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a b s t r a c t

Iterative proportional fitting (IPF) is a widely used method for spatial microsimulation. The technique
results in non-integer weights for individual rows of data. This is problematic for certain applications
and has led many researchers to favour combinatorial optimisation approaches such as simulated anneal-
ing. An alternative to this is ‘integerisation’ of IPF weights: the translation of the continuous weight var-
iable into a discrete number of unique or ‘cloned’ individuals. We describe four existing methods of
integerisation and present a new one. Our method – ‘truncate, replicate, sample’ (TRS) – recognises that
IPF weights consist of both ‘replication weights’ and ‘conventional weights’, the effects of which need to
be separated. The procedure consists of three steps: (1) separate replication and conventional weights by
truncation; (2) replication of individuals with positive integer weights; and (3) probabilistic sampling.
The results, which are reproducible using supplementary code and data published alongside this paper,
show that TRS is fast, and more accurate than alternative approaches to integerisation.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Spatial microsimulation has been widely and increasingly used
as a term to describe a set of techniques used to estimate the char-
acteristics of individuals within geographic zones about which
only aggregate statistics are available (Ballas, O’Donoghue, Clarke,
Hynes, & Morrissey, 2013; Tanton & Edwards, 2012). The model in-
puts operate on a different level from those of the outputs. To en-
sure that the individual-level output matches the aggregate inputs,
spatial microsimulation mostly relies on one of two methods. Com-
binatorial optimisation algorithms are used to select a unique com-
bination of individuals from a survey dataset. This approach was
first demonstrated and applied by Williamson, Birkin, and Rees
(1998) and there have been several applications and refinements
since then. Alternatively, deterministic reweighting iteratively alters
an array of weights, N, for which columns and rows correspond to
zones and individuals, to optimise the fit between observed and
simulated results at the aggregate level. This approach has been
implemented using iterative proportional fitting (IPF) to combine
national survey data with small area statistics tables (e.g. Ballas
et al., 2005a; Beckman, Baggerly, & McKay, 1996). A recent review,
published in this journal, highlights the advances made in methods
for simulating spatial microdata (Hermes & Poulsen, 2012) since
these works were published. Harland, Heppenstall, Smith, and
Birkin (2012) also discuss the state of spatial microsimulation

research and present a comparative critique of the performance
of deterministic reweighting and combinatorial optimisation
methods. Both approaches require micro-level and spatially aggre-
gated input data and a predefined exit point: the fit between sim-
ulated and observed results improves, at a diminishing rate, with
each iteration.1

The benefits of IPF include speed of computation, simplicity and
the guarantee of convergence (Deming, 1940; Fienberg, 1970;
Mosteller, 1968; Pritchard & Miller, 2012; Wong, 1992). A major
potential disadvantage, however, is that non-integer weights are
produced: fractions of individuals are present in a given area
whereas after combinatorial optimisation, they are either present
or absent. Although this is not a problem for many static spatial
microsimulation applications (e.g. estimating income at the small
area level, at one point in time; for example see Anderson
(2013)), several applications require integer rather than fractional
weights. For example, integer weights are required if a population
is to be simulated dynamically into the future (e.g. Ballas et al.,
2005a; Clarke, 1986; Holm, Lindgren, Malmberg, & Mäkilä, 1996;
Hooimeijer, 1996) or linked to agent-based models (e.g. Birkin &
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E-mail address: robin.lovelace@shef.ac.uk (R. Lovelace).

1 In IPF, model fit improves from one iteration to the next. Due to the selection of
random individuals in simulated annealing, the fit can get worse from one iteration to
the next (Hynes, Morrissey, ODonoghue, & Clarke, 2009; Williamson et al., 1998). It is
impossible to predict the final model fit in both cases. Therefore exit points may be
somewhat arbitrary. For IPF, 20 iterations has been used as an exit point (Anderson,
2007; Lee, 2009). For simulated annealing, 5000 iterations have be used (Goffe,
Ferrier, & Rogers, 1994; Hynes et al., 2009).
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Clarke, 2011; Gilbert, 2008; Gilbert & Troitzsch, 2005; Pritchard &
Miller, 2012; Wu, Birkin, & Rees, 2008).

Integerisation solves this problem by converting the weights – a
2D array of positive real numbers ðN 2 RP0Þ – into an array of inte-
ger values ðN0 2 NÞ that represent whether the associated individ-
uals are present (and how many times they are replicated) or
absent. The integerisation function must perform f(N) = N0 whilst
minimising the difference between constraint variables and the
aggregated results of the simulated individuals. Integerisation
has been performed on the results of the SimBritain model, based
on simple rounding of the weights and two deterministic algo-
rithms that are evaluated subsequently in this paper (see Ballas
et al., 2005a). It was found that integerisation ‘‘resulted in an in-
crease of the difference between the ‘simulated’ and actual cells
of the target variables’’ (Ballas et al., 2005a, p. 26), but there was
no further analysis of the amount of error introduced, or which
integerisation algorithm performed best.

To the best of our knowledge, no published research has quan-
titatively compared the effectiveness of different integerisation
strategies. We present a new method – truncate, replicate sample
(TRS) – that combines probabilistic and deterministic sampling to
generate representative integer results. The performance of TRS
is evaluated alongside four alternative methods.

An important feature of this paper is the provision of code and
data that allow the results to be tested and replicated using the sta-
tistical software R (R Core Team, 2012).2 Reproducible research can
be defined as that which allows others to conduct at least part of the
analysis (Table 1). Best practice is well illustrated by Williamson
(2007), an instruction manual on combinatorial optimisation algo-
rithms described in previous work. Reproducibility is straightfor-
ward to achieve (Gentleman & Temple Lang, 2007), has a number
of important benefits (Ince, Hatton, & Graham-Cumming, 2012),
yet is often lacking in the field.

The next section reviews the wider context of spatial microsim-
ulation research and explains the importance of integerisation. The
need for new methods is established in Section 3, which describes
increasingly sophisticated methods for integerising the results of
IPF. Comparison of these five integerisation methods show TRS to
be more accurate than the alternatives, across a range of measures
(Section 4). The implications of these findings are discussed in Sec-
tion 5.

2. Spatial microsimulation: the state of the art

2.1. What is spatial microsimulation, and why use it?

Spatial microsimulation is a modelling method that involves
sampling rows of survey data (one row per individual, household,

or company) to generate lists of individuals (or weights) for geo-
graphic zones that expand the survey to the population of each
geographic zone considered. The problem that it overcomes is that
most publicly available census datasets are aggregated, whereas
individual-level data are sometimes needed. The ecological fallacy
(Openshaw, 1983), for example, can be tackled using individual-le-
vel data.

Microsimulation cannot replace the ‘gold standard’ of real,
small area microdata (Rees, Martin, & Williamson, 2002, p. 4), yet
the method’s practical usefulness (see Tomintz, Clarke, & Rigby,
2008) and testability (Edwards & Clarke, 2009) are beyond doubt.
With this caveat in mind, the challenge can be reduced to that of
optimising the fit between the aggregated results of simulated spa-
tial microdata and aggregated census variables such as age and sex
(Williamson et al., 1998). These variables are often referred to as
‘constraint variables’ or ‘small area constraints’ (Hermes & Poulsen,
2012). The term ‘linking variables’ can also be used, as they link
aggregate and survey data.

The wide range of methods available for spatial microsimula-
tion can be divided into static, dynamic, deterministic and proba-
bilistic approaches (Table 2). Static approaches generate small
area microdata for one point in time. These can be classified as
either probabilistic methods which use a random number genera-
tor, and deterministic reweighting methods, which do not. The lat-
ter produce fractional weights. Dynamic approaches project small
area microdata into the future. They typically involve modelling
of life events such as births, deaths and migration on the basis of
random sampling from known probabilities on such events (Ballas
et al., 2005a; Vidyattama & Tanton, 2010); more advanced agent-
based techniques, such as spatial interaction models and house-
hold-level phenomena, can be added to this basic framework
(Wu et al., 2008; Wu, Birkin, & Rees, 2010). There are also ‘implic-
itly dynamic’ models, which employ a static approach to reweight
an existing microdata set to match projected change in aggregate-
level variables (e.g. Ballas, Clarke, & Wiemers, 2005b).

2.2. IPF-based Monte Carlo approaches for the generation of synthetic
microdata

Individual-level, anonymous samples from major surveys, such
as the Sample of Anonymised Records (SARs) from the UK Census
have only been available since around the turn of the century (Li,
2004). Beforehand, researchers had to rely on synthetic microdata.
These can be created using probabilistic methods (Birkin & Clarke,
1988). The iterative proportional fitting (IPF) technique was first
described in 1940 (Deming, 1940), and has become well estab-
lished for spatial microsimulation (Birkin & Clarke, 1989; Axhau-
sen, 2010).

The first application of IPF in spatial microsimulation was pre-
sented Birkin and Clarke (1988) and Birkin and Clarke (1989) to
generate synthetic individuals, and allocate them to small areas
based on aggregated data. They produced spatial microdata (a list
of individuals and households for each electoral ward in Leeds
Metropolitan District). Their approach was to select rows of syn-
thetic data using Monte Carlo sampling. Birkin and Clarke sug-
gested that the microdata generation technique known as
‘population synthesis’ could be of great practical use (Birkin &
Clarke, 2012).

2.3. Combinatorial optimisation approaches

Since the work of Birkin and Clarke (1988) and Birkin and Clarke
(1989) there have been considerable advances in data availability
and computer hardware and software. In particular, with the emer-
gence of anonymous survey data, the focus of spatial microsimula-
tion shifted towards methods for reweighting and sampling from

Table 1
Criteria for reproducible research, adapted from Peng et al. (2006).

Research
component

Criteria

Data Make dataset available, either in original form or in
anonymous, scrambled form if confidential

Methods Make code available for data analysis. Use non-prohibitive
software if possible

Documentation Provide comments in code and describe how to replicate
results

Distribution Provide a mechanism for others to access data, software,
and documentation

2 The code, data and instructions to replicate the findings are provided in the
Supplementary Information: https://dl.dropbox.com/u/15008199/ints-public.zip. A
larger open-source code project, designed to test IPF and related algorithms under a
range of conditions, can be found on github: https://github.com/Robinlovelace/IPF-
performance-testing.
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existing microdata, as opposed to the creation of entirely synthetic
data (Lee, 2009).

This has enabled experimentation with new techniques for
small area microdata generation. A significant contribution to the
literature was made by Williamson et al. (1998). The authors pre-
sented microsimulation as a problem of combinatorial optimisation:
finding the combination of SARs which best fits the constraint vari-
ables. Various approaches to combinatorial optimisation were
compared, including ‘hill climbing’, simulated annealing ap-
proaches and genetic algorithms (Williamson et al., 1998). These
approaches involve the selection and replication of a discrete num-
ber of individuals from a nationally representative list such as the
SARs. Thus, subsets of individuals are taken from the global mic-
rodataset (geocoded at coarse geographies) and allocated to small
areas. There have been several refinements and applications of the
original ideas suggested by Williamson et al. (1998), including re-
search reported by Voas and Williamson (2000), Williamson,
Mitchell, and McDonald (2002), and Ballas, Clarke, and Dewhurst
(2006).

2.4. Deterministic reweighting

The methods described in the previous section involve the use
of random sampling procedures or ‘probabilistic reweighting’ (Her-
mes & Poulsen, 2012). In contrast, Ballas, Dorling, Thomas, and
Rossiter (2005c) presented an alternative deterministic approach
based on IPF. It is the results of this method, that does not use ran-
dom number generators and thus produces the same output with
each run,3 that the integerisation methods presented here take as
their starting point. The underlying theory behind IPF has been de-
scribed in a number of papers (Deming, 1940; Mosteller, 1968;
Wong, 1992). Fienberg (1970) proves that IPF converges towards a
single solution.

IPF can be used to produce maximum likelihood estimates of
spatially disaggregated conditional probabilities for the individual
attributes of interest. The method is also known as ‘matrix raking’,
RAS or ‘entropy maximising’ (see Axhausen, 2010; Birkin & Clarke,
1988; Huang & Williamson, 2001; Jiroušek & Přeučil, 1995; John-
ston & Pattie, 1993; Kalantari, Lari, Ricca, & Simeone, 2008). The
mathematical properties of IPF have been described in several pa-
pers (see for instance Birkin & Clarke, 1988; Bishop, Fienberg, &
Holland, 1975; Fienberg, 1970). Illustrative examples of the proce-
dure can be found in Saito (1992), Wong (1992) and Norman
(1999). Wong (1992) investigated the reliability of IPF and
evaluated the importance of different factors influencing its

performance; Simpson and Tranmer (2005) evaluated methods
for improving the performance of IPF-based microsimulation.
Building on these methods, IPF has been employed by others to
investigate a wide range of phenomena (e.g. Ballas et al., 2005a;
Mitchell, Shaw, & Dorling, 2000; Tomintz et al., 2008; Williamson
et al., 2002).

Practical guidance on how to perform IPF for spatial microsim-
ulation is also available. In an online working paper, Norman
(1999) provides a user guide for a Microsoft Excel macro that per-
forms IPF on large datasets. Simpson and Tranmer (2005) provided
code snippets of their procedure in the statistical package SPSS.
Ballas et al. (2005c) describe the process and how it can be applied
to problems of small area estimation. In addition to these re-
sources, a practical guide to running IPF in R has been created to
accompany this paper.4

2.5. Combinatorial optimisation, IPF and the need for integerisation

The aim of IPF, as with all spatial microsimulation methods, is
to match individual-level data from one source to aggregated data
from another. IPF does this repeatedly, using one constraint vari-
able at a time: each brings the column and row totals of the simu-
lated dataset closer to those of the area in question (see Ballas
et al., 2005c and Fig. 5 below).

Unlike combinatorial optimisation algorithms, IPF results in
non-integer weights. As mentioned above, this is problematic for
certain applications. In their overview of methods for spatial
microsimulation Williamson et al. (1998) favoured combinatorial
optimisation approaches, precisely for this reason: ‘‘as non-integer
weights lead, upon tabulation of results, to fractions of households
or individuals’’ (p. 791). There are two options available for dealing
with this problem with IPF:

� Use combinatorial optimisation microsimulation methods
instead (Williamson et al., 1998). However, this can be compu-
tationally intensive (Pritchard & Miller, 2012).
� Integerise the weights: Translate the non-integer weights

obtained through IPF into discrete counts of individuals selected
from the original survey dataset (Ballas et al., 2005a).

We revisit the second option, which arguably provides the ‘best
of both worlds’: the simplicity and computational speed of deter-
ministic reweighting and the benefits of using whole cases.

In summary, IPF is an established method for combining
microdata with spatially aggregated constraints to simulate target

Table 2
Typology of spatial microsimulation methods.

Type Reweighting technique Pros Cons Example

Deterministic re-
weighting

Iterative proportional fitting
(IPF)

Simple, fast, accurate, avoids local optima
and random numbers

Non-integer weights Tomintz et al.
(2008)

Integerised IPF Builds on IPF, provides integer weights Integerisation reduces model fit Ballas et al. (2005a)
GREGWT, generalised
reweighting

Fast, accurate, avoids local optima and
random numbers

Non-integer weights Miranti et al.
(2010)

Probabilistic
combinatorial
optimisation

Hill climbing approach The simplest solution to a combinatorial
optimisation, integer results

Can get stuck in local optima, slow Williamson et al.
(1998)

Simulated annealing Avoids local minima, widely used, multi-
level constraints

Computationally intensive Kavroudakis et al.
(2012)

Dynamic Monte Carlo randomisation
to simulate ageing

Realistic treatment of stochastic life events
such as death

Depends on accurate estimates of
life event probabilities

Vidyattama and
Tanton (2010)

Implicitly dynamic Simplicity, low computational demands Crude, must project constraint
variables

Ballas et al. (2005c)

3 Probabilistic results can also be replicated, by ‘setting the seed’ of a predefined set
of pseudo-random numbers.

4 This guide, ‘‘Spatial microsimulation in R: a beginner’s guide to iterative
proportional fitting (IPF)’’, is available from http://rpubs.com/RobinLovelace/5089.
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variables whose characteristics are not recorded at the local level.
Intergerisation translates the real number weights obtained by IPF
into samples from the original microdata, a list of ‘cloned’ individ-
uals for each simulated area. Integerisation may also be useful con-
ceptually, as it allows researchers to deal with entire individuals.
The next section reviews existing strategies for integerisation.

3. Method

Despite the importance of integer weights for dynamic spatial
microsimulation, and the continued use of IPF, there has been little
work directed towards integerisation. It has been noted that ‘‘the
integerization and the selection tasks may introduce a bias in the
synthesized population’’ (Axhausen, 2010, p. 10 ), yet little work
has been done to find out how much error is introduced.

To test each integerisation method, IPF was used to generate an
array of weights that fit individual-level survey data to geograph-
ically aggregated Census data (see Section 3.7). Five methods for
integerising the results are described, three deterministic and
two probabilistic. These are: ‘simple rounding’, its evolution into
the ‘threshold approach’ and the ‘counter-weight’ method and
the probabilistic methods ‘proportional probabilities’ and finally
‘truncate, replicate, sample’. TRS builds on the strengths of the
other methods, hence the order in which they are presented.

The application of these methods to the same dataset (and their
implementation in the same language, R) allows their respective
performance characteristics to be quantified and compared. Before
proceeding to describe the mechanisms by which these integerisa-
tion methods work, it is worth taking a step back, to consider the
nature and meaning of IPF weights.

3.1. Interpreting IPF weights: replication and probability

It is important to clarify what we mean by ‘weights’ before pro-
ceeding to implement methods of integerisation: this understand-
ing was central to the development of the integerisation method
presented in this paper. The weights obtained through IPF are real
numbers ranging from 0 to hundreds (the largest weight in the
case study dataset is 311.8). This range makes integerisation prob-
lematic: if the probability of selection is proportional to the IPF
weights (as is the case with the ‘proportional probabilities’ meth-
od), the majority of resulting selection probabilities can be very
low. This is why the simple rounding method rounds weights up
or down to the nearest integer weight to determine how many
times each individual should be replicated (Ballas et al., 2005a):
to ensure replication weights do not differ greatly from non-inte-
ger IPF weights. However, some of the information contained in
the weight is lost during rounding: a weight remainder of 0.501
is treated the same as 0.999.

This raises the following question: Do the weights refer to the
number of times a particular individual should be replicated, or
is it related to the probability of being selected? The following sec-
tions consider different approaches to addressing this question,
and the integerisation methods that result.

3.2. Simple rounding

The simplest approach to integerisation is to convert the non-
integer weights into an integer by rounding. If the decimal remain-
der to the right of the decimal is 0.5 or above, the integer is
rounded up; if not, the integer is rounded down.

Rounding alone is inadequate for accurate results, however. As
illustrated in Fig. 2 below, the distribution of weights obtained by
IPF is likely to be skewed, and the majority of weights may fall be-
low the critical 0.5 value and be excluded. As reported by Ballas

et al. (2005a, p. 25), this results in inaccurate total populations.
To overcome this problem Ballas et al. (2005a) developed algo-
rithms to ‘top up’ the simulated spatial microdata with representa-
tive individuals: the ‘threshold’ and ‘counter-weight’ approaches.

3.3. The threshold approach

Ballas et al. (2005a) tackled the need to ‘top up’ the simulated
area populations such that Popsim P Popcens. To do this, an inclusion
threshold (IT) is created, set to 1 and then iteratively reduced (by
0.001 each time), adding extra individuals with incrementally low-
er weights.5 Below the exit value of IT for each zone, no individuals
can be included (hence the clear cut-off point around 0.4 in Fig. 1). In
its original form, based on rounded weights, this approach over-rep-
licates individuals with high decimal weights. To overcome this
problem, we took the truncated weights as the starting population,
rather than the rounded weights. This modified approach improved
the accuracy of the integer results and is therefore what we refer to
when the ‘threshold approach’ is mentioned henceforth.6

The technique successfully tops-up integer populations yet has
a tendency to generate too many individuals for each zone. This
oversampling is due to duplicate weights – each unique weight
was repeated on average three times in our model – and the pres-
ence of weights that are different, but separated by less than 0.001.
(In our test, the mean number of unique weights falling into non-
empty bins between 0.3 and 0.48 in each area – the range of values
reached by IT before Popsim P Popcens – is almost two.).

3.4. The counter-weight approach

An alternative method for topping-up integer results arrived at
by simple rounding was also described by Ballas et al. (2005a). The
approach was labelled to emphasise its reliance on both counter
and a weight variables. Each individual is first allocated a counter
in ascending order of its IPF weight. The algorithm then tops-up
the integer results of simple rounding by iterating over all individ-
uals in the order of their count. With each iteration the new integer
weight is set as the rounded weight plus the rounded sum of its
decimal weight plus the decimal weight of the next individual, un-
til the desired total population is reached.7

There are two theoretical advantages of this approach: its more
accurate final populations (it does not automatically duplicate
individuals with equal weights as the threshold approach does)
and the fact that individuals with decimal weights down to 0.25
may be selected. This latter advantage is minor, as IT reached be-
low 0.4 in many cases (Supplementary information, Fig. 2) – not
far off. A band of low weights (just above 0.25) selected by the
counter-weight method can be seen in Fig. 1.

The total omission of weights below some threshold is prob-
lematic for all deterministic algorithms tested here: they imply
that someone with a weight below this threshold, for Example
0.199 in our tests, has the same sampling probability as someone
with a weight of 0.001: zero! The complete omission of low
weights fails to make use of all the information stored in IPF

5 A more detailed description of the steps taken and the R code needed to perform
them iteratively can be found in the Supplementary Information, Section 3.2.

6 An explanation of this improvement can be illustrated by considering an
individual with a weight of 2.99. Under the original threshold approach described
by Ballas et al. (2005a), this person would be replicated four times: three times after
rounding, and then a fourth time after IT drops below 0.99. With our modified
approach they would be replicated three times: twice after truncation, and again after
IT drops below 0.99. The improvement in accuracy in our tests was substantial, from a
TAE (total absolute error, described below) of 96,670–66,762. Because both methods
are equally easy to implement, we henceforth refer only to the superior version of the
threshold integerisation method.

7 This process is described in more detail in Supplementary information.
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weights: in fact, the individual with an IPF weight of 0.199 is 199
times more representative of the area (in terms of the constraint
variables and the make-up of the survey dataset) than the individ-
ual with an IPF weight of 0.001. Probabilistic approaches to intege-
risation ensure that all such differences between decimal weights
are accounted for.

3.5. The proportional probabilities approach

This approach to integerisation treats IPF weights as probabili-
ties. The chance of an individual being selected is proportional to
the IPF weight:

p ¼ wP
W

ð1Þ

Sampling until Popsim = Popcens with replication ensures that individ-
uals with high weights are likely to be repeated several times
whereas individuals with low weights are unlikely to appear. The
outcome of this strategy is correct from a theoretical perspective,
yet because all weights are treated as probabilities, there is a non-
zero chance that an individual with a low weight (e.g. 0.3) is repli-
cated more times than an individual with a higher weight (e.g. 3.3).
(In this case the probability for any given area is � 1%, regardless of
the population size). Ideally, this should never happen: the individ-
ual with weight 0.3 should be replicated either 0 or 1 times, the
probability of the latter being 0.3. The approach described in the
next section addresses these issues.

3.6. Truncate, replicate, sample

The problems associated with the aforementioned integerisa-
tion strategies demonstrate the need for an alternative method.
Ideally, the method would build upon the simplicity of the round-
ing method, select the correct simulated population size (as at-
tempted by the threshold approach and achieved by using
‘proportional probabilities’), make use of all the information stored
in IPF weights and reduce the error introduced by integerisation to
a minimum. The probabilistic approach used in ‘proportional prob-
abilities’ allows multiple answers to be calculated (by using differ-
ent ‘seeds’). This is advantageous for analysis of uncertainty
introduced by the process and allows for the selection of the best
fitting result. Consideration of these design criteria led us to devel-
op TRS integerisation, which interprets weights as follows: IPF

weights do not merely represent the probability of a single case
being selected. They also (when above one) contain information
about repetition: the two types of weight are bound up in a single
number. An IPF weight of 9, for example, means that the individual
should be replicated nine times in the synthetic microdataset. A
weight of 0.2, by contrast, means that the characteristics of this
individual should count for only 1/5 of their whole value in the
microsimulated dataset and that, in a representative sampling
strategy, the individual would have a probability of 0.2 of being se-
lected. Clearly, these are different concepts. As such, the TRS ap-
proach to integerisation isolates the replication and probability
components of IPF weights at the outset, and then deals with each
separately. Simple rounding, by contrast, interprets IPF weights as
inaccurate count data. The steps followed by the TRS approach are
described in detail below.

3.6.1. Truncate
By removing all information to the right of the decimal point,

truncation results in integer values – integer replication weights
that determine how many times each individual should be ‘cloned’
and placed into the simulated microdataset. In R, the following
command is used:

count < �truncðwÞ

where w is a matrix of individual weights. Saving these values (as
count) will later ensure that only whole integers are counted.
The decimal remainders (dr), which vary between 0 and 1, are
saved by subtracting the integer weights from the full weights:

dr < �w� count

This separation of conventional and replication weights provides
the basis for the next stage: replication of the integer weights.

3.6.2. Replicate
In spreadsheets, replication refers simply to copying cells of

data and pasting them elsewhere. In spatial microsimulation, the
concept is no different. The number of times a row of data is rep-
licated depends on the integer weight: an IPF weight of 0.99, for
example, would not be replicated at this stage because the integer
weight (obtained through truncation) is 0.

To reduce the computational requirements of this stage, it is
best to simply replicate the row number (index) associated with
each individual, rather than replicate the entire row of data. This

Fig. 1. Overplotted scatter graph showing the distribution of weights and replications after IPF in the original survey (left), those selected by inclusion thresholds for a single
area (middle), and those selected by the counter-weight method (right) for zone 71 in the example dataset. The lightest points represent individuals who have been replicated
once, the darkest five times.
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is illustrated in the following code example, which appears within
a loop for each area (i) to be simulated:

ints½½i�� < �index½repð1 : nrowðindexÞ;countÞ�

Here, the indices (of weights above 1, index) are selected and
then repeated. This is done using the function rep (). The first
argument (1:nrow (index)) simply defines the indices to be rep-
licated; the second (count) refers to the integer weights defined in
the previous subsection. (Note: count in this context refers only to
the integer weights above 1 in each area). Once the replicated indi-
ces have been generated, they can then be used to look up the rel-
evant characteristics of the individuals in question.

3.6.3. Sample
As with the rounding approach, the truncation and replication

stages alone are unable to produce microsimulated datasets of
the correct size. The problem is exacerbated by the use of trunca-
tion instead of rounding: truncation is guaranteed to produce inte-
ger microdataset populations that are smaller, and in some cases
much smaller than the actual (census) populations. In our case
study, the simulated microdataset populations were around half
the actual size populations defined by the census. This under-
selection of whole cases has the following advantage: when using
truncation there is no chance of over-sampling, avoiding the prob-
lem of simulated populations being slightly too large, as can occur
with the threshold approach.

Given that the replication weights have already been included
in steps 1 and 2, only the decimal weight remainders need to be in-
cluded. This can be done using weighted random sampling without
replacement. In R, the following function is used:

sampleðw;size ¼ ðpops½i;1� � pops½i;2�Þ;prob ¼ dr½;i�Þ

Here, the argument size within the sample command is set as the
difference between the known population of each area (pops[i,1])
and the size obtained through the replication stage alone (pop-
s[i,2]). The probability (prob) of an individual being sampled is
determined by the decimal remainders. dr varies between 0 and
1, as described above.

The results for one particular area are presented in Fig. 2. The
distribution of selected individuals has shifted to the right, as the
replication stage has replicated individuals as a function of their
truncated weight. Individuals with low weights (below one) still
constitute a large portion of those selected, yet these individuals
are replicated fewer times. After TRS integerisation individuals
with high decimal weights are relatively common. Before

integerisation, individuals with IPF weights between 0 and 0.3
dominated. An individual-by-individual visualisation of the Monte
Carlo sampling strategy is provided in Fig. 3. Comparing this with
the same plot for the probabilistic methods (Fig. 1), the most
noticeable difference is that the TRS and proportional probabilities
approaches include individuals with very low weights. Another
important difference is average point density, as illustrated by
the transparency of the dots: in Fig. 1, there are shifts near the dec-
imal weight threshold (�0.4 in this area) on the y-axis. In Fig. 3, by
contrast, the transition is smoother: average darkness of single
dots (the number of replications) gradually increases from 0 to 5
in both probabilistic methods.

Fig. 4 illustrates the mechanism by which the TRS sampling
strategy works to select individuals. In the first stage (up to
x = 1717, in this case) there is a linear relationship between the
indices of survey and sampled individuals, as the model iteratively
moves through the individuals, replicating those with truncated
weights greater than 0. This (deterministic) replication stage se-
lects roughly half of the required population in our example data-
set (this proportion varies from zone to zone). The next stage is
probabilistic sampling (x = 1718 onwards in Fig. 4): individuals
are selected from the entire microdataset with selection probabil-
ities equal to weight remainders.

3.7. The test scenario: input data and IPF

The theory and methods presented above demonstrate how five
integerisation methods work in abstract terms. But to compare
them quantitatively a test scenario is needed. This example con-
sists of a spatial microsimulation model that uses IPF to model
the commuting and socio-demographic characteristics of econom-
ically active individuals in Sheffield. According to the 2001 Census,
Sheffield has a working population of just over 230,000. The char-
acteristics of these individuals were simulated by reweighting a
synthetic microdataset based on aggregate constraint variables
provided at the medium super output area (MSOA) level. The syn-
thetic microdataset was created by ‘scrambling’ a subset of the
Understanding Society dataset (USd).8 MSOAs contain on average
just over 7000 people each, of whom 44% are economically active
in the study area; for the less sensitive aggregate constraints, real
data were used. These variables are summarised in Table 3.

The data contains both continuous (age, distance) and categor-
ical (mode, NS-SEC) variables. In practice, all variables are con-
verted into categorical variables for the purposes of IPF, however.
To do this statistical bins are used. Table 3 illustrates similarities
between aggregate and survey data overall (car drivers being the
most popular mode of travel to work in both categories, for exam-
ple). Large differences exist between individual zones and survey
data, however: it is the role of iterative proportional fitting to apply
weights to minimise these differences.

IPF was used to assign 71 weights to each of the 4933 individ-
uals, one weight for each zone. The fit between census and
weighted microdata can be seen improving after constraining by
each of the 40 variables (Fig. 5). The process is repeated until an
adequate level of convergence is attained (see Fig. 6).9 The weights
were set to an initial value of one.10 The weights were then itera-
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Fig. 2. Histograms of original microdata weights (above) and sampled microdata
after TRS integerisation (below) for a single area — zone 71 in the case study data.

8 See http://www.understandingsociety.org.uk/. To scramble this data, the contin-
uous variables (see Table 3) had an integer random number (between 10 and �10)
added to them; categorical variables were mixed up, and all other information was
removed.

9 What constitutes an ‘adequate’ level of fit has not been well defined in the
literature, as mentioned in the next section. In this example, 20 iterations were used.

10 An initial value must be selected for IPF to create new weights which better
match the small area constraints. It was set to one as this tends to be the average
weight value in social surveys (the mean Understanding Society dataset interview
plus proxy individual cross-sectional weight is 0.986).
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tively altered to match the aggregate (MSOA) level statistics, as de-
scribed in Section 2.4.

Four constraint variables link the aggregated census data to the
survey, containing a total of 40 categories. To illustrate how IPF
works, it is useful to inspect the fit between simulated and census
aggregates before and after performing IPF for each constraint var-
iable. Fig. 5 illustrates this process for each constraint. By contrast
to existing approaches to visualising IPF (see Ballas et al., 2005c),
Fig. 5 plots the results for all variables, one constraint at a time.
This approach can highlight which constraint variables are partic-
ularly problematic. After 20 iterations (Fig. 6), one can see that dis-
tance and mode constraints are most problematic. This may be
because both variables depend largely on geographical location,
so are not captured well by UK-wide aggregates.

Fig. 5 also illustrates how IPF works: after reweighting for a par-
ticular constraint, the weights are forced to take values such that
the aggregate statistics of the simulated microdataset match per-
fectly with the census aggregates, for all variables within the con-
straint in question. Aggregate values for the mode variables, for
example, fit the census results perfectly after constraining by mode
(top right panel in Fig. 5). Reweighting by the next constraint dis-
rupts the fit imposed by the previous constraint – note the increase
scatter of the (blue) mode variables after weights are constrained
by distance (bottom left).

However, the disrupted fit is better than the original. This leads
to a convergence of the weights such that the fit between simu-
lated and known variables is optimised: Fig. 5 shows that accuracy
increases after weights are constrained by each successive linking
variable.

4. Results

This section compares the five previously describe approaches
to integerisation – rounding, inclusion threshold, counter-weight,
proportional probabilities and TRS methods. The results are based
on the 20th iteration of the IPF model described above. The follow-
ing metrics of performance were assessed:

� Speed of calculation.
� Accuracy of results.

– Sample size.
– Total Absolute Error (TAE) of simulated areas.
– Anomalies (aggregate cell values out by more than 5%).
– Correlation between constraint variables in the census and

microsimulated data.

Of these performance indicators accuracy is the most problem-
atic. Options for measuring goodness-of-fit have proliferated in the
last two decades, yet there is no consensus about which is most
appropriate (Voas & Williamson, 2001). The approach taken here,
therefore, is to use a range of measures, the most important of
which are summarised in Table 4 and Fig. 7.

4.1. Speed of calculation

The time taken for the integerisation of IPF weights was mea-
sured on an Intel Core i5 660 (3.33 GHz) machine with 4 Gb of

Fig. 3. Overplotted scatter graphs of index against weight for the original IPF weights (left) and after proportional probabilities (middle) and TRS (right) integerisation for
zone 71. Compare with Fig. 1.
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Fig. 4. Scatter graph of the index values of individuals in the original sample and
their indices following TRS Integerisation for a single area.

Table 3
Summary data for the spatial microsimulation model.

Aggregate data Survey data
71 Zones, average pop.: 3077.5 4933 observations

Variable N. categories Most populous Mean Most populous

Age/sex 12 Male, 35–54 yrs 40.1 –
Mode 11 Car driver – Car driver
Distance 8 2–5 km 11.6 –
NS-SEC 9 Lower managerial – Lower managerial

R. Lovelace, D. Ballas / Computers, Environment and Urban Systems 41 (2013) 1–11 7



RAM running Linux 3.0. The simple rounding method of integerisa-
tion was unsurprisingly the fastest, at 4 s. In second and third place
respectively were the proportional probabilities and TRS ap-
proaches, which took a couple of seconds longer for a single intege-
risation run for all areas. Slowest were the inclusion threshold and
counter-weight techniques, which took three times longer than
simple rounding. To ensure representative results for the probabilis-
tic approaches, both were run 20 times and the result with the best
fit was selected. These imputation loops took just under a minute.

The computational intensity of integerisation may be problem-
atic when processing weights for very large datasets, or using older
computers. However, the results must be placed in the context of
the computational requirements of the IPF process itself. For the
example described in Section 3.7, IPF took approximately 30 s
per iteration and 5 min for the full 20 iterations.

4.2. Accuracy

In order to compare the fit between simulated microdata and
the zonally aggregated linking variables that constrain them, the

former must first be aggregated by zone. This aggregation stage al-
lows the fit between linking variables to be compared directly (see
Fig. 7). More formally, this aggregation allows goodness of fit to be
calculated using a range of metrics (Williamson et al., 1998). We
compared the accuracy of integerisation techniques using five
metrics:

� Pearson’s product-moment correlation coefficient (r).
� Total and standardised absolute error (TAE and SAE).
� Proportion of simulated values falling beyond 5% of the actual

values.
� The proportion of Z-scores significant at the 5% level.
� Size of the sampled populations,

The simplest way to evaluate the fit between simulated and
census results was to use Pearson’s r, an established measure of
association (Rodgers, 1988). The r values for all constraints were
0.9911, 0.9960, 0.9978, 0.9989 and 0.9992 for rounding, thresh-
old, counter-weight, proportional probabilities and TRS methods
respectively. IPF alone had an r value of 0.9996. These correlations
establish an order of fit that can be compared to other metrics.

TAE and SAE are crude yet effective measures of overall model
fit (Voas & Williamson, 2001). TAE has the additional advantage
of being easily understood:

TAE ¼
X

ij

jUij � Tijj ð2Þ

where U and T are the observed and simulated values for each link-
ing variable (j) and each area (i). SAE is the TAE divided by the total
population of the study area. TAE is sensitive to the number of peo-
ple within the model, while SAE is not. The latter is seen by Voas
and Williamson (2001) as ‘‘marginally preferable’’ to the former:
it allows cross-comparisons between models of different total pop-
ulations (Kongmuang, 2006).
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Fig. 5. Visualisation of IPF method. The graphs show the iterative improvements in fit after age, mode, distance and finally NS-SEC constraints were applied (see Table 3). See
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after 20 IPF iterations (compare with Fig. 5).
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The proportion of values which fall beyond 5% of the actual val-
ues is a simple metric of the quality of the fit. It implies that getting
a perfect fit is not the aim, and penalises fits that have a large num-
ber of outliers. The precise definition of ’outlier’ is somewhat arbi-
trary (one could just as well use 1%).

The final metric presented in Table 4 is based on the Z-statistic,
a standardised measure of deviance from expected values, calcu-
lated for each cell of data. We use Zm, a modified version of the
Z-statistic which is a robust measure of fit for each cell value Wil-
liamson et al. (1998). The measure of fit is appropriate here as it

takes into account absolute, rather than just relative, differences
between simulated and observed cell count:

Zmij ¼ ðrij � pijÞ
pijð1� pijÞP

ijUij

 !1=2,
ð3Þ

where

pij ¼
UijP
ijUij

and rij ¼
TijP
ijUij

Table 4
Accuracy results for integerisation techniques.a

Method Variables TAE SAE (%) E > 5% (%) Zm2 (%)

IPF Age/sex 9 0.0 0.0 0.0
Distance 4874 2.3 13.7 4.9
Mode 4201 2.0 6.4 4.2
NS-SEC 0 0.0 0.0 0.0
All 9084 3.1 4.5 2.1

Rounding Age/sex 26,812 12.5 81.5 39.8
Distance 31,981 14.9 80.1 65.1
Mode 30,558 14.2 81.4 48.9
NS-SEC 27,493 12.8 76.5 57.1
All 116,844 13.6 80.1 51.3

Threshold Age/sex 11,076 5.1 49.2 8.1
Distance 27,146 12.6 82.4 57.7
Mode 14,770 6.9 68.6 33.9
NS-SEC 13,770 6.4 55.2 24.1
All 66,762 7.8 62.5 28.7

Counter-weight Age/sex 10,242 4.8 47.7 6.6
Distance 17,103 8.0 70.2 39.3
Mode 10,072 4.7 60.4 21.6
NS-SEC 11,798 5.5 49.6 17.1
All 49,215 5.7 56.1 19.6

Proportional probabilities Age/sex 9112 4.2 48.0 3.1
Distance 8740 4.1 47.4 10.4
Mode 8664 4.0 60.8 9.0
NS-SEC 7778 3.6 37.6 3.3
All 34,294 4.0 49.0 6.2

TRS Age/sex 5424 2.5 27.9 0.4
Distance 10,167 4.7 48.8 16.4
Mode 7584 3.5 56.1 6.7
NS-SEC 5687 2.6 24.9 1.1
Total 28,862 3.4 39.2 5.5

a The probabilistic results represent the best fit (in terms of TAE) of 20 integerisation runs with the pseudo-
random number seed set to 1000 for replicability – see Supplementary information.
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Fig. 7. Scatterplots of actual (census) and simulated population totals for four integerisation techniques. The black lines represent 5% error in either direction.
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To use the modified Z-statistic as a measure of overall model fit,
one simply sums the squares of zm to calculate Zm2. This measure
can handle observed cell counts below 5, which chi-squared tests
cannot (Voas & Williamson, 2001).

The results presented in Table 4 confirm that all integerisation
methods introduce some error. It is reassuring that the compara-
tive accuracy is the same across all metrics. Total absolute error
(TAE), the simplest goodness-of-fit metric, indicates that discrep-
ancies between simulated and census data increase by a factor of
3.2 after TRS integerisation, compared with raw (fractional) IPF
weights.11 Still, this is a major improvement on the simple rounding,
threshold and counter-weight approaches to integerisation pre-
sented by Ballas et al. (2005a): these increased TAE by a factor of
13, 7 and 5 respectively. The improvement in fit relative to the pro-
portional probabilities method is more modest. The proportional
probabilities method increased TAE by a factor of 3.8, 23% more
absolute error than TRS.

The differences between the simulated and actual populations
(Popsim � Popcens) were also calculated for each area. The resulting
differences are summarised in Table 5, which illustrates that the
counter-weight and two probabilistic methods resulted in the cor-
rect population totals for every area. Simple rounding and thresh-
old integerisation methods greatly underestimate and slightly
overestimate the actual populations, respectively.

5. Discussion and conclusions

The results show that TRS integerisation outperforms the other
methods of integerisation tested in this paper. At the aggregate le-
vel, accuracy improves in the following order: simple rounding,
inclusion threshold, counter-weight, proportional probabilities
and, most accurately, TRS. This order of preference remains un-
changed, regardless of which (from a selection of 5) measure of
goodness-of-fit is used. These results concur with a finding derived
from theory – that ‘‘deterministic rounding of the counts is not a
satisfactory integerization’’ (Pritchard & Miller, 2012, p. 689). Pro-
portional probability and TRS methods clearly provide more accu-
rate alternatives.

An additional advantage of the probabilistic TRS and propor-
tional probability methods is that correct population sizes are
guaranteed.12 In terms of speed of calculation, TRS also performs
well. TRS takes marginally more time than simple rounding and pro-
portional probability methods, but is three times quicker than the
threshold and counter-weight approaches. In practice, it seems that
integerisation processing time is small relative to running IPF over
several iterations. Another major benefit of these non-deterministic
methods is that probability distributions of results can be generated,

if the algorithms are run multiple times using unrelated pseudo-ran-
dom numbers. Probabilistic methods could therefore enable the
uncertainty introduced through integerisation to be investigated
quantitatively (Beckman et al., 1996; Little & Rubin, 1987) and sub-
sequently illustrated using error bars.

Overall the results indicate that TRS is superior to the determin-
istic methods on many levels and introduces less error than the
proportional probabilities approach. We cannot claim that TRS is
‘the best’ integerisation strategy available though: there may be
other solutions to the problem and different sets of test weights
may generate different results.13 The issue will still present a chal-
lenge for future researchers considering the use of IPF to generate
sample populations composed of whole individuals: whether to
use deterministic or probabilistic methods is still an open question
(some may favour deterministic methods that avoid psuedo-random
numbers, to ensure reproducibility regardless of the software used),
and the question of whether combinatorial optimisation algorithms
perform better has not been addressed.

Our results provide insight into the advantages and disadvan-
tages of five integerisation methods and guidance to researchers
wishing to use IPF to generate integer weights: use TRS unless
determinism is needed or until superior alternatives (e.g. real
small area microdata) become available. Based on the code and
example datasets provided in the Supplementary Information,
we encourage others to use, build-on and improve TRS
integerisation.

A broader issue raised by the this research, that requires further
investigation before answers emerge, is ‘how do the integerised re-
sults of IPF compare with combinatorial optimisation approaches
to spatial microsimulation?’ Studies have compared non-integer
results of IPF with alternative approaches (Harland et al., 2012;
Rahman, Harding, & Tanton, 2010; Ryan, Maoh, & Kanaroglou,
2009; Smith, Clarke, & Harland, 2009). However, these have so
far failed to compare like with like: the integer results of combina-
torial approaches are more useful (applicable to more types of
analysis) than the non-integer results of IPF. TRS thus offers a
way of ‘levelling the playing field’ whilst minimising the error
introduced to the results of deterministic re-weighting through
integerisation.

In conclusion, the integerisation methods presented in this pa-
per make integer results accessible to those with a working
knowledge of IPF. TRS outperforms previously published methods
of integerisation. As such, the technique offers an attractive alter-
native to combinatorial optimisation approaches for applications
that require whole individuals to be simulated based on aggre-
gate data.
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Table 5
Differences between census and simulated populations.

Metric Rounding Threshold Others (CW, PP, TRS)

Mean �372 8 0
Standard deviation 88 11 0
Max �133 54 0
Min �536 0 0
Oversample (%) �13 0.3 0

11 In the case of a sufficiently diverse input survey dataset, IPF would be able to find
the perfect solution: TAE would be 0 and the ratio of error would not be applicable.

12 Although the counter-weight method produced the correct population sizes in
our tests, it cannot be guaranteed to do so in all cases, because of its reliance on
simple rounding: if more weights are rounded up than down, the population will be
too high. However, it can be expected to yield the correct population in cases where
the populations of the areas under investigation are substantially larger than the
number of individuals in the survey dataset.

13 Despite these caveats, the order of accuracy identified in this paper is expected to
hold in most cases. Supplementary Information (Section 4.4), shows the same order of
accuracy (except the threshold method and counter-weight methods, which swap
places) resulting from the integerisation of a different weight matrix.
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Appendix A. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at http://dx.doi.org/10.1016/j.compenvurbsys.
2013.03.004.
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