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SYNOPSIS

An important class of dual delay feedback systems of open-loop '
trasnfer-function G(s) = k exp(-Xs) /{1 - exp(-Ws)} is shown to be unstable
if ratio X/W is noninteger. By means of z-~transform techniques it is shown
that, by using a feedback transducer that senses over a substantial distance
either side its central axis, closed-loop stability may be restored. Such

transducers, here termed wide-beam sensors, include transmission, backscatter

and natural radiation types as well as electromechanical conveyor-belt
weighers etc. The paper demonstrates that designing transducers for very

narrow beams may not be desirable from the overall system viewpoint.



WIDE-BEAM SENSORS FOR CONTROLLING DUAL-DELAY SYSTEMS

J.B. Edwards and J.K. Twemlow

List of Symbols and Abbreviations

B Width of radiation beam received by sensor crystal
Dual~Delay
System System having configuration of Fig. 1
£ Additional sensor offset from position n W (equation 3)
G(s) Transfer-function of dual-delay system with pencil-beam sensor
Gp(z) z-transfer function of dual-delay system with pencil-beam sensor
Gs(z) z-transfer-function of uniform wide-beam sensor
Gps(z) z-transfer-function of combined process and wide-beam sensor
H(s) Low-pass filter representing floor degradation
k Controller gain
n Integer (=X/W in Section 3.1 and = (X-e) /W elsewhere)
Pencil
beam Infinitessimally narrow beam of received radiation
q Integer = B/2¢e
r Integer = W/e
s Laplace variable
v Output of process proper
v Sensed output
*
Yy y' sampled at distance intervals ¢
+ *
Y y processed by zero-order hold device
W Process delay distance

Wide beam

Radiation beam (received by transducer) having a finite width
Distance travelled
Sensor delay distance ( measured to beam centre)

SE

Complex, independent variable in z-transforms (=e )

Angular frequency in radians p.u. distance



INTRODUCTION

An important class of mechanical processes involves two transport delays

arranged in the configuration of Fig. 1 in which y denotes the process output,
y' its measured value, 7, the desired value of y, u the control, W and X the
process and measurement delay distances respectively and s is a complex fre-
quency measured in radians per unit distance. Controllers are usually of the
simple proportional type and are represented in Fig. 1 by the static gain k.

The open-loop transfer-function G(s) of this type of process is therefore

given by
k exp(-Xs)
= l\
G(s) {1 - exp (-Ws)} Gl
The denominator term 51 = exp(—Wsﬁ arises quite generally(l)'(2)“{3)in

modelling the basic, constant-speed, manoceuvring dynamics of excavating,
mining and earth-moving machines which cut or clear the floor upon which
they subsequently travel. Such a machine is illustrated diagramatically in
Fig. 2. The machine-height sensor is very frequently of a natural-or back-
scattered-radiation type and situated well away from the leading end of the
machine to avoid risk of damage to the sensor. Strata above and/or below the
excavation generally occurs in fairly uniform parallel layers of differing
mineral content and microscopic structure. Each layer therefore generates
its own characteristic radiation spectrum so that the height of the machine
within the strata pattern can generally be computed from the total natural
radiation received at the detector. Natural gamma sensors(r} operate on
this principle. Backscatter gauges(s) rely on the differing degrees of
scatter produced by the strata layerson an artificial radiation beam produced
by a radio—acﬁive isotope located in the sensor but shielded from the
detector.

Sensor action is modelled, at its simplest, by the transport delay

exp(-Xs), assuming the height measurement to be made at a point and, indeed,



considerable effort is generally devoted to obtaining as narrow a sensor
beam-width as possible. This is achieved through beam collimation by
recessing the detecting crystal within a tube of shielding material, as
indicated in Fig. 2. Severe collimation (resulting from either too-deep
a tube or too-small a crystal area) reduces the strength of the gamma
radiation received, however, so increasing the randomness of the height-
signal obtained with a given filter time-constant, (or demanding an exces—i
sive filter lag for a given standard-deviation of output signal). Narrowing
the beamwidth to a pencil certainly simplifies system analysis, permitting
the use of transfer-function G(s) (perhaps augmented by sensor-and actuator-
lags) in system studies but does not necessarily aid system behaviour, as
will be revealed in the paper.

For control systems design,the only attempts hitherto to include random
radiation effects(6) have involved the use of pseudorandom-binary or near-

Poisson sequence generators whose average (clock) frequency is modulated by

a varying point-measurement of roof (or floor) height. In control studies,

no attempt has been made to examine the effect of the spatial distribution

of the received radiation beam. Detailed modeliing(4) of radiation sensors
is extremely complicated, requiring expensive simulation that involves sclution
of a Boltzman transport equation by Monte Carlo methods. Even for static tests
(i.e. with a sensor held stationary) the tracking of numerous individual quanta
throughout the gamma field is strictly necessary. Their paths involve many
random collisions and backscatter operations and the field ultimately supplying
radiation to the sensing crystal therefore covers a range outside the simple
umbral- and penumbral-coRes indicated in Fig. 2. Once the sensor moves, the
gamma- transport process is further complicated, even with constant, homo-
geneous roof-(or floor-) strata. A wider gamma field must now be monitored
because the fringes of the field clearly make different contributions to the
~ceived radiation level to those in the stationary situation. For analytical

.ies of the idealised process, G(s), as defined by equation (1), may



clearly be treated as a continuocus linear system. To augment G(s) with ewven
the simplest wide-beam sensor model would, however, eliminate the system
linearity because no linear continuous transfer-function could represent the
wide-beam effect. Quite apart from the complexities mentioned above, the
beam-width must be finite to prevent the sensor from seeing ahead of the
excavation and producing consequent causality problems. Continuous linear
transfer-function approximations of a radiation beam of significant width
are thereforerprecluded.

Fortunately, the dual-delay system G(s) can also be regarded as a
discrete system and, as shown in Section 3, readily yields to analysis by
z-transform methods. A finite sensor beam profile can also be described as
a linear discrete process thus allowing the composite system, G(s) + sensor,
to be analysed. This is demonstrated in Section 4, preducing interesting
predictions for the potential benefits of wide-beam sensors. Simulation is
used to validaﬁe the z-domain findings.

THE DUAL-DELAY SYSTEM ALONE

Integer Delay Ratios

Setting the ratio

X/W =n, n=1,2, etc. (2)
produces inverse Nyquist loci G_l(jm) of the forms shown in Fig. 3. As integer
n is increased the locus shapes increase in complexity but all share the pro-
perty that the locus repeats itself precisely as frequency w changes through
an increment 2m/W, describing n counterclockwise revolutions around = portion
of the negative real axis in the process. Thus, if N is an integer of infinite
proportions, the number of such orbits traced as w describes the range
—Nw /W <w i_Nﬂ/W (i.e. as s traverses the imaginary axis of the s-plane) will
be nN. This equals the number of clockwise infinite encirclements made by

=1 =] =il
G (s) {=k "Rexp (X Nt W jsin 8), R + »} as s completes the D-contour, at



radius Nn/W, around the unstable half s-plane. A region of stability,
indicated by the hatching in the examples of Fig. 3, therefore occurs in
which to site the critical -1 + j o point by suitable choice of controller
gain k. The critical values of k are clearly 2.0 and 1.0 respectively for
the cases of n=1 and 2 illustrated.

Noninteger Delay Ratios |

Once the delay ratio X/W becomes noninteger, e.g. if

X=nW+ g, W>¢g >0, n=1,2,3 etc. (3)
then Ghl(s) may be written:

G—l(s) = [k_l{l - exp(-Ws)} exp('ani] exp(es) (4)
The square-bracketed term clearly generates a locus identical to that pro-
duced in the case of an integer delay ratio of value n, but the additional
modulating term exp (ejw) now causes a progressive counterclockwise rotation
of this pattern in the G_l - plane as indicated in Fig. 4. The overall locus
shape therefore no longer repeats itself precisely every frequency increment
2n/W and the previous region of stability is progressively eroded away to
zero with each traverse of the basic pattern. Stability by adjustment of k
therefore cannot now be achieved. [bompensation by means of a rational
cascaded filter is also ineffective for although such a network can move the
critical point towards the origin as w increases, it must inevitably loose the
race to the origin as its speed of approach falls in that vicinity]. Dual-
delay systems of this type therefore present a significant stability problem.
Before considering its solution by wide-beam sensors, however, we first confirm
the findings of Sections 3.2 by means of the z-transform method.

z-Transform Analysis

For this analysis we again consider the more general situation of a
rﬁ\';ﬂ
nonintegex{X/W, i.e. we set
/

X=nW+ € ,W>e¢e >0, n=1,2,3, etc. (5)

as in Section 3.2, but we impose the minor restriction that



W/e = r ’ r =2,3,4 etc. (6)
The system may be represented by the block diagram of Fig. 5.

Now because unforced transiticns in the variables of this system will
take place only at interwvals, ¢, the natural vibrations of the system will
be unaffected by the introduction of a cascaded sampler and zero-order hold
device indicated in Fig. 6. The stability of these two equivalent systems
may therefore be determined from cbservation of the sequence y+ appearing at
the output of the zero-order-hold. Setting e”F = z and using standard

tables of z-transforms, the open-loop z-transfer function of the process is

readily shown to be
SN Nl i 105N £ (7)
S o i/
P (1-z ) (z-1) TR

G (z) clearly has nr-r+l poles clustered at the origin of the z-plane and r
poles arranged uniformly around the unit circle. For r-even, there will
therefore be nr + 1, (i.e. an odd number), of poles on or within the unit

circle so that the root locus lies along the real axis everywhere outside

and nowhere inside the circle indicating complete instability no matter what

the value of k. This result clearly accords with the continuous system

analysis of Section 3.2, Instability for any k > o in the case of r-odd is

readily argued on the basis of angles of departure of the locus branches from
the peripheral poles, For the case of n=2, r=3 for instance, the departure
from pole A in Fig. 7 will clearly take place at (180 - 90 - 4x 120 ~ lSO)O

= 1800, i.e. immediately into the unstable region Izl > 1.0 once k exceeds
zero. The z-transform method thus confirms continuous frequency domain
analysis and is therefore a useful tool for examining dual-delay systems in
which X/W is noninteger, provided the discrepancy € is such that the ratio

r = W/e is integer. A transient response computed for the case n=2, r=2

i,e. X = 5, W= 2¢ is given in Fig. 8 confirming the expected instability

of this system. The instability of many other cases has also been confirmed.



The result is serious in its practical implications since mechanical
constraints and positional tolerances may not allow X/W to be set to an
integer number in practice and furthermore may not be precisely constant
(due to variable boom tilt for instancein Fig. 2).

THE EFFECT OF SENSOR BEAM-WIDTH

Instead of a sensor of infinitessimal beam-width, consider now a symme-
trical sensor beam whose centre is again delayed by distance X{= (nr + 1l)e!}
as before but of finite width B where

B=2gqge (8)
where

4 < 0¥ + .1 (9)
i.e. where

B/2 <X (10)
as required by causality. In this initial investigation we assume a uniform
beam so that the sensor's response to a unit impulse in y is a rectangular
pulse of unit height and having a width, B, centred on the initiating impulse

as illustrated in Fig. 9. The response can be regarded as a positive unit

step function at x = - ge plus a negative unit step at x (g+l)e (assuming

the impulse to occur at x = 0). The z-transfer function of the sensor is
therefore

= P e, z_{qﬂ) = z(z? - 2_(q+l)) (11)
s (z-1) (z-1) (2 = 1)

(Alternatively Gs(z) may be derived by summation of the train of the 2g + 1
impulses occuring between x = — ge and x = + ge that are produced on sam-
pling the sensor output, Laplace transforming and setting z = esg). with
the inclusion of such a sensor, variable transitions throughout the entire
process will still occur discretely and only at intervals € so that the

composite process + sensor system will have an open-loop z-transfer function

Gps(z) given by



G _(z) =G (2) G (z) (12)
ps P s

Relationships (12) is, of course, not true for cascaded subsystems generally
in the absence of interposed samplers. Such samplers can be conceptually
introduced quite freely in the case of the systems studied here however,

because of their integer-delay nature. From equations (7) (11l) and (12)

therefore we obtain

2g+
GPS(Z) B k(2”7 - b (13)
Z(nr—r+q+l)(zul}(zr_l)
In the special case n = 2, ¥ = 2, g = 1 therefore:
3 4 2
Gps(z) =k (z -1)/{z (z-1)(z" - 1)} (14}

This clearly yields the pole/zero pattern shown in Fig. 10 from which it

is immediately deduced that the real axis is occupied by the root locus only
within the unit circle. The closed=~loop roots ultimately leave the stability
region lz| < 1.0 as k is increased at the complex points shown in Fig. 10

but scope for stabilization by appropriate gain setting is now an obvious
possibility (not available in the case of the pencil beam sensor of Section
3). The hitherto unstable system of Fig. 8 is thus stabilised by introduction
of the wide-beam sensor as confirmed by the computed transient response

shown in Fig. 11.

Discussion and Conclusions

Designers of sensors for the detection of natural, transmitted or
backscattered radiation aim generally for as narrow a beam-width as possible,
subject to a minimum acceptable signal-strength dictated by noise considerations.
The paper has demonstrated that a pencil beam used in the conventional pro-
portional control of an important class of dual-delay systems, GS(S) = k exp(-Xs)/
{1 - exp(-ws)} , will produce instability of the beam is not located pPrecisely
to produce a measurement delay, X, equal to an integer number, n, of process

delays, W. Mechanical constraints,tolerances and variations in W and X may



render the relationship X = nW unattainable in practice, introducing an

unwanted additional displacement € such that X = nW + € in this situation.

The prediction has been made using continuous frequency domain analysis

and alss, by treating the process as a discrete system, using the z-

transform method. Some assessment of the problems that might arise in

real life is appropriate however: !
The predicted oscillations are expected to occur at a cyclic frequency

of 0.5 g_l (see Fig. 8) and, in the type of application envisaged, the

rectangular humps and hollows of width € may reasonably be expected to

be destroyed and so go undetected by the process if e is relatively small

compared to W . The discrepancy between theoretical and practical expectations

arises, of course, in the original choice of mathematical process model,

which like all mathematical models of real processes is approximate to

some extent. Additional cascaded rational transfer-functions due to sensor

and actuator lags do not alter the theoretical predictions significantly (as

has already been argued in Section 3.2). 1In the case of earthmoving and

mining applications, degradation of the floor between being cut and the

process settling thereon does affect the high~frequency performance however,

since, at its simplest such a process if linear, modifies GS to the form

GS(S) = k exp(-Xs)/ {1 - H(s) exp(-Ws)} (15)

where H(s) is a form of low-pass filtering process which retains the

assumed value of unity until a critical high frequency is reached.

Thereupon the floor undulations shear off. The validity of prediction there-
fore depends on the relative size of the unwanted delay distance & and
situations readily occur where this may amount to 10 cm or considerably more.
The problem would therefore appear to be one or more than academic interest

in such applications.



z-transform analysis allows wide sensor beams of simple analytical

profile to be incorporated within the stability analysis. A simple rectan-
gular profiled beam of significant width (= W in a particular case consi-
dered) has been shown to stabilise a process that would be otherwise unstable
(e.g. where € = W/2) indicating that broad-beam sensors may have a poten-
tially important role in the control of these systems. A partial explanation
of the extra stabilising power of a broad-beam sensor (compared to a rational
filter) is that, having a near-symmetrical two-sided impulse response (about
the nominal delay distance X) it does not introduce any significant phase-
shift and thus causes the critical point of the inverse Nyquist diagram to

move towards the origin along the real axis as w increases rather than via

a complex path. Intersection with the G;l(jw} locus is thus postponed.
A full explanation in terms of the continuous frequency domain is compli-
cated however, because of the necessarily nonlinear nature of the sensor's |
response.

In the z-transform approach attention was necessarily restricted to
beams that inveolve only an integer, number, g, of error distances &, where
r € = W, r also being an integer. There therefore exists the possibility of
instability in practice if these conditions are contravened. Although this
situation has not been generally analysed, simulation of particular cases,
e.g. X=2.5W, B=0.95W, (taking care to ensure an adequate simulation time step
for observation of the possible unwanted higher frequency modes) yields step
responses typified by Fig. 12. Clearly the system remains substantially
stable apart from a very slowly growing spiky instability that would clearly
be ironed out in the practical situation by the smoothing effects of H(s)
discussed earlier in this section.

Differential delay systems can frequently be compensated and adequately
controlled by the use of Smith predictcrs(7) but a fairly precise knowledge
of the systenr delay is often required a priori. At first sight the use of

such predictors would therefore seem to favour narrow beam sensors. Little
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investigation of Smith predictors in dual-delay systems has been undertaken
however, and where the additional process delay may also be the subject of
uncertainty the widebeam sensor may well provide a more attractive
alternative, particularly as it avoids the need for digital storage in a
controller.

Finally it is worth noting that radiation sensors of various types are
finding increasing use in process industries for thickness, density, com-
position and quantitycontrol. They are not the only type of transducer
that possess the wide-beam averaging characteristic however. Eleqtromechanical
belt weighers, for instance, make their measurements over a significant
distance either side the central axis of the transducer. The two-sided
characteristic of the response of such devices would therefore appear to
be well worth future investigation as a potential control systems stabiliser.
Dual-delay systems would appear to merit further investigation in their own
right in view of the unstable modes they can readily generate.
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Fig. 2 Tunnelling Machine
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