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Abstract 

Understanding the nature of dust condensation in the outflow from oxygen-rich AGB stars is 

a continuing problem. A kinetic model has been developed to describe the formation of gas-

phase precursors from Ca, Mg, Fe, SiO and TiO in an outflow cooling from 1500 to 1000 K. 

Electronic structure calculations are used to identify efficient reaction pathways which lead to 

the formation of metal titanates and silicates. The molecular properties of the stationary 

points on the relevant potential energy surfaces are then used in a multi-well master equation 

solver to calculate pertinent rate coefficients. The outflow model couples an explicit 

treatment of gas-phase chemistry to a volume-conserving particle growth model. CaTiO3 is 

shown to be the overwhelming contributor to the formation of condensation nuclei (CN), with 

less than 0.01% provided by CaSiO3, (TiO2)2 and FeTiO3. Magnesium species make a 

negligible contribution. Defining CN as particles with radii greater than 2 nm, the model 

shows that for stellar mass loss rates above 3 × 10
-5

 M⊙
 y

-1
 more than 10

-13
 CN per H nucleus 

will be produced when the outflow temperature is still well above 1000 K. This is sufficient 

to explain the observed number density of grains in circumstellar dust shells.  
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Introduction 

 

Mass loss from stars is fundamental to the chemical evolution of galaxies. During the late 

stages of stellar evolution, asymptotic giant branch (AGB) stars with masses between about 1 

and 8 M⊙ lose a significant fraction of their mass in a short period, during which they are 

surrounded by an optically thick shell of dust  [1]. This circumstellar dust plays a crucial role 

in many astrophysical processes: it dominates the energy balance around the star through the 

absorption and emission of radiation, so that the resulting radiation pressure induces a 

massive acceleration in the outflow velocity; it is a significant source of interstellar dust 

particles which provide the surfaces on which heterogeneous chemical synthesis can occur; 

and finally the dust is involved in the formation of new planets around young stars. 

Spectroscopic observations of circumstellar dust reveal broad emission features at about 10 

and 18 m in the IR, as well as features in the far-IR between 30 and 44 m, indicating that  

major components of the dust are amorphous magnesium-iron-silicates (olivine and 

pyroxene)  [2,3]. This paper is concerned with the nature of the condensation nuclei (CN) or 

“seeds” on which the relatively abundant species Mg, Fe and SiO subsequently condense 

from the gas phase, once the outflow has cooled sufficiently, to form these metal silicates [4]. 

This condensation causes the CN particles, initially only about 1 nm in radius, to grow to 

their observed size of several hundred nm [5].  It is crucially important to understand the 

composition of CN and how they form, in order to predict their size distribution in the 

outflow and hence the likely number density of dust particles which subsequently enter the 

interstellar medium. 

The CN particles must be highly refractory, since the inner edge of observable dust clouds is 

typically at the point where the temperature in the outflow is still above 1000 K, at a distance 



of about 4R* from the star (R* is the star radius, which is around 1 AU for an AGB star). Such 

observations imply that the CN have formed at higher temperatures, most likely in the region 

between 3R* and 4R* where the temperature decreases from ~1200 to 1000 K [6]. In spite of 

these high temperatures, CN can form because the relatively high pressures facilitate 

recombination (or association) reactions between individual molecules, which must be the 

starting point for CN synthesis and eventual dust production.  

There are several reasons why this is a challenging environment in which to form new 

particles from the gas-phase constituents which are present in the outflow. Firstly, molecules 

need to be very stable to survive thermal dissociation, which requires that their bond energies 

are greater than 400 kJ mol
-1

. Secondly, the major constituent of the outflow is H2, with about 

1 part in 10
3
 being H2O.  Since OH is observed around circumstellar shells  [7], this implies 

that there must also be significant quantities of H atoms in steady state with H2 and H2O (the 

H/OH ratio will be ~10
5
). Both H and H2 are chemically reducing species, which prevent the 

oxidation of metals and silicon oxides (see below).  

Thirdly, the total pressure in the stellar outflow is very low, only around 0.01 Pa at 3R* for a 

high stellar mass loss rate [8]. This has the effect of slowing down the rates of any 

recombination reactions (i.e. A + B + M  AB + M), which are pressure dependent because 

the “third body” M is required to stabilise the products. Finally, the formation of more 

complex gas-phase species from species such as Mg, Fe and SiO involves reactions between 

at least two constituents in the outflow; the rates of these reactions will therefore have at least 

a second-order dependence on the total density in the outflow, and decrease rapidly as the 

flow expands away from the star. 

Gail, Sedlmayr and their co-workers have published extensively on possible candidates for 

CN production. They showed that the direct nucleation of Mg, Fe and SiO from the gas phase 

was very unlikely at temperatures above 1000 K [4,9,10], and therefore considered less 



abundant but more refractory alternatives in an O-rich stellar outflow, including Fe, TiO2, 

SiO2, SiO, TiO and Al2O3. They concluded that only TiO2 provided a nucleation rate in the 

range required to account for the observed dust density in circumstellar dust shells [6]. 

Nevertheless, there is continuing debate about whether SiO itself can condense, perhaps 

enhanced by the presence of Fe and Mg  [11,12]. 

Previous workers have generally addressed the dust formation problem using homogeneous 

classical nucleation theory (CNT) to estimate the nucleation rate (J*). CNT determines a 

Gibbs free energy barrier at a critical cluster size (typically about 20 monomers), after which 

runaway growth occurs [9]. The barrier arises from competition between the favourable 

binding energies of successive monomers to the embryonic cluster, and an unfavourable 

increase in the interfacial surface energy. The steady-state concentration of critical clusters 

(which assumes chemical equilibrium) is then multiplied by the rate of addition of a further 

monomer to estimate J*. There are a number of difficulties with CNT, including the fact that 

the circumstellar environment is not in a local chemical equilibrium, and that the bulk 

thermodynamic properties and surface tension of the condensed phase which are required to 

calculate J* may well not be applicable at the cluster size-scale. Nuth and co-workers were 

initially rather critical of CNT for these reasons [13], although very recently they have shown 

that the lack of chemical equilibrium is perhaps not such a serious problem [14]. These 

workers have also introduced a scaled version of CNT  [12].  Cherchneff and Dwek [15] have 

also recently discussed the shortcomings of CNT in some detail. As an alternative to CNT, 

those authors have developed a kinetic model describing explicitly the formation in the gas 

phase of the molecular precursors which polymerise to form embryonic dust particles. 

The present study follows a similar strategy. The starting point is our recent experimental 

work on the formation of mixed Mg-Fe-silicate particles at low temperatures from gas-phase 

precursors [16], related to the formation of nanoparticles from ablated meteor vapours in the 



earth’s upper atmosphere [17,18]. We interpreted the laboratory observations using electronic 

structure calculations to show that FeSiO3 and MgSiO3 molecules should play a central role 

in forming new particles. These molecules are very stable and highly polar (see below), so 

that they should polymerise spontaneously to form particles.  For this reason they have not 

(yet) been observed in the laboratory, although we have studied the formation in the gas 

phase of their close analogues FeCO3, MgCO3 and CaCO3, from the recombination of the 

respective metal oxides with CO2  [19,20,21].  

The kinetic approach used here to model particle formation in stellar outflows involves three 

stages. First, electronic structure calculations are used to determine energetically possible 

reaction pathways. Second, the molecular properties (rotational constants and vibrational 

frequencies) of stable intermediates and transition states are then used to calculate reaction 

rates over typically complex potential energy surfaces. Third, the resulting rate coefficients 

are employed in a model which couples gas-phase chemistry with particle growth kinetics in 

a stellar outflow. This model demonstrates that silicate formation in the gas phase is 

essentially shut down by the presence of atomic H in the outflow. However, there is a 

kinetically viable route to the formation of gas-phase CaTiO3, and this molecule is probably 

the key ingredient in forming sufficient numbers of CN particles larger than 2 nm by the 

point at which the outflow has cooled to 1000 K. 

 

Theoretical Methods 

 

Electronic structure calculations and master equation modelling 

Electronic structure calculations were used to map the stationary points on the electronic 

potential energy surfaces (PESs) of the relevant reactions. Molecular geometries were first 



optimised using hybrid density functional theory, which includes some exact Hartree-Fock 

exchange. The B3LYP method was used together with the 6-311+G(2d,p) triple zeta basis 

set. This is a large, flexible basis set which has both polarization and diffuse functions added 

to the atoms. At this level of theory, previous theoretical benchmarking studies indicate an 

expected uncertainty in the calculated reaction enthalpies on the order of ±25 kJ mol
-1

 [22]. 

After the optimised geometries were checked for wavefunction stability, the resulting 

rotational constants and vibrational frequencies were used in the master equation calculations 

described below. More accurate energies (± 15 kJ mol
-1

  [22]) were then determined using the 

Complete Basis Set (CBS-Q) method of Petersson and co-workers [23]. All calculations were 

performed using the Gaussian 09 suite of programs [24].  

Reaction rate coefficients were then estimated using Rice-Ramsperger-Kassel-Markus 

(RRKM) theory, employing a solution of the master equation (ME) based on the inverse 

Laplace transform method [25].
 
We have previously used this method to model successfully 

the measured rate coefficients of reactions involving metal-containing species where a stable 

intermediate is present on the potential energy surface (PES) [19,20,21,26]. These reactions 

proceed via the formation of an excited adduct from the two reactants. This adduct can then 

dissociate back to reactants, rearrange to other intermediates, or dissociate to bimolecular 

products. Any of the intermediates can also be stabilized by collision with the third body. The 

time evolution of all these possible outcomes is modelled using the ME.  

For this study, a multiwell energy-grained master equation was used [27,28,29]. The internal 

energies of the intermediates on the PES were divided into a contiguous set of grains (width 

200 cm
-1

), each containing a bundle of rovibrational states. Each grain was then assigned a set 

of microcanonical rate coefficients linking it to other intermediates, calculated by RRKM 

theory. For dissociation to products or reactants, microcanonical rate coefficients were 

determined using inverse Laplace transformation to link them directly to the capture rate 



coefficient, kcapture. For these reactions involving neutral species, kcapture was set to a typical 

capture rate coefficient of 3 × 10
-10

 (T/1000 K)
1/6

 cm
3
 molecule

-1
 s

-1
 [30], where the small 

positive temperature dependence is characteristic of a long-range potential governed by 

dispersion and ion-induced dipole forces. For reactions governed by permanent dipole-dipole 

interactions (e.g. SiO + OH), the capture rate was calculated explicitly using long-range 

variational transition state theory [30].  

The probability of collisional transfer between grains was estimated using the exponential 

down model, where the average energy for downward transitions was set to <E>down = 300 

cm
-1

 [31]. The probabilities for upward transitions were calculated by detailed balance. All 

RRKM and ME calculations reported in this study were carried out with the open source 

master equation program, MESMER (Master Equation Solver for Multi-well Energy 

Reactions) [32]. MESMER determines the temperature- and pressure-dependent rate 

coefficient from the full microcanonical description of the system time evolution by 

performing an eigenvector/eigenvalue analysis similar to that described by Bartis and Widom  

[27,28,33]. 

 

Model of stellar outflow chemistry 

The rate coefficients obtained from the procedures described above were then input into a 

chemical box model where the coupled ordinary differential equations describing the rates of 

change of the concentrations of each species were solved using a 4
th

-order Runge Kutta 

integrator [34]. In addition to the reactions involving Ca, Fe, Mg, Ti and Si species, the 

model also contained a full set of odd-hydrogen reactions (i.e. involving the radicals H and 

OH) whose rate coefficients are well known from combustion chemistry [35]. 



The model was initialised with the following conditions. The AGB star has a radius of 200 R⊙ 

= 1.4 × 10
8
 km, close to 1 AU. The mass loss rate was varied from (2 – 10) × 10

-5
 M⊙ y

-1
  

[36]. This range corresponds to an H2 loss rate of (4 – 20) × 10
44

 molecules s
-1

. The mass 

continuity equation for a stationary spherically symmetric outflow is given by 

      (I) 

 

where v is the outflow velocity which was fixed in the model at 2 km s
-1

 [8].  That is, it is 

assumed that the gas enters the zone of condensation of the main components (Mg, Fe, SiO) 

with roughly sonic velocity, and acceleration of the dust outflow only occurs after the dust 

grows to a size where radiation pressure becomes dynamically significant [4]. The H2 

concentration at 2R* then ranges from (1.0 – 10.3) × 10
11

 cm
-3

 depending on the H2 loss rate, 

and falls as 1/R
2
. The temperature T at 2R* was taken as 1600 K, and was assumed to 

decrease according to the relation [8] 

      (II) 

 

reaching ~1000 K at 4R*. 

The relative elemental abundances were set to their cosmic abundances [37]. Assuming that 

all C is oxidised to CO, then excess O should almost all be in the form of H2O. The model 

was then initialised with the following relative abundances (in parentheses): H2 (1.0), H2O 

(1.7 × 10
-3

), Mg (7.9 × 10
-5

), SiO (7.1 × 10
-5

), Fe (6.4 × 10
-5

), Ca (4.4 × 10
-6

) and TiO (1.7 × 

10
-7

).  It should be noted that the relative abundances of the metallic species compared to 

hydrogen agree to better than 1% with a recent compilation of elemental abundances in the 

solar photosphere  [38]; although the relative abundances of silicon, oxygen and carbon are 8, 

18 and 23% smaller, respectively, this is not important for the present modelling exercise.  
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The H relative abundance was fixed (arbitrarily) to 2 × 10
-3

 (i.e. 0.1% of the H2 is 

dissociated), and the OH concentration was calculated from the odd-H chemistry in the 

model. The OH relative abundance then varied from 7.1 × 10
-8

 at 1500 K to 5 × 10
-9

 at 1000 

K. In fact, the choice of H relative abundance in the model is not critical (over a sensible 

range) because the OH/H ratio is largely controlled by the reaction OH + H2  H2O + H and 

its reverse H2O + H   OH + H2.  Although the latter is slower, its time constant is still only 

~ 2 days (at 1200 K and [H2O] = 3 × 10
8
 cm

-3
), which is much shorter than the characteristic 

timescale during which CN form in the outflow (> 100 days, see below). Thus, the OH/H 

ratio is essentially governed by the H2O/H2 ratio. The OH/H ratio in turn controls the ratios of 

TiO2/TiO and SiO2/SiO (see below), so that all these species exist in near steady state. 

The gas-phase part of the outflow model was then coupled to a particle growth model which 

we have described in detail previously [17].  The growth model, which uses a semi-implicit 

integration scheme, is volume-conserving. Particle sizes are separated into radius space in a 

number of fixed centre bins, where the first bin size is set at an appropriate molecular radius 

of 2.8 nm, corresponding to the equivalent size of a spherical monomer of CaTiO3  (since this 

turns out to be the dominant condensable molecule) with an assumed amorphous density of 

2500 kg m
-3

. Subsequent bin sizes are increased geometrically by a fixed volume ratio of 1.5, 

so that the particle radius in each successive bin is (1.5)
1/3

 times larger, and the largest of the 

45 bins contains particles of radius 106 nm.  The concentration of monomers in the first bin is 

set equal to the concentration of gas-phase metal silicates and titanates at each time step of 

the gas-phase module. 

Particle growth is assumed to be dominated by Brownian diffusion-coagulation where 

collisions between pairs of particles result in coalescence, maintaining spherical morphology 

and compact structure. The collision rate coefficients (or kernels) for Brownian coagulation 

were calculated using the Fuchs interpolation formula [39] for the transition regime (Knudsen 



number, Kn ~ 1).  However, the kernel for the dimerisation of two monomers (i.e. to move 

from the first to second bin) was calculated explicitly using the MESMER code. It is assumed 

that polymerisation to larger polymers is no longer pressure-dependent because of the 

increasing numbers of atoms involved, which give rise to a large number of vibrational 

modes and a correspondingly large density of rovibrational states at the critical energy [31].  

We have used this growth model previously to treat the agglomerative growth of fractal-like 

particles, in particular where the rapid growth of Fe-containing particles is driven by 

magnetic dipoles once they reach a primary particle radius around 4 nm [40]. However, these 

factors were not considered in the present study, firstly because the CN particles under 

consideration only reach a few nm in size, and secondly because the fraction of Fe in the 

particles is very low (< 0.01%, see below).  

 

Results and Discussion 

 

Figure 1 illustrates the reaction pathway to form CaTiO3 and its dimer, (CaTiO3)2, from Ca 

and TiO. This mechanism, which has been elucidated using the theoretical and modelling 

tools described above, appears to be a key reaction sequence for CN formation in an oxygen-

rich stellar outflow. Various aspects of the mechanism are discussed in the sections below. 

Electronic structure calculations reveal that the metal silicate and titanate molecules are kite-

shaped molecules. The silicates are planar [18], whereas the titanates are pyramidal, as shown 

for the case of CaTiO3 at the bottom of Figure 1. These molecules possess several essential 

properties required to act as effective building blocks of CN particles at high temperatures. 

Firstly, as shown in Table 1, the molecules are extremely stable with respect to thermal 

dissociation, particularly CaTiO3 and CaSiO3. In all cases, the lowest energy thermal 



dissociation pathway yields the metal oxide and TiO2 or SiO2 e.g. CaTiO3  CaO + TiO2, 

which is endothermic by 585 kJ mol
-1

. Secondly, reactions with atomic H must be slow 

because they are quite endothermic e.g. for the reaction CaTiO3 + H  CaOH + TiO2, H = 

148 kJ mol
-1

. This means that these molecules will have a chance to survive long enough, at 

high temperatures and in the presence of significant H atom concentrations, to polymerise 

and form particles.  

Thirdly, the molecules have extremely high dipole moments (Table 1), some in excess of 10 

Debye. This means that there will be strong dipole-dipole forces between them, resulting in 

unusually high capture rates [30]. For instance, the capture rate for the dimerisation reaction 

CaTiO3 + CaTiO3 is 9.1 × 10
-10

 cm
3
 molecule

-1
 s

-1
 at 1000 K, which is about a factor of 3 

larger than the “hard-sphere” collision rate. A final point is that these molecules polymerise 

readily, with binding energies in excess of the lower limit of 400 kJ mol
-1

 required for 

reasonable thermal stability at a temperature around 1000 K.  

Having established that these molecules should be effective building blocks, the question is 

whether they can actually form in this challenging environment of high temperatures, low 

pressures, and chemically reducing atomic H and H2.  

 

Oxidation of Mg, Fe and Ca 

The oxidation of metal atoms to form metal monoxides or hydroxides (MgO, MgOH etc.), as 

precursors to titanates and silicates, is effectively shut down by H2 and H. For example, we 

have shown experimentally that the reaction 

 CaO + H2   Ca + H2O   H0 = -79 kJ mol
-1

   (1) 

is close to the collision frequency even at room temperature [41]. The PES for MgO + H2 

indicates that this reaction should also be rapid. This probably explains why neither CaO nor 



MgO have been identified in circumstellar environments [42].  We measured a small upper 

limit at room temperature for the reaction FeO + H2, k  7 × 10
-14

  cm
3
 molecule

-1
 s

-1
  [19]. 

This is consistent with a potential energy barrier of 55 kJ mol
-1

 calculated at the CBS-Q level, 

yielding k(FeO + H2) =  6.2 × 10
-11

 exp(-7970/T) cm
3
 molecule

-1
 s

-1
. At an H2 pressure of 10

-3
 

Pa and a temperature of 1000 K, the lifetime of FeO will be only 700 s. This may account for 

the single report so far of FeO in the circumstellar medium [43].  

The reactions of the metal oxides and hydroxides with atomic H are all exothermic. The 

reaction FeOH + H  Fe + H2O is fast even at room temperature [26], and flame studies 

show that CaOH + H and MgOH + H are within an order of magnitude of their respective 

collision frequencies [44,45]. It therefore appears very unlikely that metal titanates and 

silicates can form in the outflow region via direct oxidation of the metal atoms. 

 

Oxidation of TiO and SiO 

We have recently measured the kinetics of the reaction 

 SiO + OH    SiO2 + H   H0 = -6 kJ mol
-1

  (2) 

obtaining k2(293 K) = (5.7 ± 2.0) × 10
-12

 cm
3
 molecule

-1 
s

-1
  [46]. In the same study we 

computed the PES for the reaction: this is quite complex because of the initial formation of a 

cis or trans form of the HOSiO intermediate, which then rearranges in different ways to yield 

the products. Figure 2 shows a plot of the temperature dependence of k2 calculated using 

MESMER. Note that the model reproduces the experimental point at 293 K if it is assumed 

that there is an equal probability of the reaction proceeding via each HOSiO isomer. In the 

temperature region above 1200 K relevant to the present study, the reaction should be fast 

enough to oxidise SiO to SiO2 in around 40 days. However, reaction 2 is very close to being 

thermoneutral, and unfortunately the reverse reaction (SiO2 + H) is about 50 times faster 



above 1000 K (Figure 2). SiO and SiO2 will therefore rapidly reach a steady-state. For 

instance, in an outflow at 1400 K where the OH/H ratio  is 2 × 10
-5

,
  
the SiO2/SiO ratio will be 

only 3 × 10
-6

. 

In the absence of OH, the other route to oxidise SiO would be the endothermic reaction 

 SiO + H2O    SiO2 + H2   H0 = 50 kJ mol
-1

  (3) 

However, there is a barrier of 131 kJ mol
-1

 on the PES of this reaction (involving a 

rearrangement from an intermediate OSi(H)OH to OSiO + H2), so that this reaction will be 

extremely slow e.g. k3(1400 K) = 9 × 10
-18

 cm
3
 molecule

-1
 s

-1
.  In any case, the reverse 

reaction (SiO2 + H2) has a barrier of only 81 kJ mol
-1

, and so will be about 3 orders of 

magnitude faster. 

Fortunately, the situation for the oxidation of TiO is rather different. The PES for the OH 

oxidation reaction 

 TiO + OH    TiO2 + H   H0 = -141 kJ mol
-1

  (4)  

proceeds via a deep well corresponding to HOTiO (bound by 421 kJ mol
-1

 with respect to 

TiO + OH), which then dissociates without a barrier to the products which lie 141 kJ mol
-1

 

below the entrance channel. In this situation, the forward reaction is fast, but the reverse 

reaction is extremely slow, as shown in Figure 2. The result is that the TiO2/TiO ratio is 

around 4% at 1400 K in the outflow, a much more favourable situation. H2O may also play a 

role in the oxidation of TiO: 

 TiO + H2O   TiO2 + H2   H0 = -85 kJ mol
-1

  (5) 

However, this reaction does not conserve electronic spin, since ground-state TiO is a triplet 

(the state is 
3
)  and TiO2 is a singlet (

1
A1). If spin is conserved and triplet TiO2 formed, the 

reaction would be endothermic by 245 kJ mol
-1

 and thus negligibly slow. The probability of 



spin-hopping from the triplet to singlet may not be negligible if there is a crossing seam 

between the two PESs. However, for the present model this probability is taken to be zero, so 

that reaction 4 is assumed to be the only pathway for oxidising TiO. 

 

Formation of the metal titanates and silicates 

The next challenge is to oxidise TiO2 and SiO2 further. Bimolecular reaction with OH, 

 TiO2 + OH   OTiO2 + H   H0 = 192 kJ mol
-1

  (6) 

 SiO2 + OH    OSiO2 + H   H0 = 182 kJ mol
-1

  (7) 

is too endothermic to be significant. Although recombination is exothermic, 

 TiO2 + OH (+ M)  HOTiO2   H0 = -319 kJ mol
-1

  (8) 

 SiO2 + OH (+ M)    HOSiO2  H0 = -262 kJ mol
-1

  (9) 

this route is not promising for three reasons (apart from these recombination reactions being 

slow because of the low pressure of H2 (=M) in the outflow). Firstly, the reactions involve 

recombination with OH which is a very minor species. Secondly, the resulting HOTiO2 and 

HOSiO2 will not be stable against thermal decomposition, because their bond energies of 319 

and 262 kJ mol
-1

 are considerably smaller than the benchmark 400 kJ mol
-1

. Thirdly, these 

molecules undergo very exothermic reactions with H, which are likely to be fast: 

 HOTiO2 + H    H2O + TiO2   H0 = -174 kJ mol
-1

  (10) 

 HOSiO2 + H    H2O + SiO2   H0 = -231 kJ mol
-1

  (11) 

The only viable option appears to be recombination with H2O: 

 TiO2 + H2O (+ M)   OTi(OH)2  H0 = -331 kJ mol
-1

  (12) 

 SiO2 + H2O (+ M)   OSi(OH)2  H0 = -277 kJ mol
-1

  (13) 



Figure 3 illustrates the PES for reaction 12. This shows that after initially forming a TiO2-

H2O complex, rearrangement over a barrier submerged below the energy of the entrance 

channel leads to the product where three O atoms are now bound to the Ti. MESMER 

calculations (Table 2) show that reaction 12 is nearly an order of magnitude faster than 

reaction 13, largely because it is more exothermic. It should be noted that because of the 

exothermicity, and the large number of low-frequency vibrational modes of OTi(OH)2 (Table 

3), the resulting high density of ro-vibrational states means that k12 is large enough for this 

reaction to be viable even at the low pressure of H2 (=M) in the outflow. Both OTi(OH)2 and 

OSi(OH)2 are relatively stable with respect to reaction with H: 

 OTi(OH)2 + H    HOTiO + H2O  H0 = 51 kJ mol
-1

  (14) 

 OSi(OH)2 + H    HOSiO + H2O  H0 = 36 kJ mol
-1

  (15) 

However, their bond energies are only 331 and 277 kJ mol
-1

, respectively, so that thermal 

dissociation at temperatures above 1000 K will compete with the metal atom reactions 

discussed below.  

Figure 4 shows the PESs for the reactions 

 Ca + OTi(OH)2    CaTiO3 + H2  H0 = -175 kJ mol
-1

  (16) 

 Fe + OTi(OH)2    FeTiO3 + H2  H0 = -67 kJ mol
-1

  (17) 

 Mg + OTi(OH)2    MgTiO3 + H2  H0 = 5 kJ mol
-1

  (18) 

All three reactions follow essentially the same mechanism, which is illustrated in Figure 1 for 

reaction 16. Addition of the Ca atom leads to a CaTiO3H2 intermediate. This rearranges by 

migration of one of the H atoms to the Ti, forming the more stable CaTi(H)O3H intermediate 

via transition state TS1.  CaTi(H)O3H can in turn rearrange by twisting the hydroxyl H so 

that H2 can form, leading via transition state TS2 to the products CaTiO3 + H2.  



Inspection of Figure 4 shows that for reaction 16, TS1 and TS2 are submerged well below the 

reactant entrance channel, so this reaction will proceed rapidly even at low temperatures. 

Furthermore, the overall reaction is pretty exothermic, so the reverse reaction rate coefficient 

must have a large activation energy and the reaction will be relatively slow even at high 

temperatures. The rate coefficients k16 and k-16 calculated by MESMER are listed in Table 2. 

Because of the importance of this reaction, the molecular properties of each of the stationary 

points on the PES are listed in Table 3. 

In contrast to reaction 16, for Fe + OTi(OH)2 the barrier TS1 is no longer submerged (height 

= 21 kJ mol
-1

), so k17 has a positive activation energy. The reaction is also much less 

exothermic, so the reverse reaction is much faster (Table 2). For Mg the situation is even 

worse: TS1 is now 55 kJ mol
-1

 above the Mg + OTi(OH)2 entrance channel and the overall 

reaction is slightly endothermic.  

The PESs for the analogous reactions of Ca, Fe and Mg with OSi(OH)2  have the same 

topographical features. The relative energies of their respective stationary points are listed in 

Table 4. This shows that the Ca reaction has submerged barriers and is the most exothermic, 

whereas there are significant barriers for the Fe and Mg reactions. The resulting rate 

coefficients for the forward and reverse reactions are also listed in Table 2. 

 

Formation of CaTiO3 clusters 

Because of the large number of atoms with relatively high atomic numbers, calculations on 

the CaTiO3 dimer and trimer were performed only at the B3LYP/6-311+g(2d,p)  level of 

theory. Formation of these species is highly exothermic: 

 CaTiO3 + CaTiO3 (+ M)  (CaTiO3)2  H0 = -458 kJ mol
-1

   (19) 

 CaTiO3 + (CaTiO3)2 (+ M)  (CaTiO3)3  H0 = -478 kJ mol
-1

   (20) 



The most stable form of the dimer is illustrated at the bottom of Figure 1. Because reaction 19 

is well into the fall-off region between third- and second-order kinetics even at the low 

pressures of a stellar outflow, the MESMER calculations of k19 over a range of T and p were 

fitted to the Lindemann expression modified by a broadening factor Fc [21]: 

 

krec,0 and krec, are the low- and high-pressure limiting rate coefficients, respectively. The 

fitted values are given in Table 2. 

 

Formation of TiO2 particles 

TiO2 is able to form a strongly-bound dimer [47], which can then go on to form larger 

clusters  [6]: 

 TiO2 + TiO2 (+ M)    Ti2O4  H0 = -507 kJ mol
-1

   (21) 

where the enthalpy change at 0 K is taken from a set of very high level theory calculations 

[47]. Reaction 21 will be in competition with reaction 12, and could therefore constrain the 

rate of metal titanate formation. The rate coefficients k21 and k-21 were therefore calculated 

using MESMER and included in the model (Table 2). 

It should be pointed out that mixed titano-silicates (TixSiyOz) could also form. For instance, 

 TiO2 + SiO2 (+M)    TiSiO4  H0 = -480 kJ mol
-1

   (22) 
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Note that the enthalpy change is intermediate between the -408 kJ mol
-1

 for SiO2 

dimerization, and H0 for TiO2 dimerization (reaction 21). Although Gail and co-workers [6] 

have shown that the SiO/SiO2 system is not effective compared with TiO2 in forming new 

particles in an outflow, the mixed system may be more competitive because of the large 

abundance of SiO2.  However, this complex system is beyond the scope of the present study.  

Predicted CN formation in a stellar outflow 

The outflow model was now run using the rate coefficients in Table 2. Figure 5 illustrates the 

concentrations of a variety species over the 1400 days that it takes for the temperature in the 

outflow to drop from 1500 to 1000 K at a constant outflow velocity of 2 km s
-1

. The case 

shown is for a mass loss rate of 4 × 10
-5

 M⊙ y
-1

. The concentrations of atomic Ca, Mg and Fe 

decrease due to the expansion of the outflow. TiO and TiO2 decay more rapidly because of 

formation of metal titanates. Note that TiO is in excess over TiO2 at the highest temperatures, 

but their concentrations become nearly equal by 1000 K because the equilibrium constant K4 

increases at lower temperatures (due to the exothermicity of reaction 4).  

CaTiO3 is the most abundant CN-precursor formed, by more than 3 orders of magnitude over 

CaSiO3. The Fe and Mg silicates (and titanates) make a negligible contribution to CN 

formation, which is in agreement with the work of Gail and Sedlmayr [4,9,10]. However, the 

present model does not support the study of Jeong et al. [6] which concluded that TiO2 

clusters must be the major component of CN in O-rich outflows. Figure 5 shows that the TiO2 

dimer (whose formation would be the first step in forming TiO2 clusters) is a very minor 

component. This is because TiO2 recombines readily with H2O (reaction 12), and since the 

H2O/TiO2 ratio is greater than 10
5
 this reaction is much more likely than recombination of 

TiO2 with itself. Hence, the titanium oxides end up as CaTiO3 clusters via reaction 16. 



Why is CaTiO3 formation so dominant in this system, even though Ca is 15 times less 

abundant than Fe and Mg, and TiO is 420 times less abundant than SiO [37]? The reason is 

that reaction 16 is much faster in the conditions of the outflow than the other five reactions 

involving these metal atoms reacting with OTi(OH)2 or OSi(OH)2. There are essentially two 

reasons: 1) the rate coefficient k16 is large and has a small T-dependence, and k-16 is 

comparatively small; 2) the TiO2/TiO ratio is much larger than SiO2/SiO (see above), and k12 

is nearly a factor of 10 larger than k13, so that OTi(OH)2 forms much more rapidly than 

OSi(OH)2 and is then more stable against thermal dissociation. 

Figure 6 (top panel) illustrates the particle size distribution in the outflow at T = 1000 K, for a 

range of mass loss rates from (2 – 10) × 10
-5

 M⊙ y
-1

. This shows that in all cases there is a 

large concentration of CaTiO3 monomers in the smallest bin (r = 0.28 nm). Because reaction 

19 is not at its high pressure limit at the low pressures in the outflow, k19 is about 3 orders of 

magnitude below the Brownian coagulation rate coefficient. This creates a bottleneck: once 

the dimer forms, it reacts rapidly with other CaTiO3 polymers (including the monomer) to 

grow away rapidly to larger particle sizes. For the largest mass loss rate investigated (1 × 10
-4

 

M⊙ y
-1

), there is significant depletion of the monomer by coagulation with the substantial 

number of larger particles, and the distribution peaks around r = 3 nm, with 2% of particles 

being larger than 5 nm. In contrast, the distribution for the mass loss rate of 2 × 10
-5

 M⊙ y
-1

 

peaks at only 0.55 nm. 

If the minimum size of a CN particle is defined (arbitrarily) as r = 2 nm (such a particle 

would contain ~370 CaTiO3 molecules), then the time evolution of CN particles can be 

followed in the model. This is shown in Figure 6 (bottom panel), for the same range of mass 

loss rates. The particle concentration is normalised to the number of H nuclei, as has been 

done in previous work  [6]. The grey line in the figure corresponds to 10
-13

 CN particles per 



number of H nuclei. This is typically the mixing ratio of dust grains observed in circumstellar 

shells, and hence a lower limit to the CN particle number [6]. For these model conditions, this 

number is exceeded for mass loss rates of 3 × 10
-5

 M⊙ y
-1

 and higher. For mass loss rates of 7 

× 10
-5

 M⊙ y
-1

 and higher, sufficient CN particles have been produced while the outflow 

temperature is still above 1100 K.  A final point is that both panels of Figure 6 demonstrate 

how a variation in the mass loss rate by only a factor of 5 produces huge changes in the 

particle size distribution and the rate of production of CN particles. This emphasises the 

highly nonlinear kinetics involved in the gas-phase production of CaTiO3, its dimerisation, 

and the subsequent growth of CN particles. 

In order to compare with previous work on the nucleation rates of CN particles in outflows, 

the present kinetic model can be used to compute the nucleation rate J*
 
of particles with r > 2 

nm, normalised to the total H nucleus concentration (termed J*/[H]). Jeong et al. [6] 

identified a dust formation “window” corresponding to the inner region of dust shells around 

AGB stars, where the pressure lies in the range 10
-3

 - 0.1 Pa and temperature in the range 

1000 – 1200 K. The present model was therefore run at a fixed pressure of 0.01 Pa, and three 

different temperatures (1000, 1100 or 1200 K) covering this range. The resulting nucleation 

rates J*/[H] are shown in Figure 7. This illustrates graphically the non-linear effect of 

temperature on particle production. Note that there is a delay before the CN particles appear, 

which gets much longer at higher temperatures. This delay is caused by the need to first 

produce sufficient CaTiO3 for the rate of dimer production, which is second-order in 

[CaTiO3], to become fast enough. There is then a further delay while the new CaTiO3 clusters 

grow to 2 nm. The peak nucleation rates and times are also very sensitive to temperature: at 

1000 K, J*/[H] peaks at 5.4 × 10
-17

 s
-1

 after 35 days, compared with 2.4 × 10
-17

 s
-1

 after 56 

days at 1100 K, and 2 × 10
-19

 s
-1

 after 300 days at 1200 K.  The subsequent decrease in J* in 

each case results from the depletion of gas-phase TiO which is required to make CaTiO3. It 



has been shown previously [6] that in order to explain the observed dust density in 

circumstellar shells, the nucleation rate should lie in the range 10
-22

 <  J*/[H] < 10
-14

 s
-1

. The 

CaTiO3 mechanism clearly achieves this. 

 

Conclusions 

 

This study has used a variety of theoretical tools to elucidate a mechanism for producing 

CaTiO3 molecules from Ca and TiO in the challenging environment of a stellar outflow at 

temperatures above 1000 K. The mechanism is efficient because it involves two exothermic 

bimolecular reactions (TiO + OH, and Ca + OTi(OH)2) and only a single recombination 

reaction (TiO2 + H2O). The very large dipole moment of CaTiO3 and the stability of its 

polymeric clusters then favour the rapid formation of CN particles on which silicates can 

condense as the outflow cools below 1000 K.  

This is of course a theoretical study and it would be valuable to test at least some parts of the 

mechanism experimentally. However, the very properties that should make CaTiO3 an 

effective particle precursor will also make it extremely difficult to create in the gas phase at 

large enough concentrations to observe in the laboratory. Finally, although the stellar outflow 

model used here is quite simplistic, it demonstrates that CaTiO3 should be an outstanding 

candidate for CN formation. In particular, new particle formation starts to operate at 

temperatures much higher than the temperatures typically observed at the inner edge of dust 

shells  [48]. Nevertheless, it should be recognised that mass loss rates in excess of 1 × 10
-5

 

M⊙ y
-1

 are required for this mechanism to operate effectively in the model (Figure 6), and this 

is close to the upper limit of observed mass loss rates around dust-forming stars. 
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Table 1. Properties of the Ca, Mg and Fe titanate and silicate molecules  

Molecule Dipole moment 

(Debye) 

Dissociation energy 

(kJ mol
-1

) 
a 

CaTiO3 10.21 585 

CaSiO3 14.30 586 

MgTiO3 8.35 548 

MgSiO3 12.20 546 

FeTiO3 5.87 499 

FeSiO3 9.54 467 
a
 Dissociation to the metal oxide + TiO2 or SiO2 

 

 

 

  



Table 2. Reaction scheme for forming gas-phase Ca, Fe and Mg titanate and silicate 

molecules in the stellar outflow 

No. Reaction Rate coefficient 
a 

H0 K  
b
   

kJ mol
-1

 
 

Titanium chemistry 

4 TiO + OH    TiO2 + H 1.4 × 10
-11

 (1000/T)
 0.39

 -141 

-4 TiO2 + H    TiO + OH 5.0 × 10
-10

 exp(-15570/T)  
 

+141 

12 TiO2 + H2O + M    OTi(OH)2 + M 2.8 × 10
-27

 (1000/T) 
7.40

 -331 

-12 OTi(OH)2 + M    TiO2 + H2O + M 2.4 × 10
-7

 exp(-27700)/T) +331 

16 Ca + OTi(OH)2    CaTiO3 + H2 9.3 × 10
-11

 (1000/T) 
0.64

 -175 

-16 CaTiO3 + H2    Ca + OTi(OH)2 5.0 × 10
-10

 exp(-20090/T) +175 

19 CaTiO3 + CaTiO3 + M  (CaTiO3)2 + M  

 

krec,0 = 5.1 × 10
-24

 (1000/T)
14.0

 

krec, =  6.3 × 10
-10

 (1000/T)
0.17

 

Fc = 0.6 (see eqn. III) 

-458 
c 

-19 (CaTiO3)2 + M  CaTiO3 + CaTiO3 + M  k4a / (1.3 × 10
-27

 exp(51705 / T)) +458 
c 

17 Fe + OTi(OH)2    FeTiO3 + H2  5.4 × 10
-11

 exp(-3700/T) -67 

-17 FeTiO3 + H2    Fe + OTi(OH)2 1.6 × 10
-10

 exp(-10040/T) +67 

18 Mg + OTi(OH)2    MgTiO3 + H2 4.7 × 10
-12

 exp(-7340/T) +5 

-18 MgTiO3 + H2    Mg + OTi(OH)2 3.6 × 10
-11

 exp(-6630/T) -5 

21 TiO2 + TiO2 + M    Ti2O4 + M  8.0 × 10
-27

 (1000/T) 
6.46

 -507 
d 

-21 Ti2O4  + M    TiO2 + TiO2 + M  1.4 × 10
-4

 exp(-48870/T) +507 
d 

Silicon chemistry 

2 SiO + OH    SiO2 + H 9.6 × 10
-13

 10
 (5.94e-4 T )

  
e
        -6.4 

-2 SiO2 + H    SiO + OH 1.2 × 10
-10

 10
(4.57e-4 T)

  
e 

+6.4 

13 SiO2 + H2O + M    OSi(OH)2 4.0 × 10
-28

 (1000/T) 
7.68

 -277 

-13 OSi(OH)2 + M    SiO2 + H2O + M 8.7 × 10
-8

 exp(-22170/T) +277 

21 Ca + OSi(OH)2    CaSiO3 + H2 2.8 × 10
-10

 (1000/T) 
0.28

 -230 

-21 CaSiO3 + H2    Ca + OSi(OH)2 3.5 × 10
-10

 exp(-26590/T) +230 

22 Fe + OSi(OH)2    FeSiO3 + H2 7.0 × 10
-11

 exp(-5550/T) -89 

-22 FeSiO3 + H2    Fe + OSi(OH)2 4.8 × 10
-11

 exp(-15870/T)  +89 

23 Mg + OSi(OH)2    MgSiO3 + H2 5.4 × 10
-12

 exp(-7560/T) -48 

-23 MgSiO3 + H2    Mg + OSi(OH)2 1.3 × 10
-11

 exp(-12040/T)          +48 

Odd hydrogen chemistry 



24 OH + H2    H2O + H 1.6 × 10
-12

 (T/298)
1.6

 exp(-160/T) 
f
 +67 

-24 H2O + H    OH + H2 6.8 × 10
-12

 (T/298)
1.6

 exp(-9720/T) 
f
 -67 

a
 Units: bimolecular, cm

3
 molecule

-1 
 s

-1
; termolecular, cm

6
 molecule

-2 
 s

-1 
; 

b
 Calculated at the 

CBS-Q level of theory except where indicated; 
c
 Calculated at the B3LYP/6-311+g(2d,p) 

level of theory; 
d
 Calculated at the CCSD(T)-DK level of theory  [47];

 e
 Parameterised fit 

between 900 and 1500 K; 
f
 Baulch et al.  [49]. 

  



 

Table 3. Molecular properties and relative energies of the stationary points on the potential 

energy surface for Ca + OTi(OH)2  CaTiO3 + H2 

Molecule Rotational 

constants 

(GHz) 

Vibrational frequencies (cm
-1

) Relative 

energy  

(kJ mol
-1

) 

OTi(OH)2  7.53, 5.23, 

3.09 

57, 194, 231, 510, 513, 515, 531, 674, 781, 

1054, 3882, 3885 

0 

CaTiO3H2 6.89, 1.52, 

1.29 

49, 124, 134, 272,  281, 337, 353, 357, 416, 

 538, 640, 713, 809, 3882, 3935 

-209 

TS1 8.23, 1.54, 

1.31 

1396 i, 78, 145, 175, 257, 326, 349, 363, 495, 

 658, 707, 736, 791, 1398, 3942 

-110 

CaTi(H)O3H 6.86, 1.63,    

1.47 

86, 171, 187, 269, 373, 402, 419, 537, 544, 

599, 712, 732, 811, 1641, 3924 
-305 

TS2 8.89, 1.97, 

1.68 

1291 i, 129, 258, 371, 394, 487, 493, 623, 758,  

832, 898, 1121, 1173, 1820, 2043 
-173 

CaTiO3  6.84, 1.84, 

1.63 

103,  256, 301, 375, 407, 593, 680, 746, 980 -176 

 

  



Table 4. Energies of the stationary points on the potential energy surfaces of Ca, Fe and Mg 

with OSi(OH)2, relative to the reactants (Mt = Ca, Fe or Mg). 

Reaction MtSiO3H2 TS1 MtSi(H)O3H TS2 MtSiO3 + H2 

Ca + OSi(OH)2 -180 -81 -367 -149 -230 

Fe + OSi(OH)2 -157 31 -252 -12 -89 

Mg + OSi(OH)2 -87 51 -192 33 -48 

 

  



Figure Captions 

 

Figure 1. Reaction pathway to form CaTiO3 and the CaTiO3 dimer  from Ca and TiO. The 

geometries are optimised at the B3LYP/6-311+g(2d,p) level of theory.  

Figure 2.  Temperature-dependent rate coefficients for the reactions SiO + OH  SiO2 + H 

and TiO + OH  TiO2 + H and their reverse reactions, calculated using the MESMER code 

(see text). The experimental measurement of SiO + OH from Gomez Martin et al. [46] is 

shown for comparison. 

Figure 3. Potential energy surface calculated at the CBS-Q level of theory for the 

recombination of TiO2 and H2O. 

Figure 4. Potential energy surfaces for the reactions of Ca, Fe and Mg with OTi(OH)2, 

calculated at the CBS-Q level of theory. For the Ca reaction, the intermediates and two 

transition states (TS1 and TS2) are illustrated in Figure 1. 

Figure 5. Modelled evolution of dust condensation nucleus precursors of Ca (dark blue 

lines), Fe (black lines), Mg (green lines, note the MgSiO3 concentration is too small to 

appear) and TiO (azure blue lines) in a stationary stellar outflow of 4 × 10
-5

 M⊙ y
-1

 and fixed 

velocity of 2 km s
-1

. Temperature (red line) is shown on the right-hand ordinate axis.  

Figure 6. Top panel: modelled size distribution of CaTiO3 particles for a range of mass loss 

rates, shown at the point when the stellar outflow has cooled to 1000 K and these particles 

can start to act as condensation nuclei for less refractory gas-phase species. Bottom panel: 

modelled time evolution of CaTiO3 particles with radii greater than 2 nm (normalised to the 

H nucleus concentration) during the 1400 days that the outflow cools from 1500 to 1000 K 

(for the same range of mass loss rates as the top panel). Temperature is shown on the right-



hand ordinate. The horizontal grey line marks the lower limit to the CN particle mixing ratio 

required to account the observed dust grain density in circumstellar shells  [6]. 

Figure 7. The nucleation rate of particles (r > 2 nm) as a function of time. The rate is 

normalised to the H nucleus concentration. Each model run is at a constant pressure (0.01 Pa) 

and temperature (1000, 1100 or 1200 K). 
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Figure 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Reaction pathway to form CaTiO3 and the CaTiO3 dimer  from Ca and TiO. The 

geometries are optimised at the B3LYP/6-311+g(2d,p) level of theory.  

 



 

Figure 2. 

 

Figure 2.  Temperature-dependent rate coefficients for the reactions SiO + OH  SiO2 + H 

and TiO + OH  TiO2 + H and their reverse reactions, calculated using the MESMER code 

(see text). The experimental measurement of SiO + OH from Gomez Martin et al. [45] is 

shown for comparison. 

 

 

 

 



 

Figure 3. 

 

 

Figure 3. Potential energy surface calculated at the CBS-Q level of theory for the 

recombination of TiO2 and H2O. 

 

 

 

 

 

 



Figure 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Potential energy surfaces for the reactions of Ca, Fe and Mg with OTi(OH)2, 

calculated at the CBS-Q level of theory. For the Ca reaction, the intermediates and two 

transition states (TS1 and TS2) are illustrated in Figure 1. 



Figure 5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Modelled evolution of dust condensation nucleus precursors of Ca (dark blue lines), 

Fe (black lines), Mg (green lines, the MgSiO3 concentration is too small to appear) and TiO 



(azure blue lines) in a stationary stellar outflow of 4 × 10
-5

 M⊙ y
-1

 and fixed velocity of 2 km 

s
-1

. Temperature (red line) is shown on the right-hand ordinate axis.  

  



Figure 6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Top panel: modelled size distribution of CaTiO3 particles for a range of mass loss 

rates, shown at the point when the stellar outflow has cooled to 1000 K and these particles 

can start to act as condensation nuclei for less refractory gas-phase species. Bottom panel: 

modelled time evolution of CaTiO3 particles with radii greater than 2 nm (normalised to the 

H nucleus concentration) during the 1400 days that the outflow cools from 1500 to 1000 K 

(for the same range of mass loss rates as the top panel). Temperature is shown on the right-

hand ordinate. The horizontal grey line marks the lower limit to the CN particle mixing ratio 

required to account the observed dust grain density in circumstellar shells  [6]. 



Figure 7. 

 

 

Figure 7. The nucleation rate of particles (r > 2 nm) as a function of time. The rate is 

normalised to the H nucleus concentration. Each model run is at a constant pressure (0.01 Pa) 

and temperature (1000, 1100 or 1200 K). 
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