hybridised 

with a KCNQ2-specific probe. The positions of the hypersensitive sites (HSS1 and HSS2) are 

indicated on the diagram as is the position of the full length DNA fragment (F). B) DNA 

sequence alignment of the Sp1 sequence identified in the HSS1 region of the human KCNQ2 

gene with the equivalent regions of the mouse and rat KCNQ2 genes. The consensus Sp1 

sequence is shown above the alignment. (r=A or G; s=C or G). C) DNA sequence alignment of 

the RE1 sequence identified in the HSS2 region of the human KCNQ2 gene with the equivalent 

regions of the Chimp, Rhesus, Mouse, Rat, Dog, Cow and Elephant KCNQ2 genes. The 

consensus RE1 sequence is shown above the alignment. (n=A, C, G or T; Y=C or T; m=A or C). 

D) Gel mobility-shift assay of the Sp1 region of the KCNQ2 promoter. Labelled DNA was 

incubated with protein isolated from SHSY-5Y cells in the presence of no competitor (No comp, 

lane 1), oligonucleotides containing a consensus Sp1 sequence (Sp1con, 1 μM, lane 2), an 

unrelated sequence (Non spec, 1 μM, lane 3), an anti-Sp1 antibody (α-Sp1, 1 μg, lane 4), or 

oligonucleotides containing the wild type or mutated Sp1 sequence from the KCNQ2 promoter 

(Sp1wt, 1 μM lane 5, 10 μM lane 6 and Sp1mut 1 μM lane 7, 10 μM lane 8, respectively). Position 

of complexes containing Sp1 (Sp1:DNA), α-Sp1 (Ab:Sp1:DNA) and resulting from non specific 

binding (Non spec) are shown on the left. E) A schematic representation of the 5’ of the KCNQ3 

gene. Filled boxes represent exons, the transcription start site is marked by an arrow. The 

location of identified regulatory elements (Sp1 and RE1) are shown as open boxes. F) DNA 

sequence alignment of the Sp1 sequence identified in the human KCNQ3 gene with the 

equivalent regions of the mouse and rat KCNQ3 genes. The consensus Sp1 sequence is shown 

above the alignment. (r=A or G; s=C or G). G) DNA sequence alignment of the RE1 sequence 
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identified in the human KCNQ3 gene with the equivalent regions of the Chimp, Rhesus, Mouse, 

Rat, Dog, Cow and Elephant KCNQ2 genes. The consensus RE1 sequence is shown above the 

alignment. (n=A, C, G or T; Y=C or T; m=A or C). 

 

Figure 2 The KCNQ2 and KCNQ3 promoters contain functional Sp1 sequences.  

A) Regions of the KCNQ2 promoter were cloned upstream of luciferase and transfected into 

SHSY-5Y cells. Shown are normalised luciferase values expressed relative to empty vector, 

pGL3 Basic (mean ± s.e.m. n=3, *p<0.05). Base pair numbers are expressed relative to 

transcription start sites. B) Regions of the KCNQ3 promoter were cloned upstream of luciferase 

and transfected into SHSY-5Y cells. Shown are normalised luciferase values expressed relative 

to empty vector (mean ± s.e.m. n=3, *p<0.05). C) Luciferase reporter vector containing the 

KCNQ2 or KCNQ3 promoter regions or empty vector, pGL3 Basic (Basic), were transfected into 

SHSY-5Y cells which were subsequently treated with either with 100 nM mithramycin A or water 

control. D) Reverse transcriptase PCR analysis of KCNQ2, KCNQ3 and SCN2A mRNA levels in 

control and mithramycin A treated cultures of rat dorsal root ganglia cells. Levels are normalised 

to U6 gene (mean ± s.e.m. n=3 *p<0.05). E) Antibodies to Kv7.2 and β-actin were use to 

analyse respective protein levels in extracts from control or mithramycin A (Mith, 100 nM) 

treated SHSY-5Y cells.  

 

Figure 3. Sp1 enhances Kv7.2 expression and M-current density. A) Fluorescent images of 

DRG neurons transfected with a GFP expressing plasmid and an Sp1 expressing (top) or 

control plasmid (bottom). Transfected cells were identified by GFP expression (green). Kv7.2 

levels were analysed using an anti-Kv7.2 antibody and Alexa Fluor 555 conjugated secondary 

antibody (red). Nucleii are counter stained with DAPI (blue). Scale bar 10 μM. B) Bars show 

pooled current density data determined from the DRG neurons transfected with an Sp1 

expressing (Sp1, n=8) or control (Con, n=7) plasmid. Magnitude of M-current was calculated as 

the XE991 sensitive deactivation current when stepping from -30 to -60 mV and normalised to 

cell capacitance (IM density,  mean ± s.e.m.  *p<0.05). C) Bars show pixel intensity of Kv7.2 
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staining in DRG neurons transfected with Sp1 expressing (Sp1 n=4) or control (Con, n=3) 

plasmid. (mean ± s.e.m.  *p<0.05). 

 

Figure 4. The KCNQ2 and KCNQ3 promoters are regulated by the transcriptional 

repressor REST.  

A, B) Labelled DNA containing the SCN2A RE1 site was incubated with nuclear protein in the 

presence of no competitor (No comp, lane 1), oligonucleotides containing an RE1 site from the 

CHRM4 promoter (CHRM4, lane 2), an unrelated sequence (Non-spec, lane 3), an anti-REST 

antibody (α-REST, lane 4) and (A) oligonucleotides containing sequence from the human (lanes 

5, 6), dog (lanes 7, 8), mouse (lanes 9, 10) and rat (lanes 11, 12) KCNQ2 genes or (B) 

oligonucleotides containing potential RE1 sequences from the human, KCNQ1-KCNQ5 genes 

(lanes 5 - 14). Concentration of competing oligonucleotides were 1 μM (lanes 5, 7, 9, 11 and 13) 

or 10 μM (lanes 2, 3, 6, 8, 10, 12 and 14). Positions of REST:DNA and REST:DNA:antibody 

complexes are identified by arrows on the left. C, D) Luciferase activity driven from KCNQ2 and 

KCNQ3 promoters with or without the RE1 site, transfected into C) HEK293 cells or D) SHSY-

5Y cells. The arrows on the KCNQ3 RE1 site represent the direction of the sequence. 

Expression levels were normalized for transfection efficiency with Renilla luciferase and are 

expressed relative to empty plasmid, pGL3 basic (mean ± s.e.m. n = 3 *p<0.05). E) Reverse 

transcriptase PCR analysis of KCNQ2 and KCNQ3 mRNA levels in cultured rat dorsal root 

ganglia cells infected with control adenovirus or adenovirus expressing full length REST (+). 

Data are normalized to U6 gene and expressed relative to cells infected with control adenovirus 

(mean ± s.e.m. n=3 *p<0.05).  

 

Figure 5. REST expression inhibits M-current and increases excitability in small diameter 

DRG neurons.  

DRG neurons were infected with an adenoviral construct expressing GFP only (Ad) or REST 

and GFP (AdREST) and assessed functionally using whole cell patch clamp. In cultures 

infected with REST and GFP both green (AdREST) and non-green (AdREST non-infected) cells 

were tested. Only small diameter neurons (18-35 pF) responsive to the TRPV1 agonist 
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capsaicin (1 μM) were investigated. A) Whole cell voltage clamp traces obtained by 500 ms 

voltage pulses from -30 mV to -60 mV as indicated by the voltage pulse protocol (inset). Black 

trace represents steady state basal current; red trace represents current in the presence of the 

specific M-channel blocker XE991 (3 μM). Dotted line indicates zero current. B) Whole cell 

current clamp traces in which voltage was adjusted to -65 mV by current injection and 4 s 

square current pulses to different test currents were applied (inset). C) Bars show pooled 

current density data determined from the experiments shown in (A). Magnitude of M-current 

was calculated as the XE991 sensitive deactivation current when stepping from -30 to -60 mV 

and normalised to cell capacitance (IM density). Number of experiments is indicated within bars. 

D) Bars show mean resting membrane potentials of GFP, REST and non-infected neurons. 

Membrane potential was measured in current clamp mode (0 pA). E) Exemplary current-clamp 

experiment showing excitatory effect of 3 μM XE991. 400 pA current injections (inset) were 

applied to whole-cell current clamped DRG neuron before and during XE991 application. No 

voltage adjustment was performed. 

 

Figure 6. Inflammatory stimuli results in an increase in neuronal REST levels. A, B) 

Fluorescent images of DRG neurons cultured in control conditions (top) or exposed to a mixture 

of inflammatory mediators (bottom) for 48 hr. REST (A, red), Kv7.2 (B, red) and TRPV1 (green) 

levels were analysed by anti-REST, anti-Kv7.2 and anti-TRPV1 antibodies and Alexa Fluor 555 

(REST and Kv7.2) or Alexa Fluor 488 (TRPV1) conjugated secondary antibodies. Scale bars 

represent 10 µm. C) Bars show the pixel intensity of TRPV1, REST and Kv7.2 staining in 

TRPV1 positive neurons in control conditions and after exposure to inflammatory mediators 

(mean ± s.e.m. n≥12 *p<0.05).  
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