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Features for damage detection with insensitivity
to environmental and operational variations

BY E. J. CROSS1,*, G. MANSON1, K. WORDEN1 AND S. G. PIERCE2

1Dynamics Research Group, Department of Mechanical Engineering,
University of Sheffield, Mappin Street, Sheffield S1 3JD, UK

2Department of Electronic and Electrical Engineering, University of
Strathclyde, 204 George Street, Glasgow, G1 1XW, UK

This paper explores and compares the application of three different approaches to the
data normalization problem in structural health monitoring (SHM), which concerns
the removal of confounding trends induced by varying operational conditions from a
measured structural response that correlates with damage. The methodologies for singling
out or creating damage-sensitive features that are insensitive to environmental influences
explored here include cointegration, outlier analysis and an approach relying on principal
component analysis. The application of cointegration is a new idea for SHM from the field
of econometrics, and this is the first work in which it has been comprehensively applied
to an SHM problem. Results when applying cointegration are compared with results from
the more familiar outlier analysis and an approach that uses minor principal components.
The ability of these methods for removing the effects of environmental/operational
variations from damage-sensitive features is demonstrated and compared with benchmark
data from the Brite-Euram project DAMASCOS (BE97 4213), which was collected from
a Lamb-wave inspection of a composite panel subject to temperature variations in an
environmental chamber.

Keywords: structural health monitoring; damage-sensitive features; environmental and
operational variability

1. Introduction

Despite the fact that structural health monitoring (SHM) has become
an increasingly popular research topic over the last decade or so, the
technologies developed have still seen relatively little up-take by industry. From a
machine-learning perspective, a major pitfall for practical SHM implementation
is the lack of data available from the ‘damaged state’ of structures, which
often necessitates an unsupervised learning approach. This lack of damage
data has led to the adoption in many SHM schemes of novelty detection,
whereby damage is inferred if measurements deviate from a defined or learned
normal condition.
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While novelty detection deals excellently with the unsupervised learning
problem, another major problem occurs with its application to in-service
structures, which is that defining the normal condition outside the laboratory
becomes difficult on account of the effects of varying environmental and
operational conditions. Practical application of novelty detection often works on
the premise that some monitored damage-sensitive feature will remain stationary,
or within some limits, all the time a structure continues to respond in its normal
condition. The occurrence of damage is then inferred by any significant change
occurring in the feature. Unfortunately, for structures in operation, changes
to damage-sensitive features can often be caused by changing environmental
or operational conditions, and this constitutes a large problem where SHM is
concerned. If any SHM system is to be relied upon, false-positive detections
of damage (as would be caused by a varying operational environment) must
be avoided.

The answer is to attempt to account for (or remove) environmental or
operational variability in damage-sensitive features, and this (non-trivial)
problem is often referred to as the data normalization problem by SHM
practitioners (Sohn 2007). This issue is considered one of the major reasons for
the slow up-take of SHM outside the world of academic research.

In the past, a number of approaches for dealing with this problem have been
attempted, and widely speaking, these approaches can be categorized by the types
of data collected in a monitoring campaign. One general approach to the problem,
applicable where direct measurement of the changing environment may or may
not be available, is to directly define the normal condition with data collected
over a long period of time from an undamaged structure. If one has a large
bank of data that includes measurements occurring under the influence of a wide
range of environmental and operational conditions, then the normal condition
defined by this data will encompass feature deviations influenced by the benign
conditions. One obvious disadvantage to this approach is the lack of ability
to guarantee that the dataset does include data from a full range of
environmental/operational conditions, which lowers one’s confidence in the ability
to detect true novelty. A further disadvantage is that within a vast normal
condition, any sensitivity to damage a detector has may well be lost. Where
measurement of the relevant environmental conditions is available, an alternative
that may restore sensitivity to damage could be to work with subsets of
normal condition data, where a novelty detector is constructed for a subset
that relates to a specific environmental condition, new data could then be
tested by the novelty detector relevant to the environmental condition at the
time. Although this approach should improve damage sensitivity, it would
still require a large amount of data to be acquired and stored before any
meaningful SHM could be carried out. Most commonly, where comprehensive
measurements of the relevant operational and environmental conditions are
available, regression techniques have been used. Here, damage-sensitive features
are modelled (in a simple mathematical way) with respect to environmental
conditions. An accurate regression effectively acts as a filter to remove the
influence of the benign conditions from the model error, which can then be
used as a damage-sensitive, environmentally insensitive feature (Sohn et al.
1998; Peeters et al. 2001; Worden et al. 2002). The methods explored in
this study are intended to be applicable in situations where measurement
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of external conditions is not necessarily available. For a good review of
previous approaches to the data normalization problem, readers are referred to
Sohn (2007).

Three approaches to the data normalization problem are investigated here
in the context of benchmark data from the Brite-Euram project DAMASCOS
(BE97 4213),1 which was collected from a Lamb-wave inspection of a composite
panel subject to temperature variations in an environmental chamber. The three
approaches are based on outlier analysis, principal component analysis (PCA) and
finally cointegration, a new idea for SHM from the field of econometrics (Cross
et al. 2011). This study is intended to build on the work initiated in Manson
(2002), the data have been re-analysed and discussion of the results presented in
that paper will be significantly expanded here, the results gained using PCA and
outlier analysis will also be compared with new results gained using cointegration.

2. Theory

The primary concern of this work is to identify or to create damage-sensitive
features that continue to function under environmental or operational variability.
A common theme throughout will be to use outlier analysis, which assesses the
discordancy of a single observation with respect to the rest of the data, or a
fixed set of training data. A discordant outlier in a dataset is an observation
that appears inconsistent with the rest of the data and therefore is believed to
be generated by an alternate mechanism to the other data. The discordancy of
the candidate outlier is a measure that may be compared against some objective
criterion allowing the outlier to be judged to be statistically likely or unlikely
to have come from the assumed generating model. The discordancy test for
multivariate data used in this work is the Mahalanobis squared distance measure
given by

Dz = ({xz} − {x̄})T[S ]−1({xz} − {x̄}), (2.1)

where {xz} is the potential outlier datum, {x̄} is the mean vector of the
sample observations and [S ] the sample covariance matrix. In order to label an
observation as an outlier or an inlier, there needs to be some threshold value
against which the discordancy value can be compared. This value is dependent
on both the number of observations and the number of dimensions of the problem
being studied. The value also depends upon whether an inclusive or exclusive
threshold is required. In this work, the threshold value is computed using a
Monte Carlo method. Briefly, a matrix having the same size as the dataset under
consideration is generated and populated with elements randomly drawn from a
zero mean, unit standard deviation (s.d.) Gaussian distribution; for all elements,
the Mahalanobis squared distance is then calculated and the largest value stored.
This is repeated a large number of times (10 000 in the case of this work), each
time storing the largest Mahalanobis squared distance, which are then sorted in
order of magnitude. The critical values for 5 per cent and 1 per cent tests of
discordancy can then be found from this array at a point above which 5 per cent
and 1 per cent of the trials occur.
1Data available at http://www.shef.ac.uk/drg/people/ejcross.
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The first approach to the data normalization problem presented in this
work directly uses outlier analysis to attempt to single out features that
are individually sensitive to damage and yet insensitive to the changing
environmental or operational conditions. The idea is to test some training set
of data (where environmental variations are present) for each feature under
consideration using a univariate novelty index, and then select only the features
that have a low discordancy measure under changing environmental conditions for
further analysis.

The second approach to the problem addressed here uses PCA, a classical
method from multivariate statistics that is often used to reduce the dimensionality
of a dataset. PCA projects data onto a new set of orthogonal axes (or principal
components) which are linear combinations of the originals but ordered according
to the proportion of the variance of the data each accounts for; for example, the
first principal component will account for the largest proportion of variance in
the data. With the components ordered in such a way, one is able to discard
any components that do not account for a significant amount of variance; in
this way, the dimensionality of the dataset can be reduced without losing any
significant information. For more information on how PCA works, readers are
referred to any textbook on multivariate statistics, of which Sharma (1995) is a
good example.

In the case of an undamaged structure subject to changing environmental
conditions, information on the response of a set of monitored variables to the
environmental variation will be contained within the principal components that
account for significant amounts of variance in the dataset (Manson 2002). The
idea explored here is to project a dataset onto its minor components, i.e. those
that account for less variance in the data, and therefore discard the dimensions
of the data that carry any dependence on environmental factors. In theory, so
long as damage does not manifest as variance along an axis in the same direction
as any of the major components disregarded, the feature created using the minor
components will be insensitive to environmentally induced structural responses
but still sensitive to damage. Factor analysis, which is closely related to PCA,
may also be used in a similar way, as explored in Kullaa (2004).

Although novel for the SHM community, it transpires that using PCA in
this way has already been anticipated in the context of econometrics (Stock &
Watson 1988, 1993). In this context, PCA becomes part of a much wider class of
algorithms that are related to the concept of cointegration, which is also explored
here as a suitable means for creating damage-sensitive features. Cointegration is
actually a property of non-stationary time series; if non-stationary multivariate
data have some linear combination that is stationary, these variables are said to
be cointegrated, and furthermore (to introduce more terminology), the coefficients
of the stationary linear combination make up what is termed the cointegrating
vector. Cointegration is commonly used by econometricians to identify common
trends in economic variables (which are often less well understood than variables
from structural monitoring), and to determine their long-run equilibrium that
is defined by their stationary linear combination. In finding a stationary linear
combination of non-stationary time series, one has purged the dataset of its
common trends, and it is this that is of interest to SHM practitioners, as common
trends in a dataset from an in-service undamaged structure will often be caused by
environmental or operational variations. This stationary linear combination of a
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cointegrating vector and the variables of interest is often referred to as a residual,
due to the fact that common trends have been removed, this terminology will be
adopted in this work.

For SHM, then, finding the cointegrating vectors of a dataset is the most
interesting aspect of the ideas behind cointegration. This is commonly achieved
by the Johansen procedure (Johansen 1995), which is a maximum-likelihood
procedure designed for non-stationary variables whose first difference is stationary
(integrated of order one, to use econometric terminology). The procedure is
described very briefly here, but readers should refer to Johansen (1995) for more
details (or Cross et al. 2011 for a more pedagogical approach). The Johansen
procedure starts with the variables in question arranged in vector error-correction
model (ECM) form:

{Dyi} = [P]{yi−1} +
p−1∑

j=1

[Bj ]{Dyi−j} + [f]{D(t)} + {ei} (2.2)

where yi denotes an n-vector including all n variables to be analysed, with the
subscript i relating to time, i = 1, . . . N , p represents the model order, or the
number of lags to be included in the model and ei is a noise process. A term
to describe a deterministic trend D(t) can also be included. An assumption
of using this model type is that if the yi are cointegrated, parameters can
be found such that the noise process is normally distributed; ei ∼ N (0, [S]).
ECMs for cointegrated variables are common in econometrics, as the matrix [P]
describes the long-run equilibrium between variables, whereas [Bj ] describes the
short-run adjustments needed to maintain the process in equilibrium. In these
circumstances, an ECM can simply be viewed as a reformulation of a vector auto-
regressive (AR) model (Juselius 2006). In this form, because the variables have
stationary first differences (i.e. {Dyi} are stationary), the matrix [P] contains
the coefficients that will create the most stationary linear combination of the
original variables; in other words, [P] contains the cointegrating vectors. For
n variables, there can be up to n − 1 independent cointegrating vectors. The
Johansen procedure estimates the possible cointegrating vectors and orders them
according to which combinations/residuals are ‘most’ stationary. The authors’
practice when applying cointegration has been to use the linear combination
ranked by the Johansen procedure as the most stationary.

Unfortunately, if the variables are cointegrated, [P] must be of reduced rank,
which means that parameter estimates for (2.2) must be obtained using a reduced
rank regression. The reduced rank regression involves the decomposition of the
matrix [P], and parameter estimation through maximizing the likelihood of
observing the correct noise sequence {ei}; however, as the process is rather in
depth, no further details are given here, and instead readers are again referred to
Johansen (1995) or Cross et al. (2011).

The Johansen procedure is adopted here as a sophisticated and well-established
means of identifying combinations of variables that allow the removal of nuisance
trends. Cointegration theory has largely been developed in the context of
non-stationary econometric signals that can be described with a unit root
process. It is used in an engineering context here, under the assumption that
data considered exhibit similar behaviour to a unit root process. In practice,
this has the implication that only non-stationary variables with a stationary
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first difference may be included in an analysis, which should be checked
in advance for each variable under consideration. This may be achieved by
using, for example, unit-root tests for stationarity, such as the augmented
Dickey–Fuller test statistic (Dickey & Fuller 1979, 1981). Where the sole interest
is removing environmental/operational trends, other stricter assumptions made in
an econometrics context may be relaxed. For example, in practice, the Johansen
procedure appears to be quite robust under deviations from normality of the noise
process, ei , in the sense that the computed cointegrating vectors still effectively
remove any nuisance trends. This matter has been the subject of a recent paper
by the authors (Cross & Worden 2012) that will be extended in a forthcoming
journal publication.

It should be noted here that both the approaches using PCA and cointegration
described above rely on the assumption that features from the undamaged
condition of a structure are linearly related. If this is not the case, trends induced
by changing environmental and operational conditions may not be removed in
their entirety without extension to nonlinear variants of the algorithms.

3. Experimental data

The methods outlined in §2 will be explored in this study in the context of
data collected from the Brite-Euram project DAMASCOS (BE97 4213), which
studied the damage detection capabilities of Lamb-wave propagation within
composite structures. The data used here come from a Lamb-wave inspection
of a composite panel subject to temperature variations in an environmental
chamber, for which the test set-up is illustrated in figure 1.

Identical piezoceramic discs were bonded at the plate edges to minimize
reflections from these edges and at the mid-point of these edges to allow for
greater discrimination between the direct propagating mode and its reflections
from the side edges. The plate material was carbon fibre-reinforced plastic with a
0◦/90◦ lay-up. Fundamental symmetric (S0) and anti-symmetric (A0) Lamb-waves
were launched by driving the transmitter with a five cycle tone burst from the
signal generator at 300 and 80 kHz, respectively. The signals resulting at the
sensor were monitored by a digital storage oscilloscope and then transferred to
PC. Figure 2 shows a typical signal in the time and frequency domains.

For this particular test, Lamb-wave signals were recorded every minute. For the
first 1355 signals (a period of approx. 221

2 h), the chamber temperature was held
at a constant 25◦C. The temperature within the chamber was then decreased to
10◦C before being ramped to 30◦C over a 3 h period and then back to 10◦C, again
over a period of 3 h. This cycling was repeated for more than three further cycles.
After approximately 41 h (signal no. 2483), the chamber was opened, a 10 mm
hole was drilled in the plate between the two sensors and then the chamber was
closed. This essentially means that there were three different phases to the test:
signals 1–1355 are from the undamaged panel held at a constant 25◦C, signals
1356–2482 are from the undamaged panel with temperature cycling and signals
2483–2944 are from the damaged panel with temperature cycling.

For the purposes of this work, it was necessary to sub-sample the data collected
from the test described earlier. Fifty spectral lines from the area around the peak
of the frequency spectrum are selected here as an area of interest (these are
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Figure 1. Thick composite plate (3 mm) instrumented with piezoceramic transmitter.
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Figure 2. Typical Lamb-wave signal in time and frequency domains.
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Figure 3. Results of outlier analysis with training data from constant temperature samples.

lines 46–95 in figure 2), owing to their relatively higher signal-to-noise ratio and
because experience has shown that damage often manifests itself through a shift
in the peaks of spectral features. The feature that will be studied here, then,
is the amplitude of each of these 50 spectral lines for each of the 2944 signals
recorded in the test.2

In order to understand the feature data better, preliminary outlier and PCAs
were carried out. For both of these, a training dataset was chosen as every second
data point recorded when the temperature of the plate was held constant, in other
words, taking the plate under constant temperature as the normal condition. For
the outlier analysis, the mean, {x̄}, and covariance matrix, [S ], were calculated
for the 678 training set samples. All feature samples were then in turn designated
{xz} and values for Dz, the novelty index (discordancy), were calculated using
equation (2.1). Figure 3 shows the results of this analysis, with novelty index
being plotted on a log scale (note that the novelty indices of the samples in the
training set are also plotted). The horizontal dotted line represents the threshold
value, which is the critical value for a 1 per cent test of discordancy (calculated
using the training data), whereas the vertical lines separate the three regimes.

Not surprisingly, almost all of the novelty indices from samples in the
constant temperature regime are below the threshold. Meanwhile, the features
from the temperature cycling period and the damage set are all substantially over
the threshold, indicating an abnormal response from the plate for the majority of
the testing period. This is clearly an undesirable situation; if the outlier analysis
was to be intended as a damage detector, responses from the plate under a
changing temperature would be wrongly classified as such.

PCA is also carried out here to better understand the underlying structure
of the response data from the three different regimes. A plot of the first two
principal component scores is shown in figure 4, where one can see that data
2It should be noted that the amplitude measurements and features subsequently defined on these
amplitudes carry arbitrary units, as the strain measurements taken in this experiment (by a single
sensor) were uncalibrated. This is reflected in the fact that no units are listed in the relevant figures
in this work.
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from the three different regimes cluster separately, with very little overlap. The
most important thing to note is that data from the undamaged response at a
constant temperature do not overlie the ‘undamaged’ data from the temperature
cycling period. The consequence of this, as for the outlier analysis carried out
previously, is that a reliable damage indicator may not be fabricated from the
constant temperature measurements alone.

Having now a clear view of the data, §4 will explore how the effects of
temperature can be dealt with to create a working novelty detector.

4. Results

Studying figures 3 and 4 gives an insight into how badly a novelty detector
would work if the constant temperature data were considered to define the
normal condition; the temperature fluctuations lead to a false-positive detection
of damage that is very undesirable. An obvious improvement should come from
including data from the undamaged plate when the temperature was fluctuating
in the training set. Figure 5 shows the results of the same outlier analysis carried
out in §3, with a 1 per cent discordancy threshold, this time with the training
data extended to include data from the fluctuating temperature regime. Unless
otherwise stated, the training dataset used in this section will be every second
data point up to data point 2000; this includes data from just under two full
cycles of temperature fluctuation. On inspection of figure 5, redefining the normal
condition to include data points from the temperature fluctuating regime of the
test has certainly decreased the discordancy of the data points from this regime;
however, some structure still remains visible in the fluctuating temperature period
and many points cross the threshold (indicated by the dashed line). In terms of
damage detection, this outlier analysis would still be very inappropriate.

(a) Searching for damage-sensitive features that display environmental
insensitivity

As discussed in §2, a possible solution is to seek out features that display
insensitivity to environmental conditions but retain sensitivity to damage. Here,
a univariate novelty index is used to identify the spectral lines that display a
low discordancy measure under changing environmental conditions for further
analysis. To do this, the mean, m, and the standard deviation, s, for each of the
50 components of a training set of features are calculated; a univariate novelty
index zz is then calculated for samples, xz, in a test set using equation (4.1)

zz = |xz − m|
s

. (4.1)

Here, the training set used is the same as in the previous section, i.e. every second
signal from the constant temperature period. Two test sets are used to seek out
candidate features that display environmental insensitivity: the first comprises
the remainder of the constant temperature signals; the second is made up of all
signals from the temperature cycling period prior to the introduction of damage.
Figure 6 shows the results of this analysis, where the mean of the univariate
indices is plotted for each test set, along with a threshold shown as a dashed
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Figure 4. Plot of first two principal component scores, trained on constant temperature
data. Circles, training data (constant temperature); diamonds, constant temperature; squares,
temperature cycled undamaged; crosses, temperature cycled damaged.
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Figure 5. Results of outlier analysis using basic feature with extended training period to include
temperature variations.

line at a 97% confidence limit. The dotted lines are the mean of the discordancy
measures plus 1 s.d., and are added to give some idea of the variability of the
relevant component within the particular testing set.

From this analysis, six spectral lines were identified for their insensitivity to the
environmental changes, those selected were lines of the spectrum where the mean
of the novelty indices plus 1 s.d. (shown as a dotted line) fell under the threshold.
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Figure 6. Results of univariate novelty analysis for testing sets 1 and 2. Thick solid line, test-set 1
univariate outlier mean; dotted line, univariate outlier mean plus 1 s.d.; thin solid line, test-set 2
univariate outlier mean; dashed line, outlier threshold.
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Figure 7. Results of outlier analysis using advanced feature calculated using univariate novelty
indices.

It remains now to test these identified features as candidates for reliable damage
indicators. To do this the outlier analysis carried out in §4 is repeated using only
these six identified spectral lines to form a multivariate feature. The training
data selected are from the same period as previously. The result of this analysis is
shown in figure 7, where the dashed line represents the threshold, and the vertical
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dotted lines mark the three stages of experimental procedure. From this figure,
it can be seen that the objective has very nearly been achieved; almost all of the
features from the undamaged, temperature cycling set have resulted in novelty
indices below the threshold, while all of the features from the damage testing
set are significantly above the threshold. This shows that certain components of
the original basic feature are relatively insensitive to changes in temperature but
sensitive to the introduction of damage.

(b) Minor principal components for removing environmental sensitivity

While the univariate novelty index method examines to see whether there
are individual components insensitive to temperature changes but sensitive to
damage, the second method under investigation here seeks to find whether there
exist linear combinations of the feature components that achieve the same purpose
through PCA. The method for doing this is simply to perform a PCA on the
training data and the first two sets of testing data (from the uniform temperature
period and the cycling temperature period) and discard the higher principal
components that will account for the maximum variance in the data, which is
expected to be due to the temperature variations. If and when these three sets of
data from the unfaulted plate cluster together, the data from the damage testing
set may then be projected into the same minor component space.

For the basic features considered here, it was found that, by examining plots
of principal component n versus principal component n + 1, the vast majority
of the variance due to temperature change was contained in about the first 10
components. However, in order to make sure that all three sets were overlapping,
only the last 10 principal components were used to form a new feature. These
10 components account for a mere 0.005 per cent of the variance in the dataset.
The damage testing set was projected into the same space and an outlier analysis,
with a threshold at 1 per cent discordancy, was performed using this new 10-point
feature. The results shown in this section of the paper follow Manson (2002),
where the principal components are calculated using every second sample of data
recorded while the plate remained undamaged (both under stationary and cycling
temperature); the outlier analysis uses a training dataset, as described previously,
of every second sample from the stationary temperature testing period. The
results are shown in figure 8, where it is obvious that this is an even more
effective result than that from the previous method. All of the temperature
cycled, unfaulted data have been classified as unfaulted and there does not appear
to be any cyclic behaviour to the novelty indices from this set. Also, all of
the damage data are very clearly classified as such. This is a very encouraging
result, considering the complex nature of the data and also the temperature range
considered. It should be noted, however, that the data have not been standardized
prior to implementing the PCA, a fact that will be discussed further in §4c.

(c) Cointegration for the removal of environmental trends

The last method for creating the environmentally insensitive damage
detectors investigated here uses cointegration. Similar to the previous methods,
cointegration requires a training set of data from the normal condition of the
undamaged structure. The training dataset chosen here contains data points
1000–2000, which includes 355 data points from the steady temperature regime
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Figure 8. Results of outlier analysis using advanced feature calculated using minor principal
components.

and data from almost two temperature cycles.3 Before application, the effective
stationarity of the first difference of each feature was checked in order to meet
the assumptions of the Johansen procedure. The Johansen procedure was used
here to linearly combine the 50 features in question, with the aim of creating a
stationary residual. If a linear combination of the training data is stationary, the
common trends shared by the 50 features (i.e. the temperature-induced trends)
will have been purged; any other abnormal change (such as the introduction of
damage may cause) should then cause the combination residual to become non-
stationary as long as each feature in question is not affected by the damage in
exactly the same way.

Figure 9 shows the linear combination of all 50 features for the training period
chosen. The dashed horizontal lines indicate ±3 s.d. of the training data and
are added to act essentially as a statistical process control X-chart (Montgomery
2009), if a data point is outside this threshold, it can be considered as abnormal.
By studying figure 9, one can see that the Johansen procedure has successfully
found a linear combination of the 50 features in question that is stationary over
the training period, with the exception of a few points occurring around the
time when the plate began to undergo its temperature cycles. This anomaly
indicates that at the time of switching between the two test phases some more
complex relationship between the environmental conditions and the recorded
signals existed; happily after the transition period, the features returned to an
equilibrium quickly and are still valid as an anomaly detector. A positive detection
of damage from such an indicator would generally require a sustained excursion
outside the confidence intervals, which does not occur here.

3This particular training set is chosen to have the same number of points as the training set used for
the previous two algorithms with data from both temperature regimes. A choice of every other data
point in the range of points 1–2000 as used previously is avoided due to the fact that the Johansen
procedure fits a time-dependent model (equation (2.2)) in order to obtain the cointegrating vectors.
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Figure 9. Cointegrated signal over training period (linear combination of 50 spectral lines).
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Figure 10. Cointegrated signal over the whole duration of the test.

As the Johansen procedure has successfully created a stationary combination
of the variables from a training set, it remains to project all of the rest of the data
onto this combination and study what happens when damage is introduced. The
result are shown in figure 10, where the vertical lines indicate the beginning of the
temperature cycling period and the point of the introduction of damage. A clear
indication of damage is apparent when the residual becomes non-stationary
and deviates significantly outside the control chart boundaries (at ±3 s.d. of
the training residual). Cointegration looks to be a very promising approach for
the data normalization problem.

Further to this result, it is interesting to note that the large anomaly visible in
the combination of the training data (figure 9) is not present in the cointegrating
combination when a smaller subset of the 50 spectral lines is investigated. As

Proc. R. Soc. A (2012)



4112 E. J. Cross et al.

0 500 1000 1500 2000 2500 3000
−10

−5

0

5

10

15

20

sample point number

re
si

du
al

 a
m

pl
itu

de

Figure 11. Cointegrated signal (linear combination of 20 spectral lines).

an example, the results when including only the first 20 spectral lines from the
feature set used previously are shown. Using the same training period as before,
the whole 20 feature dataset projected on to the linear combination found by
the Johansen procedure is shown in figure 11. As before, the dotted horizontal
lines indicate ±3 s.d. of the training residual, and the two vertical lines indicate
the introduction of the temperature gradient and the introduction of damage,
respectively. It seems that analysing a smaller subset of variables has eliminated
the anomaly that previously occurred after the introduction of the temperature
gradient, while the indication of damage is still very clear. Further discussion on
this anomaly will follow in §5.

5. A comparison of cointegration and principal component analysis

Cointegration and PCA have both been shown to be successful tools for the
data normalization problem in §4c. As already alluded to in §1, they are in
fact regarded in the field of econometrics as being from the same class of
algorithms; both linearly combine multivariate data but by different means and
for different objectives. PCA, using singular-value decomposition, creates and
orders new variables, according to amounts of variance each accounts for in the
data, the Johansen procedure uses a maximum-likelihood approach to evaluate
the stationarity of a linear combination of variables and orders variables from the
most stationary to the least (although only one cointegrating vector was used in
the earlier-mentioned analysis, the Johansen procedure will produce as many new
variables, less one, as original variables included in the analysis). If one considers
that the most stationary variable created by the Johansen procedure will most
likely account for the least amount of variance in the data, loosely speaking,
these two methods are doing roughly the same thing, only ordering the variables
differently. In this way of thinking, the first n cointegrating vectors should be
similar to the last n principal components for some multivariate dataset.
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To answer the question of how similar PCA and cointegration actually are in a
mathematical way, a comparison between the set of principal components and the
set of cointegrating vectors themselves should be made. The principal components
in a PCA are (usually) computed using a singular value decomposition of the
data matrix, and as such, the principal components form an orthogonal set. To
understand the properties of the cointegrating vectors produced by the Johansen
procedure, one needs to dig a little deeper into how the theory works. Without
going into too much detail (see instead Johansen 1995 or Cross et al. 2011),
the Johansen procedure calculates the cointegrating vectors through solving a
generalized eigenvalue problem of the form

(li[N ] − [M ]){vi} = 0, (5.1)

where {vi} is an eigenvector with corresponding eigenvalue li , and [N ] and [M ] are
symmetric positive definite matrices. When applying the Johansen procedure, [N ]
and [M ] are generated from the input data and the desired cointegrating vectors
correspond to the eigenvectors {vi}. The properties of a generalized eigenvalue
problem dictate that, upon solving (5.1), the resulting eigenvectors (and therefore
cointegrating vectors) have an orthogonality property dictated by [N ], which is
that {vj

′}[N ]{vi} = 1 if i = j and 0 otherwise (Johansen 1995).
In short, the orthogonality properties of principal components and the

cointegrating vectors differ (unless the matrix [N ] is an identity matrix). This
means that one can expect to see different results from each methodology, even
though the goals of each could be viewed as being similar. To examine this, §5
provides a short comparison between results from PCA and cointegration analysis
on the DAMASCOS data. How similar results from the two methodologies
actually are, and which is more appropriate for the application will be explored.

Within this comparison, the issue of standardizing data prior to the application
of algorithms such as PCA and cointegration must be discussed. In the previous
section, following Manson (2002), PCA carried out for the projection of data
onto the minor components was applied without first standardizing the data.
Although very good results have been produced, it is perhaps more common
nowadays to standardize data before attempting PCA, so as to not form
principal components biased by the size of the variables under consideration.
For a complete comparison, in the following, PCA on both non-standardized
and standardized data will be investigated alongside the results from applying
cointegration. Using cointegration on non-standardized data is not attempted,
as the Johansen procedure can easily become ill conditioned if variables of very
different amplitudes are used.

In the following comparison of results, the same training period is used
throughout, which consists of the first 2000 sample points; this training set,
therefore, covers the whole period of stationary temperature and just under
two cycles of temperature fluctuation. While in the preceding sections of this
work, it has been common to use a training set made up of every other sample
from the data when applying PCA and outlier analysis, this approach is less
suitable where cointegration is concerned. In the Johansen procedure, the choice
of the cointegrating vectors is informed by the fitting of a vector ECM, whose
construction is similar to that of an AR model. It has been found that suboptimal
cointegrating vectors are chosen by the Johansen procedure when non-consecutive
samples are used for training.
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Figure 12. Fiftieth principal component score, PCA applied to non-standardized data.
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Figure 13. Fiftieth principal component score, PCA applied to standardized data.

The first comparison that will be made for the DAMASCOS data is between the
50th principal component score (with and without standardization of data) and
the cointegrated residual from the first cointegrating vector (most stationary).
For the training period described above, the 50th PC score, without prior
standardization of data, is plotted in figure 12, the 50th PC score with prior
standardization of data is plotted in figure 13 and finally, the cointegrated residual
is shown in figure 14. One could expect that the 50th principal component score,
which accounts for the ‘smallest’ proportion of variance in the data would be
similar to the cointegrated residual that is created using the ‘most stationary’
cointegrating vector.

Further comparison can be made by looking at an expanded number of
principal components and cointegrating vectors. Below, multivariate outlier
analyses on the first 10 cointegrated residuals and the last 10 principal component
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Figure 14. Cointegrated residual (corresponding to first cointegrating vector).
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Figure 15. Multivariate outlier analyses of last 10 principal component scores, PCA applied to
non-standardized data.

scores, trained on the same training data, will be plotted with 1 per cent
discordancy thresholds. Figure 15 shows the results of a multivariate outlier
analysis on the last 10 principal components from the PCA carried out on
the non-standardized data, figure 16 shows the same with the PCA applied to
standardized data and lastly, figure 17 shows the results of an outlier analysis on
the residuals created from the first 10 cointegrating vectors.

From figures 12–14, one can see immediately that all three approaches have
produced different results. Notably, standardizing data prior to applying PCA
has produced significantly different results to those where standardizing has not
been used. Where data have not been standardized, figure 12, the score appears
to be unstructured before the introduction of damage, upon which the error bars
of the control chart are exceeded. The 50th principal component score from the
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Figure 16. Multivariate outlier analyses of last 10 principal component scores, PCA applied to
standardized data.
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Figure 17. Multivariate outlier analyses of the residuals from the first 10 cointegrating vectors.

standardized data, figure 13, also clearly indicates the introduction of damage;
on close inspection, however, the score exceeds the control chart limits during
the temperature fluctuation period before damage is introduced. Lastly, the
cointegrated residual in figure 14 remains within the control chart limits for the
duration of the test until the introduction of damage (with one exception), where
it clearly becomes non-stationary. As found previously, the cointegrated residual
spikes at a time when the temperature regime was changed from stationary
to cyclic.

Studying figures 15–17, one can see again that the three approaches have
produced different results. All three plots show a clear detection of the damage
introduced to the plate. The results from the PCA on standardized data, figure 16,
appear to be the least successful, as remaining structure from the temperature
cycling period is still visible, and the control chart limits are exceeded a number
of times.
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Figure 18. Cointegrated residual created from second cointegrating vector.

From the comparisons made above, three direct observations are noted: first,
that the methodologies are producing differing results; second, that it is clear
that the creation of features through projection onto minor components is more
successful when the data are not standardized before PCA is applied and finally,
that a spike occurring at the time that the temperature cycling begins is visible
in the cointegrated residuals but not in the non-standardized PCA results.

To first address the occurrence of the spike visible in figure 14 (and indeed in
figure 9), it is interesting to note that upon inspection of the individual residuals
created from the first 10 cointegrating vectors in the above analysis, a number
of them are free from the spike in question. Although, as previously discussed,
the spike does not hamper the usefulness of the residual, it seems that more
suitable damage-sensitive features may be obtained that are free of it. As an
example, the residual created from the second cointegrated vector is plotted in
figure 18. In this case, it seems that the ‘most stationary’ residual chosen by the
Johansen procedure is not the most suitable for our cause. One should also recall
that it was mentioned earlier that considering only the first 20 spectral lines of
this 50 line set also produces a cointegrated residual from the first cointegrating
vector that is free from the spike in question (figure 11). It seems likely that the
spike is an anomaly caused by one of the variables from around the peak area of
the spectrum.

From the mathematical reasoning at the beginning of this section, it is not
unexpected that the results compared above are different for the two algorithms
applied. For further insights, the structure of the particular combinations from
each algorithm can be studied. When studying the magnitude of the coefficients
for each variable (spectral line) in the combinations formed, the following
observations are apparent:

— when PCA is applied to non-standardized data, the linear combinations
that form the last 10 principal components are dominated by large
coefficients weighting the spectral lines away from the peak; the coefficients
of the spectral lines around the peak (from lines 71 to 86 in figure 2) are
very small;
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— conversely, when PCA is applied to standardized data, the coefficients of
the last 10 principal components are dominated by large coefficients for
the spectral lines around the peak only; and

— the 10 cointegrating vectors have significant coefficients for all spectral
lines, but larger coefficients have been allocated to spectral lines from
around the peak area.

By not standardizing the data when calculating the principal components,
precedence has been given to the spectral lines displaying a larger response
magnitude than others. Consequently, the higher principal component scores will
be dominated by the spectral lines from around the peak, and the lower ones the
converse. If the data are standardized prior to the application of PCA, the higher
principal component scores have equal contributions from each of the variables
used, meaning that the contributions to the lower components are not dictated by
the original amplitude of the spectral lines. Unlike the non-standardized PCA,
the higher cointegrating vectors have stronger contributions from around the
peak of the spectrum than from anywhere else. An explanation for this could
be that the spectral lines away from the peak, that vary less, contribute less
to the non-stationarity of the linear combination and as such are assigned less
dominant coefficients.

From these observations, the reason that the PCA on the standardized data
does not perform as well as for non-standardized data becomes clearer. By not
standardizing the data, the minor component scores are dominated by spectral
lines not in the peak area; these variables show lower sensitivity to temperature,
and as such the temperature trend has been more easily dispersed. Where
standardization has been used, this is not the case; instead, each of the principal
components is dictated by the direction of the most variance in the dataset
that is no longer biased by the amplitude of the spectral lines around the peak.
This has, in fact, been detrimental to the performance of the minor components
for the purposes of this work. That having been said, it could also be argued
that the minor components of the non-standardized data are less-satisfactory
candidates for damage-sensitive features due to the fact that the spectral lines
around the peak, that are likely to display the greatest sensitivity to damage,
have been assigned very low importance in the linear combinations. Here, one
can see an advantage to cointegration, where importance is assigned to the peak
spectral lines.

As a final observation, it is interesting to note that standardizing the feature
data and applying PCA gives very similar results to using the cointegration
algorithm; however, consideration of figures 16 and 17 shows that there are
more excursions over the threshold in the temperature-fluctuating period for
the PCA results than in the cointegration results, which would suggest that
cointegration has been more successful in removing the temperature trend. There
is a good reason for this. The Johansen procedure works by choosing those
linear combinations appropriate for SHM first; PCA effectively chooses them last.
This disadvantages PCA because of the orthogonality property between PCs.
When the data are standardized, some of the temperature-sensitive peak lines
are included in the higher PCs because in terms of variance, they are no different
from the off-peak lines. This means that, by the time the algorithm has worked
down to the minor components, there is not complete flexibility in forming linear
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combinations, only certain directions in the feature space remain orthogonal. In
the cointegration algorithm, the most stationary vectors are chosen first with
greatest flexibility.

6. Conclusions

This study has introduced a number of methodologies for dealing with the data
normalization problem in SHM in the context of data collected from a Lamb-wave
inspection of a composite panel that was subjected to temperature cycling and
an introduced damage scenario.

It is well know that outlier analysis is a very useful tool for novelty detection in
SHM (Worden et al. 2000). However, in the face of the influence of environmental
variations on damage-sensitive features, it has shown to be unreliable as a tool
on its own. This paper has demonstrated (for the DAMASCOS test data at least)
that other methods are necessary to account for environmental variation before
outlier analysis can be implemented.

Three different approaches to finding/creating damage-sensitive features that
are insensitive to environmental variations have been investigated in the paper.
The first approach was an attempt to identify, without manipulation of the
original variables measured, features that showed sensitivity to damage and none
to environmental variations. The results for this were encouraging, in that it
was possible to find some features demonstrating insensitivity to environmental
conditions. Outlier analysis on these special features, although not perfect, was
nevertheless successful, with very few false-positive indications of damage. Some
care must be taken, however, in this approach, as most often the features that
were found to be insensitive to the temperature fluctuations were those furthest
away from the peak in the frequency spectrum; these points are also likely to be
less sensitive to damage.

PCA has been used here both as a data visualization tool and also as a
way of creating environmentally insensitive features. By projecting the Lamb-
wave data onto minor principal component scores, temperature dependency
has successfully been removed, which is a very encouraging result. Similarly,
encouraging results have been obtained using cointegration, which finds the
most stationary linear combination of variables. Both cointegration and the PCA
approach have performed well in that both methods were able to create features
that remained unchanged by temperature fluctuations but still were able to very
clearly detect damage.

This is the first work in which cointegration theory has been comprehensively
applied to an SHM problem. Although very encouraging results have been
obtained, it is interesting to note that avoidance of a small anomaly in the features
created was achieved by either considering a subset of the original variable set
selected, or by using a linear combination not judged by the Johansen procedure
used for finding cointegrating vectors to be the ‘most’ stationary in the training
period. This indicates that, while cointegration will provide a useful tool to
SHM practitioners, some care is needed in its implementation to ensure that
stationarity of the residual is achieved during the normal response of a structure.

The DAMASCOS benchmark study has been used here as a test case, as
it provides a dataset with both environmental variability and damage events.
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However, the dataset could still be considered somewhat removed from how
data originating from a real structure in operation may appear, on account of
a stationary temperature period, the lack of random variability and the fact that
only one environmental factor influences the response.

The stationary temperature period in the benchmark study used here may be
considered unrealistic, considering how environmental conditions for structures
in operation truly vary. However, its inclusion in this work has allowed the study
of response in essentially two different operating regimes, which is relevant to
structures in operation. One example concerns how the response to traffic on
a bridge may follow two separate regimes, one when the bridge is empty of
traffic (as might occur in the very early morning) and one when traffic flows.
The traffic conditions on a bridge also encompass a more rare stationary state
when a traffic jam occurs and the bridge undergoes a period of constant maximal
loading. A further example, perhaps more relevant here relates to aerospace
SHM. A composite component on an airframe will undergo periods of non-
stationarity when the aircraft is climbing or descending, but will also undergo
periods of nominal stationarity while the aircraft is cruising at constant altitude
and speed. Furthermore, as barely visible impact damage from tool drop during
maintenance is an issue for composite structures, one may argue that monitoring
should be continued when aircraft are confined in the near stationary, at least
controlled, environment of a hangar. Because features for damage detection must
be able to function in different operating regimes, the training data for data-
based approaches should attempt to encompass all expected normal conditions,
stationary and non-stationary. Nevertheless, trials have been run where the
stationary temperature period was not considered in the analysis, and these have
not been added here for reasons of space. Interestingly, removing the stationary
temperature period does not materially affect the results of the minor component
or cointegration analysis.

Other limitations of the benchmark study used here are a lack of random
variability and influence from more than one environmental condition. For both
cointegration and PCA as the trending part of the signal is removed, any random
variability should only influence the distribution of the residual/scores. For
example, if the random variability is normally distributed, so too the ‘detrended’
signal should be. Where multiple variabilities affect a structural response, for
both cointegration and PCA, so long as there are more cointegrated variables
than independent trends, multiple variabilities can be removed, although this will
be a topic for further investigation. One other point where the use of this dataset
may not be realistic is the fact that data from the damage condition is available,
which enables one to check that the modified features retain sensitivity to damage.
For both cointegration and PCA, the assumption that the modified features are
sensitive to damage relies on that damage changing the relationship between one
or more variables in order to upset the equilibrium of the linear combinations.
Where features are from different sensor locations, local damage is likely to
affect individual features in varying ways, providing some guarantee for damage
sensitivity. Where features are spectral lines, as in this work, this assumption
implies that damage must affect different parts of the spectrum differently.
Examples where this is commonly found to occur come from condition monitoring,
where different frequency bandwidths are sensitive to different damage types.
One definite way to check sensitivity is to simulate a damage scenario through
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manipulation of a dataset. Interesting further work would be to investigate how
these methodologies work in situations where the damaging event is more difficult
to detect, for example, where damage is not directly on the path between the pitch
and catch sensors, or where smaller or multiple damages are introduced.

In the final section, some comparisons were made between PCA and
cointegration, which, on the surface of things, are similar methods, both creating
linear combinations of original variables. It was found that cointegrating vectors
and principal components are not necessarily similar; they are chosen on different
criteria and have different orthogonality properties. On application to the
DAMASCOS data investigated in this work, both approaches were successful
for removing a temperature-induced trend. Interestingly, however, it was found
that the linear combinations of the minor principal components relied on
variables (spectral lines) from different areas of the spectrum than those in the
cointegrating linear combinations.

While in this work both methods performed well, the authors believe that
cointegration may prove more useful for the data normalization problem. As
principal components are always orthogonal, after the first PC is chosen to
account for the most variance in a dataset, the directions of the remaining
principal components are then constrained by this orthogonality condition. As
such, the minor components may not provide optimal results for removing
environmental trends. It is here that cointegration may have the advantage due
to the fact that the first cointegrating vector is chosen to be the most stationary,
and is not dictated by any other constraints.

The authors thank all of the partners involved in the DAMASCOS consortium, the EPSRC for
funding this research and finally the reviewers for their helpful and constructive comments.
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