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Formation of quasicrystals and other exotic crystal structures in a soft-core fluid:
a tale of two length scales

A.J. Archer∗, A.M. Rucklidge† and E. Knobloch#

∗Department of Mathematical Sciences, Loughborough University, Loughborough LE11 3TU, UK
†Department of Applied Mathematics, University of Leeds, Leeds LS2 9JT, UK

#Department of Physics, University of California at Berkeley, Berkeley, CA 94720, USA

A two-dimensional system of soft particles interacting via a two-length-scale potential is studied.
Density functional theory reveals the existence of a fluid phase and two crystalline phases with
different lattice spacing. Of these the larger lattice spacing crystalline phase takes the form of a
‘crystal liquid’ state with a small fraction of mobile particles. Near the transition between this phase
and the smaller lattice spacing crystalline phase, quasicrystalline structures may be created by a
competition between linear instability at one scale and nonlinear selection of the other. The results
are confirmed using Brownian dynamics simulations.

PACS numbers: 61.50.Ah, 61.44.Br, 05.20.-y, 64.70.D-

Regular crystals are ordered arrangements of atoms
or molecules with rotation and translation symmetries.
Quasicrystals, discovered in 1984 [1], lack the lattice sym-
metries of crystals and yet have discrete Fourier spectra.
Quasicrystals have been found not only in metals but
also in systems of nanoparticles [2], mesoporous silica [3],
and soft-matter systems [4]. The latter include micellar
melts [5, 6] formed, e.g., from linear, dendrimer or star
block copolymers, comprising a stiff hydrophobic poly-
mer core surrounded by a corona of flexible hydrophilic
polymer chains. The main theoretical approach to inves-
tigating the stability of metallic or micellar quasicrystals
involves minimising an appropriate energy, but the prin-
ciple underlying their stability is not known [7, 8].

Patterns with quasicrystalline structure, or quasipat-
terns, were discovered in Faraday wave experiments in
the 1990s [9, 10]. Many quasipatterns are characterised
by two length scales [11, 12], and recent work suggests
that nonlinear interaction between these scales can sta-
bilise such patterns [13, 14] and this is so for soft-matter
quasicrystals as well [15–17]. In this Letter, we explore
this mechanism in detail, by considering a system of par-
ticles interacting via a simple potential with two length
scales. We compute the phase diagram, finding crystals
of each length scale and a region of metastable quasicrys-
tals with both length scales prominent in their Fourier
spectra. These form in a region where the linear growth
of density fluctuations in a quenched uniform fluid favors
one length scale but nonlinear stability favors the other.

The effective ‘coarse-grained’ interaction potentials be-
tween the centres of mass of polymers, dendrimers or
other such macromolecules, are soft. By this we mean
that they are finite for all separation distances r, be-
cause the centre of mass of such soft objects does not
necessarily coincide with any individual monomer. The
soft effective pair potential between such particles can be
approximated as V (r) = εe−(r/R)n . Simple linear poly-
mers correspond to the case n = 2 with the length R of
order the radius of gyration and the energy ε for such a

pair of polymers to fully overlap of order 2kBT , where
kB is Boltzmann’s constant and T is the temperature
[18–28]. Dendrimers, due to the nature of their chem-
ical architecture, can have an effective interaction with
a higher value of n; such systems form so-called ‘cluster
crystals’ [28] and there has been a great deal of interest
in soft potential models for these systems [29–43].

Here we consider a model two-dimensional system of
soft ‘particles’ that interact via the potential

V (r) = εe−(r/R)8 + εAe−(r/Rs)
8

. (1)

The energy for complete overlap is (1 + A)ε. The most
important feature of this potential is that it has a ‘shoul-
der’ when the dimensionless parameter A 6= 0, with two
length scales. The radius of the core is R and the ra-
dius of the shoulder is Rs > R. Such a potential is a
simple coarse-grained model for the effective interaction
between polymers or micelles formed, e.g., from linear,
dendrimer or star block copolymers, which have a stiff
hydrophobic core surrounded by a corona of flexible hy-
drophilic chains. A related, piecewise constant poten-
tial is used in Ref. [17]. In the following we set the di-
mensionless interaction energy parameter βε = 1, where
β = (kBT )−1, and fix the ratio of the two length scales
to be Rs/R = 1.855.

We use density functional theory (DFT) [44–46] to
study this system. The grand free energy is

Ω[ρ(r)] = kBT

∫
drρ(r)[ln Λ2ρ(r)− 1]

+ Fex[ρ(r)] +

∫
dr (Φ(r)− µ)ρ(r), (2)

which is a functional of the one-body (number) density of
the particles, ρ(r), where r = (x, y). The first term is the
ideal-gas contribution to the free energy, Λ is the (irrel-
evant) thermal de Broglie wavelength, µ is the chemical
potential, Φ(r) is any external potential that may be con-
fining the system and Fex[ρ(r)] is the excess Helmholtz
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free energy from the interactions between the particles.
The equilibrium density distribution is that which min-
imises Ω[ρ(r)]; the corresponding minimum is the ther-
modynamic grand potential of the system. For a system
in the bulk fluid state (i.e., where Φ(r) ≡ 0), the min-
imising density is uniform, ρ = ρ0. However, for other
state points, when the system freezes to form a solid, Ω is
minimised by nonuniform density distributions, exhibit-
ing sharp peaks. For the systems of soft-core particles
considered here, one may approximate Fex as [18]:

Fex[ρ(r)] =
1

2

∫
dr

∫
dr′ρ(r)V (|r− r′|)ρ(r′). (3)

This functional generates the random phase approxi-
mation (RPA) for the pair direct correlation function

c(2)(r, r′) ≡ −β δ2Fex

δρ(r)δρ(r′) = −βV (|r − r′|) [44–46]. If we

assume that these are Brownian particles with dynamics
governed by

ṙi = −Γ∇iU({ri}, t) + ΓXi(t), (4)

where the index i = 1, ..., N labels the particles,
U({ri}, t) =

∑N
i=1 Φ(ri) +

∑
i 6=j V (ri − rj) is the poten-

tial energy of the system and Xi(t) is a white noise term,
we can investigate the dynamics of the system using Dy-
namic Density Functional Theory (DDFT) [47–50] in the
form

∂ρ(r, t)

∂t
= Γ∇ ·

[
ρ(r, t)∇δΩ[ρ(r, t)]

δρ(r, t)

]
, (5)

where ρ(r, t) is now the time-dependent nonequilibrium
one-body density profile and Γ ≡ βD is the mobility.
Here D is the diffusion coefficient. In deriving this the-
ory we have used the equilibrium Helmholtz free energy
functional F to approximate the unknown nonequilib-
rium free energy.

Fig. 1(a) shows the equilibrium phase diagram calcu-
lated using Picard iteration of the DFT Euler–Lagrange
equation, starting either from the profile for a nearby
state point or a uniform density profile with a small
random value added to each point. As the fluid density
is increased, the system freezes to form one of two
distinct solid phases (Fig. 2): for larger values of A the
system forms a hexagonal crystal with a large lattice
spacing (referred to as ‘crystal A’), but for smaller
values of A it forms a hexagonal crystal with a much
smaller lattice spacing (‘crystal B’). The red regions in
the diagram denote thermodynamic coexistence between
two different phases at the same temperature, pressure
and chemical potential.

To understand the phase diagram we study the struc-
ture and stability of a uniform liquid with density ρ0
and Φ(r) ≡ 0. We follow [44, 49, 51, 52] and expand
Eq. (5) in powers of ρ̃(r, t) ≡ ρ(r, t) − ρ0. Retain-
ing only linear terms, we find that the growth/decay
of different Fourier modes of wave number k follows

ρ̂(k, t) = ρ̂(k, 0) exp[ω(k)t], where ω(k) satisfies the dis-
persion relation [49, 52]

ω(k) = −ΓkBT k
2(1− ρ0ĉ(k)). (6)

Here ĉ(k) is the Fourier transform of the pair direct cor-
relation function; within RPA ĉ(k) = −βV̂ (k), where
V̂ (k) is the Fourier transform of the pair potential in Eq.
(1). In an equilibrium fluid the static structure factor
S(k) ≡ (1−ρ0ĉ(k))−1 > 0 for all values of k; such a fluid
is therefore stable [53]. Within RPA the two length scales
in the pair potential lead, for certain ranges of parameter
values, to a static structure factor S(k) with two peaks.
Fig. 1(b)–(d) shows that as A increases the smaller wave
number peak in S(k) grows and comes to dominate the
larger wave number peak. Fig. 1(e)–(g) shows analo-
gous behavior of the dispersion relation at several points
in or on the boundary of the linearly unstable region
ω(kmax) = 0 where kmax is the wave number of the higher
peak (blue dashed line in Fig. 1(a)): as A increases the
instability shifts from large wave number (Fig. 1(g)) to
small wave number (Fig. 1(e)). The short and long length
scales are simultaneously marginally stable at A = 1.067
and ρ0R

2 = 2.95 (Fig. 1(f)); this point lies on the pink
dotted line in Fig. 1(a) corresponding to a pair of equal
height peaks in the dispersion relation. Above (below)
this line, the peak at smaller (larger) wave number k is
higher, indicating that the longer (shorter) length scale
density fluctuations grow the fastest. The black double
dotted lines indicate the location of ω(kmax) = 0 for the
lower peak in the dispersion relation. When the system is
quenched from a stable liquid state to a state point with
density ρ0 above the blue dashed line, certain wave num-
bers will grow as described by the dispersion relation (6).

Fig. 2, third panel in the top row, shows the density
profile of the larger lattice spacing crystal A phase for a
state point not far from the transition to the smaller lat-
tice spacing crystal B phase. However, the panel below
displaying log[R2ρ(r)] reveals an interconnected network
of ‘channels’ between the density peaks. The particles
contributing to this part of the density profile are fluid
in the sense that they can move freely throughout the
whole system, unlike the majority of the particles that
are located in the density peaks fixed on the lattice
sites. We refer to this structure as the ‘crystal liquid’
state. This state minimises the free energy for A > Aco,
where Aco is the value at coexistence, and is reminiscent
of the way electrons arrange themselves in a metal,
where the vast majority are bound on the lattice sites
to the metal atomic nuclei. However, there are some,
the conduction band electrons, that are free to move
throughout the crystal. The crucial differences between
the present system and a metal are that (i) the present
particles are classical, and (ii) they self-organise to form
this remarkable structure – there is no equivalent of the
atomic nuclei to provide a periodic array of potential
wells into which the majority of the particles condense.
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FIG. 1: (color online) Phase diagram, static structure factor S(k) and dispersion relation ω(k) for βε = 1 and Rs/R = 1.855.
(a) The bulk system phase diagram in the (ρ0R

2, A) plane. The system exhibits a uniform fluid phase and two crystal phases:
the larger lattice spacing ‘crystal A’ phase and the smaller lattice spacing ‘crystal B’ phase. The regions filled in red denote
areas where there is two-phase coexistence between the different phases. The blue dashed line denotes the linear instability
threshold for the liquid phase while the pink dotted line terminating in a circle is the locus where the two peaks in the
dispersion relation (6) have the same height. The circle denotes the point where the smaller-k peak disappears. (b)–(d) S(k)
for (b) (ρ0R

2, A) = (0.8, 1.5), (c) (1.8, 1.067), (d) (2, 0.7).(e)–(g) ω(k) for (e) (ρ0R
2, A) = (2, 1.5), (f) (2.95, 1.067), (g) (3.5, 0.7).

FIG. 2: (color online) Density profiles from DFT showing R2ρ(r) (upper panels) and log[R2ρ(r)] (lower panels). From left to
right: (ρ0R

2, A) = (4.4, 0.7) (typical of the small length scale crystal ‘crystal B’), (3.5, 0.76), (4.0, 0.8) (both near the transition
from ‘crystal A’ to ‘crystal B’) and (2.7, 2) (typical of the large length scale crystal ‘crystal A’). The second set of panels shows
quasicrystalline ordering with numerous defects, while the third set reveals a network of connected density, indicating that
the particles in this part of the crystal are fluid, and able to move throughout the system. There are also similar connected
fragments in the disordered (3.5, 0.76) profile, but because of the disorder, these do not percolate the system.

As A decreases towards Aco, the fraction of particles
in this ‘conduction band’ increases and in fact it is
this growing number that triggers the formation of the
smaller length scale crystal: these mobile particles freeze
to form the extra peaks of crystal B.

To confirm the existence of the ‘crystal liquid’ state
we calculated the density profile for a system confined
within a square confining potential Φ of size L× L with
hard walls, and compared the results with Brownian dy-
namics (BD) simulations, i.e., simulations of N particles
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FIG. 3: log[R2ρ(r)] for a system of N = 600 particles with
(ρ0R

2, A) = (4.0, 0.8) confined in a square region of side L =
10R. The left panel displays the BD simulation result, while
the right panel is from DFT. The system forms crystal A with
a density profile consisting of an array of peaks surrounded
by a connected network within which the particles are free to
move – the ‘crystal liquid’ phase.

FIG. 4: Left: log[R2ρ(r)] from DFT, for (ρ0R
2, A) =

(3.5, 0.8). Right: the corresponding Fourier transforms. The
12-fold symmetry is indicative of quasicrystalline ordering.
The upper density profile was obtained from random initial
conditions, while the lower one was started from initial con-
ditions with quasicrystalline symmetry.

evolving according to Eq. (4). Averaging over the posi-
tions of the particles to calculate the density profile, we
find remarkably good agreement between the DFT and
the BD results (Fig. 3).

Formation of a ‘quasicrystal’: A striking aspect of the
phase diagram in Fig. 1(a) is that the phase transition
between the two different crystal phases (thin red region)
is well away from where the two peaks in the dispersion
relation have the same height (pink dotted line). A uni-
form system quenched to the region above the coexistence
of the two crystal phases but below this line will initially
generate small length scale density fluctuations and the
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FIG. 5: Grand potential Ω per unit area for βµ = 39 as a func-
tion of A for the two different crystal structures together with
the free energy for the quasicrystalline solution displayed in
Fig. 4. There is a point where all three have almost the same
free energy, but the quasicrystal solution never corresponds to
the global minimum of the free energy. The crystal A phase
is of ‘crystal liquid’ type throughout the range of A shown.

system behaves as if it were going to form crystal B. How-
ever, the true minimum of the free energy is the larger
length scale crystal. Thus, as growing density fluctua-
tions reach the nonlinear regime, the system seeks to go
to the longer length scale structure but the smaller length
scale imprinted from the linear growth regime leads to
frustration. Sometimes the system is able to evolve to the
larger length scale crystal; at other times it stays stuck
in the metastable small length scale crystal B structure.
However, often the system forms a state with density
peaks on both length scales, but no long range order.
In Fig. 4 we display two rather striking density profiles
calculated at a state point in this region of the phase di-
agram. The upper density profile was calculated using
Picard iteration starting from random initial conditions.
The density profile has many defects, but it has definite
quasicrystalline ordering, as can be seen from the corre-
sponding Fourier transform. The lower panels in Fig. 4
show a defect-free quasicrystal approximant, started from
carefully chosen initial conditions. The two wavenumbers
k1R = 3.2 and k2R = 6.0 corresponding to the maxima
in ω(k) are indicated in the Fourier transforms.

The Picard iteration of the Euler–Lagrange equation
corresponds to fictitious dynamics since it does not con-
serve the total number of particles in the system, N ≡∫

drρ(r). The true dynamics is governed by the DDFT
equation (5). Evolving this equation can be rather slow
but in most cases the same qualitative behavior is ob-
served, although the system sometimes gets stuck in the
smaller length scale crystal B that initially forms in the
linear growth regime. This is a consequence of the con-
served dynamics. For βε = 1, Rs/R = 1.855 the qua-
sicrystals we find are never the minimum free energy state
(Fig. 5). The quasicrystaline state in Fig. 4 remains sta-
ble for 1.77 < Rs/R < 2.18, but we have not calculated
the full phase diagram for Rs 6= 1.855. We believe it may
be possible to use nonlinear dynamics techniques [14] to
compute the stability properties of these states by re-
ducing the DDFT description in Eq. (5) to a phase field
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crystal model, cf. [52, 54–57]. We expect that the ob-
served quasicrystal formation mechanism (linear growth
of one length scale, but nonlinear selection favoring an-
other) may well apply more generally.
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