The
University
o Of

= -n,‘-_“ u}:_.'!?- Bhe&i{“:ld.

This is a repository copy of Utilisation of Perkin-Elmer Operating System Features to
Optimise Programming Efficiency.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/76197/

Monograph:

Gray, L.S. and Morris, A.S. (1982) Utilisation of Perkin-Elmer Operating System Features
to Optimise Programming Efficiency. Research Report. ACSE Report 180 . Department of
Control Engineering, University of Sheffield, Mappin Street, Sheffield

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

\ White Rose o
| university consortium eprints@whiterose.ac.uk
WA Universiies of Leeds, Sheffield & York https://eprints.whiterose.ac.uk/

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

W .oq¢

£

UTILISATION OF PERKIN-ELMER OPERATING SYSTEM

FEATURES TO OPTIMISE PROGRAMMING EFFICIENCY

by L. 5. GRAY and A. S. MORRIS

RESEARCH REPORT NO. 180

This paper consists of printed notes given as
the first lecture of a two-part special lecture
course on efficient programming. Emphasis is
laid on efficient programming in relation to the
hardware and operating system of the Perkin-
Elmer 3220 computer, although the principles
embodied are in general universally applicable.

G52 -

Dept. of Control Engineering
University of Sheffield
Mappin Street

Sheffield S1 3JD

Te Introduction

This is the first half of a two-lecture efficient programming course.
The functioning of the operating system and its interaction with the hard-
ware of the computer is explained in considerable detail, as this is felt
a necessary prerequisite to understanding how the features of the operating
system might be exploited to improve program execution speeds.

The operating system is modular, with each module controlling particular
functions. Explanation of the operation of these modules i1s followed by al
study of system memory organisation. The meﬁory areas reserved for parti-
cular system functions are discussed and the way in which user tasks
dynamically share the user task memory space is explained.

The lecture continues with a disquisition on disc file structure and
data organisation. This is followed by a brief note about the mechanism
of and reason for filestore dumps.

At this stage, the major features of the operating system and its
interaction with the machine hardware has been explained. So far, no
mention has been made of user-terminals. These are controlled by the
multi-terminal qonitor (MTM) which runs as an executive task under the
operating system. Besides supervising all interactive operations at user
terminals, MTM also provides the facility to load and monitor jobs sub-
mitted from user terminals into a queue for batch processing. The features
of MTM are explained in this next stage of the lecture.

The first lecture concludes with a treatise on the mechanics and
benefits of overlaying, which can have a major impact on improving program
execution speed in the right circumstances. The exact details of how over-
laying is implemented on the Perkin-Elmer 3220are explained, supported by

examples.

5 070065 01

-

BATCH
TASKS

2a 0S/32 Organization

05/32 is a multi-tasking operating system and when it is combined

with the 05/32 Multi-Terminal Monitor (MTM), concurrent program develop-

ment and execution are possible in a background environment and on a

maximum of 32 on-line terminals.

The major components of 08/32 are diagrammed here:

! MTM

I ' REENTRANT]
‘%f?gigu‘J LIBRARY ‘ SPOCLER (BAcgi§EUNE
e SEGMENTS }
| |
!
CONSOLE
DEVICE
EXECUTIVE
MEMORY TASK MAN- SYSTEM
MANAGER AGER MANAGER
nAlESER
RESIDENT g;gl | FILE
OADE : 1
LOADER il MANAGER
PERIPHERAL
DEVICE
DRIVERS

]

C

T

2.1 Svstem Manager (Command Processor)

The system manager handles all interactions between the system and
the console device. It contains routines to process CSS (Command Sub-
stitution System), to allocate memory, to support direct access devices

and to control user task communication with the system console.

2.2 Executive
The executive handles end of task processing, overlaying and |
supervisor calls, for example: pause, get storage and binary to Asciil

conversion-.

2.3 Task HManager
bt

The task manager schedules tashks in the system, determining when

roll-out/roll-in is required and controlling the roll process.

2.4 Timer Manager

The timer managsr provides timer management and maintenance for user
tasks with time of day clock, day and vear calendar, interval and time of

day wait, interval and time of day trap and driver time-out.
2.5 DMemory Manager
The memory manager handles allocation and deallocation of system

space, task memory space and roll-in/roll-ocut.

2.6 File Manager

The file manager controls file creation and manipulation and I/O

requests to filese.

2.7 I/0 Subsysten

The I/0 subsystem contains the supervisor routines to perform I/0,
the peripheral device drivers and the system queue handler that provides

I/0 queueing.

2.5 Resident Loader

The resident loader loads tasks, overlays and library segments.

I Vlan V4

2.2 Multi-Terminal Monitor (MTM)

MTF runs as an execntive task under CS/22, providing each terminal

with & command structure similar to the 03/:2 console's command structure.

2.10 Spocler

Spooling facilities are included with 08/22 to allow many tasks to
share simultanecusly the line printer. This is accomplished by copying

files into a queue on disc for subsecuent processing.

- 5=~
3. User Tasks and Memory Management
The memory manager handles allocation and deallocation of memory.

Memory contains:

Dynamic System Space

Dynamic Task
Memory Space |

0S

-

User tasks are allocated space in the Dynamic Tagk Memory Space on a
first—fit basis. The memory manager keeps a menory iist which initially

contains one item: the size of the Dyvnamic Task Memory Space. A task

73]

is loaded into the first avaell-ble slot larce onough to accommocdate it,
and the unused portion of memory 1s returned to the reomory list.

For example, tasks A, B and C have been lcaded into a Dynamic Task

Memory Srace of 50 Kb.

AVAILABLE 25KB
c SKB

2 8KB

I A 12KB

If task B were removed from memory at end of task or rolled out,
then the memory list would contain two available memory slots of 8Kb
and 25 Kb. ‘lask D, 5Kb, would then be loaded into the first sufficiently

large slot, and the memory list would keep two slots of 2Kb and 25Kb:

s) e
AVAIiABLE ““‘égkg—'
c 5KB
AVAILABLE 2KB
D 6KB
A 12KB

0S/22 allows a larger number of tasks than memory available by the roll-in/

g
roll-out facility. The roll procedure works on a time-slicing and priority
basis. All MTM terminal tasks have equal priority and are therefore time-
sliced to receive egqual shares of.processdr time. When a task is ready for
execution it is queued behind all other tasks of equal priority. Tasks
from the roll queue may be loaded in memory when there is sufficient space,
with tasks at the front of the queue having highest priority for entry into
memory. Memory space is freed as tasls currently in memery relinguish con-
trol of the preocessor because thelr time slice has expired, or for one of
the following reasocons:

the task initiates I/0 to a terminal device,

the task is paused,

the task terminates or is cancelled.

Wwhen a task in memory relinquishes control of the processor before termina-
tion it is rolled out, i.e., copied to a contiguous file on a direct access
disc (in our case the TEMP disc) and queued for re-entry into memory. The
first task from the roll queue that will fit into the available free space
is rolled in at this time. It follows that when the Dynamic Task Memory
Space is in demand by more tasks than it can accommodate, large tasks will
be found space less frequently than small tasks. If a task has a low
priority it is considered for entry into the Dynamic Task Memory Space
after tasks with higher priocrities; tasks are placed in the roll queue

in priority order. For example, a batch job submitted from an MTM terminal
runs at a lover priority than any MTM terminal task and will only execute

when MTM terminal tasks cannot.

- T

The 05/22 method of roll-in/roll-out memory scheduling is normally
transparent to the MIM terminal user. However, when the system is heavily
loaded by more tasks than can be accommodated in the Dynamic Task Memory
Space, there are two ways that an MTM terminal user can ensure that his
program is receiving all of its share of processor time. The first is to
make the program as small as possible, to prevent the task from becoming a
'size reject' at the top of the roll gqueue; a task which will not fit into
available memory could be by-passed many times in favour of smaller tasks |
that are not at the top of the roll queue. The second way to ensure that
a task receives all of its share of processor time is to use all of the
time slice allocabed to the task. Consider a proaram that does a calculation
and outputs a result te an MTM terminal before performing ancther calculation.
If the calculation takes, say, one-fourth of the time slice, then the task
will loose threoe-fourtpbs of the time slice because the task will be rolled
out as soon as it initiates output to the terminal. As an alterrative, the
program could save intermediate rosults to output at the end of the task run,
or write results to a disc file to be listed after the task run. The MIM

terminal user must weigh task execution speed ajainst the degree of user/

program interackion necessary during task execution.
These measures to improve progrem execution speed are discussed more

fully in the next lecture.

- -

4., File Structure and Data Organization

The File Manager provides volume and file management for all 0S/32
direct access devices. Data on a direct access device is organized into
a series of files on a named logical volume. In our case the volumes
available are two 67 megabvte discs, named USER and TEMP. The USER disc
holds MIM users' filestore and scome system files. The TEMP disc holds
a1l spool files and roll files, all temporary files and some system files.

Each direct access volume contains a volume descriptor, an allocationx
bit map, a file directory, contigucus file types and indexed file types.
The first three are used solely by 0S/32 to control storage. The volume
descriptor contains the volume name, a field to indicate volume status
(on-line or off-linei, a nointer to the file directory and a pointer to
the allocation bit map. The allocation hit map records allocated, unal-
located and defective sectors.

The file directory containz an entry for every file on the volume and
exists on two levels:

- primary directory

- secondary directory
The primary directory is a linked list of non-contiguous one-sector blocks
containing the name, type, length and protection keys for every file on
disc. Up to five file entries are held in one block. Only one block can
be in memory at one time and to search for a given file entry, the file
manager must link down the list of krlocks, loading and searching each
block. To provide faster file access, the secondary directory contains
filenames and primary directory block pointers for all files on the volume,
and snace for mere filenames to be added as files are created. The second-
ary directory is both disc and memory resident and is loaded into memory
bv blocks; the larger the block the faster file access will be. The

memory resident block of the secondary directory is held in system space.

e B

MTM users should be aware of the 05/32 primary and secondary directories
for two reasons: time and space. Each user file adds to the directory size
and therefore to file search time. Each file entry in the primary directory
will occupy one-fifth of a 256-byte sector (51.2 bytes), and each file entry
in the secondary directory will occupy one-twentieth of a 256 byte sector
(12.8 bytes). Each user file therefore will have a directory space overhead
of 64 bytes, including a main memory overhead of 12.8 bytes, which will reduce

disc and memory space avallable.

An MTM user refers to a file in creatlon, assignment or deletion by a

e

file descriptor which takes this fomm
VOLN : FILENAME .EXT/FILE CLASS

where VOLN is the name of the volume on which the file residese.
By default VOLN 1s USER, which is the desired volume
for most user filese.

FILENAME is the user—chesen name of one to eight alpha-numeric
characters, with the first character alphabetic.

EXT is the three character extensicn. These extensions

are used by convention:

ASN - Assignment files

BAS - Basic files

CMD - Non-interactive command input

CSS - Command substitution system procedures

DTA -~ Data files

FTN ~ Fortran source files

JOB - Batch job control commands

OBJ -~ Object format machine language

OVY - Memory image overlays

PAS - Pascal source files

TSK - Task memory image
|
|

andé FILE CLASS is P, G or S. P is the default and designates a
private file. G designates a group file; two or
more users may have read privileges in each other's
filestore if they are in the same group. S designates
a system file, all of which are write protected.
A file type is chosen at allocation time, and in most cases the same
data manipulations are possible on both of the two available file types.

An indexed file (Figure 1) is open-endec: it expands as new data is added

to 1t This means that the user cdees not reed to decide the maximum file

e

= 0 =
size in advance, and no disc space is wasted because the file is only as
large as the data written to it. An indexed file has a logical record
length which is defined by the user (with a maximum of 65,535 bytes).
I/0 transfer requests are made on a logical record basis. Logical records
are packed into physical blocks, and to perform I/0 on them, the File
Manager blocks and de-blocks records using intermediate system buffers
located in memory (in system space). Note that a transfer of an incomplete
logical record takes the same amount of buffer space and File Manager
attention as a transfer of a complete logical record.

A contiguous file {(Figure 2) has a fixed size from allocation time,
anc¢ all space for its contigucus sectors is seized then. A contiguous
file has a fixed record length of one sector (256 bytes); <data may be
transferred to or from it in logical records that are smaller or larger
than one sector. No intermediate system buffer is used for I/0 transfers,
instead physical blocks are transferred directly to the user's I/0 buffer,
providing fast random access to the file.

An indexed filec would be the user's best chelice in the following cases:
if the maximum length of the file is completely unknown, if the disc is
fragmented such that sufficient contiguous space cannot be found to allocate
the file or if the file only or mostly uses seqguential access. A contiguous

file would be the best cholice in Lhese cases: 1f access speed 1s paramount

iy

and the file size is fixed, or if the file is long and accessed randomly.
Note that there is a higher system overhead in buffering of indexed files,
and that an indexed file uses an extra sector as an indexed block for every
62 data blocks.

Files may bhe assigned with dvnamic protection which ¢ives the user con-

trol over the use of the file. The access privileges are as follows:

w= Tl -

INDEXED FILE FORMAT

Primary
Directory Enyry

First Block Pointer

Last Block Pointer

Index Blocks

Data Blocks

Block

=

Block

T
Data
. I
Reverse 1link=0 Data
Forward link |

Pointer 1

Pointer 2

Data

Block

-
Pointer n

Reverse link

Forward link

Pointer n+1l

n+2

Pointer n+2

Pointer 2n

o —

/ e
/ Data

\4 Data

Block

2n

“
—

Reverse link

Data

Block

mn+71

Forward link-=0C

Pointer mn+1

Pointer mn+2

Block

mn+2

////’////"Data
/

(]
Pointer’ (m+1)n[*

Ficure 1

4| Data

Block

(m+1in

- 42 -

CONTIGUOUS FILE FORMAT

Directory Entry

First Block Pointer

Last Block Pointer

FILE

- "
Figure ¢

s A

SRO - Sharable Read Only

ERO - Exclusive Read Only

SWO -~ Sharable Write Only

EWO - Exclusive Write Only

SRW - Sharable Read Write

SREW — Sharable Read, Exclusive lirite
ERSW - Exclusive Read, Sharable Write

ERW

1

Exclusive Read Write |

The user may wish to assign a file to a task and protect it from being
accessed by elther another of his own tasks running as a batch job or
another user's task running under a group account. In this case, he should
assign the file with exclusive read or write privileges. If the user wishes
shared use of a file, he may assign it with shared access privileges. The
default access privileges are:

SRW for contiguous files,

SREW for indexed files,

SRW for devices (e.g., VDU),

SRO for files within the group or system account.

If an indexed file is intended only for read or only for write the user
should use an access privilege which reflects that fact, i.e., use SRO

or ERO if for read only and SWO or EWO if for write only. The File Manager
allocates two buffers in system space for every read-write indexed file,
cne for read and one for write. By telling the system if input only or
output only to a file is required, the user saves system space.

A temporary file may be useful in cases where the user needs inter-
mediate storage of information for access later in a program run. A temp-
orary file is associated with the current task and exists only for the
duration of its assignment. When it is closed (e.g., by a Fortran CLOSE
statement) or when the task terminates, the temporary file is deleted.

The syntax of the ASSIGN, ALLOCATE and TEMPORARY commands is described

in Table 1.

- 14 -

5w Filestore Dumps

Dumps of the contents of the USER disc are made once every two weeks
for two reasons: to provide security for user files in case of uninten-
tional file deletion or system malfunction, and to rewrite the USER disc
in a compressed form so that all free space is contiguous. This becomes
necessary over a period of about two weeks, as the free space at the end
of the disc becomes fragmented, consisting alternately of files and spaces
due to files being deleted and recreated. (Recall that large contigquous |
files may not be allocated if disc space is very fragmented;. The avail-
able disc space (67 megabytes) is shared between 80-100 users; please

be conservative in total filestore occupied and number of files maintained

on your accounte.

= 15 e

Ba Hints on Use of MIM

6.1 Batch Jobs

A batch job differs from an interactive job in that once a batch job
is accepted for execution no further interaction takes place with the
initiating terminal user. An MIM user may submit one or more batch jobs
from a terminal and continue to use the same terminal for interactive work.
MIM queues batch jobs, submitting a maximum of two jobs for processing at
any one time. Because batch jobs run at a lower priority than MIM inter-
active jobs, they are always at the bottom of the roll queue, rolling into
memory only when no interactive job can use the available space.

A batch job is controlled by a file consisting of one or more overator
commands preceded by a valid SIGNON command followed by a SIGNOF command
and a BEXIT command to terminate the job file. The username supplied with
the 5IGNON command must be unique to the system, for example if you or
someone else is signed on as FRED you cannot submit a batch job to signon
as FRED. It is a good idea to put a LOG command near the top of a job file
to provide a record of the work successfully completed by the batch job.
Example:

Suppose you have a large program, PROG.FIN, to compile.
The following job file will signon, log progress to the file PROG.LOG,
compile PROG.FTN and SIGNOF.

SIGNON FREDBATC,200,FK - assume. FREDBATC is not already an
active user name
deletes PROG.LOG if it exists and

reallocates it as an indexed file
with 80 byte records

XDE PROG.LOG;AL PROG.LOG,IN,80

LOG PROG.LOG - sets the log of events in this job
to PROG.LOG
COM7 PROG, ,SYSTLIB - compiles and links PROG.FTN, searching

the System Library and the Fortran 7
Run Time Library

SIGNCF - signs off the batch job

BEXIT - terminates the job file

= 16 =
The extencgion of a job file must be .JOB, so lets call our file PROG.JOB.
To enter the job onto MIM's batch queue, type at an MTM terminal:
SUBMIT PROG.JOB
You may discover the status of PROG.JOB by typing
INQUIRE
There are three possible replies to INQUIRE:
JOB fd EXECUTING
JOB fd WAITING BEHIND=n
NO JOBS WITH YOUR ACCOUNT
where £d is the file descriptor of the jobj; in our example £d=USER:
PROG.JOB, 200.
To stop a batch job when it 1s in a waiting or executing state type
PURGE £d
In our example

PURGE PROG.JCB

would remove PROG.JOB from MIM's list of batch jobs and stop compilation

of PROG.FTN, if it had begun.

6.2 CSS files

Css stands for command substitution system. It allows the user to
establish files of dynamically modifiable commands which can be called
from the terminal or from other CSS files and executed in a pre-defined
sequence. In this way, the user can carry out complex operations with
only a small number of commands: those commands being the CSS file names.
CSS provides a set of logical operators to control the sequence of com-
mands, a parameter-passing facility and the ability for one Css file to
call another, with four calls as the maximum nesting level. Multiple
commands, separated by semi-colons, may be placed on one line of a Css

file; commands are processed faster if on the same line than if on more

- AT -
than one line because the disc I/0 transfers required are reduced. A
line which begins with an asterisk is treated as a comment. A summary
of operating commands is listed in Tables 1 and 2.

A CSS file is called and executed vhen the fd of the CSS file is
specified. If the file extension is omitted, the extension CSS is
assumed. Parameters are passed to a CSS file by appending them to the
fd of the CSS file. If a parameter contains the double quote character
then all characters up to the next double quote are passed as a single |
parameter. The first parameter must be separated from the CS5 fd by a

space; all other parameters are separated by commas. Null parameters are

permitted.

Example:

COM7 PROG executes the CSS COM7.CSS with the
parameter PROG.

FRED Aj;;"B,C executes the CSS FRED.CSS with the

first parameter null and the third
parameter B,C.

I'TM searches the user's account first when a fd is issued as a come
mand; if the fd is not found on the user's account MTM_searches the
system account. If the fd cannot he found as a /P or /S file, MTM issues
a mnemonic error (MNEM-ERR) message.

Within a €SS file, a parameter is referenced by the use of the symbol
@n, where n is a decimal integer number indicating which parameter place
is meant. For example: the command AS 1,82 in a CSS file will assign
logical unit 1 of some previously referenced task to parameter 2 of the
CSS file. Multiple @ s may be used to access parameters of higher level
CSS files. For example, i1f FRED.CSS calls FRED1.CSS then the characters
@@1 in FRED1.CSS refer to parameter 1 of FRED.CSS. Parameter @O is used
to reference the name of the CSS in which the @O symbol is contained. For

example, this line included in FRED.CSS:

= 1B -

gWR ERROR IN @O
would cause the message 'ERROR IN FRED' to be written to the user terminal
or to the log device. A file may be built within a CS3 file incorporating
parameter substitution in the file as it is built, if the commands ZBUILD
and YENDB are used respectively to begin and end the build. For example
these lines in a CSS file:
gBUILD FRED.ASN
AS 1,@1;3EXIT
ZENDB t
would cause FRED.ASN's function to be the aséignment of logical unit 1
to the first parameter of the CS5S5 file.

Logical operator commands all start with the three characters ZIF
and allow one argument. A logical statement tests a condition. If the
condition is true, commands up to thecorresponding ZELSE or ZENDC are
exscuted; if the condition is false the same commands are skipped. Nested
8IF blocks are permitted, with no limit on nesting level.

There are three categories of logical operator commands:

- return code testing,

- file exi§tence testing and

- parameter existence testing.
The return code is a quantity maintained for each MTM user by the system.
Its value can be changed by the SET CODE operator command, by a supervisor
call within a task or by the termination of a task. If a task is cancelled
the return code is set to 255. If a task terminates without error and if
there has been no supervisor call to alter the return code, then the return
code is set to zero.

Example CSS procedure

Suppose you have compiled program FRED.FTN and JOHN.FTN. You would
like to run FRED using an input data file chosen at run-time and, if ik
executes successfully, to run JOHN using a data file produced by FRED.

The following CSS file might be used:

- 19 -

gIFNU @1;3WR YOU HAVE NOT SUPPLIED AN INPUT FILENAME FOR FRED
SCLEAR ; 2 ENDC

IFNX @1;8WwR INPUT FILE @1 DOES NOT EXIST;ZCLEAR;ZENDC

*PARAMETER 1 CONTAINS AN INPUT FILE SO NOW RUN FRED

L FRED 3 *Load FRED.TSK

AS 1,CON:;*Suppose lu 1 is used for interactive I/0

AS 2,@1,SRO;*input file for reading only

XAL FRED.DTA,IN,80;*create an output file, indexed with 80-byte records

AS 3,FRED.DTA,SWO ;*assign for writing only

ST ;*start execution of FRED

$IFNE 0;8WR ERROR DURING RUN OF FRED;3CLEAR;2ENDC

L JOHN ;3* FRED'S return code was O so Load JOHN.TSK

AS 1,CON:

AS 2,FRED.DTA,SRO;*assign FRED's results for input only

AS 3,4PR: ;*suppose lu 3 is required for outputting to the lineprinter
ST '

ZIFNE 0;2WR ERROR DURING RUN OF JOHN;#CLEAR;ZENDC
DE FRED.DTA;*Successful completion - tidy intermediate files if not needed
BEXIT ;"terminate CSS file

If the above lines were in a file FREDJOHN.CSS and a possible input data
file for FRED were INPUT.DTA then

FREDJOHN INPUT.DTA

would be typed to initiate the commands in FREDJOHN.CSS.

- 20 -

TABLE 1

MTM Command Summary

(Note letters underlined denote minimum abbreviation allowable)

ALLCCATE f£d, (CONTIGUOUS,filesize
(INDEX,logical record length

ASSIGN lu,fd |[,access privileges

CONTINUE

DELETE fd,[,fd,,fdqsee-yfd]

2

DISPLAY ACCOUNTING [,fd]

]

DISPLAY FILES [filename][.ext]J[/9S{][,fd]
P

DISPLAY LU

DISPLAY TIME

DISPLAY USERS

Allocate a file fd.

(Where filesize is an
integer number of records
and logical record length
is an integer number of
bytes or characters)
Assign logical unit lu to
file or device fd. Common
device fd's are:

CON: - user terminal

PR - lineprinter

MT: - magnetic tape unit
NULL: - null device

Optional access privileges
are SRO, ERO, SWQ, EWO, SRW,
SREW, ERSW or ERW

Build file fa@

Cancel a current task

Close one or more logical
units lu,

Continue a current task

Delete one or more files fdi

Display accounting information
(by default to the user console
or optionally to file fd.)

Display files (by default to
the user console or optionally
te file £d)

Display logical units assigned
to the current task

Display current time

Display names and devices of
all MTM users

- 21 ~

Table 1 (Conte.)

ENABLE (MESSAGE
(PROMPT

INQUIRE

LOAD fd[,segment size increment]

LOG £d

MESSAGE (userid Jmessage
(.OPERATOCR)

PAUSE

PREVENT (ME
(PROMPT

PRINT fd[,COPIES=n|[,DELETE]

PURGE fd

RENAME oldfdynewfd

SUBMIT fd

START

TEMPFILE lu, (CONTIGUOUS,fsize
(INDEX,logical record length

XALLOCATE f£d, (CONTIGUOUS,fsize

(INDEX,logical record length

XDELETE fdlf,de,de,...,fdnJ

Enable prompts or enable
messages from other MIM users.
Prompts and messages are
enabled by default and are
disabled by the PREVENT
command

Inquire about the status of
a batch job

Load task fd with an optional
segment size increment in'!
kilohytes to override the
storage area allocated te the
task when established

Log commands and messages
to file or device fd.

Send a message to user with
username USERID or send a
message to the operator at
the system console

Pause a current task

Prevent prompts or messages
from other MTM users

Print file fd, opticnally
specifying that n copies are
to be printed and/or that fd
is tec be deleted after it is
printed

Remove batch job £fd

Change the name of a file
from oldfd to newfd

Submit job fd for entry into
the batch queue

Start a loaded task

Allocate a temporary file, to
be associated with the current
task

Allocate fd after deleting

any pre—existing version.
(Performs the same function

as an XDELETE command followed
by an ALLOCATE command)

If file fdi exists, delete it.

- 07 =

TABLE 2

Additional MIM Commands for use in CSS Files only

BSBUILD fd Build file fd, allowing parameter
substitution during build.

ZENDB

BCLEAR Close all active CSS files and
terminate CSS.

ZCOPY Copy the following lines to the user
terminal cr log file or device L

ZELSE Used for the false condition in &IF
blocks.

BEXIT Mandatory to terminate a CS3 or JOB
file.

£GOT0 label Junp to label marked by BLABEL

SLABEL label Designate 'label' as a C55 label.

BNCCOPY Cease copying lines of a CSS file to
the usecr terminal or log.

SET CODE n Set return code to na.

BWRITE text Text beginning with the first non-

blank character after ZWRITE and
ending either with a semi-colon or
a carriage return is output to the
user terminal or log.

Logical operator commands: (also to be used in CSS files only)

$IF CHARACIER arg, EQUAL arg, $IF CHARACTER arg, NEQUAL arg,
BIF CHARACTER arg, LESS arg, BIF CHARACTER arg, NLESS arg,
SIF CHARACTER arg, GREATER arg, BIF CHARACTER arg, NGREATER arg,

BIF (DECIMAL arg, EQUAL arg., SIF?QECIMAL arg, NEQUAL arg,
(HEXADECIMAL HEXADECIMAL

SIF§DECIMAL arg1 LESS arg, $IF§DECIMAL argiNLESS arg,
HEXADECIMAL HEXADECIMAL

$IF%DECIMAL arg, GR GREATER arg, SIFEQ?CIMAL arg, NGREATER arg,

HEXADECIMAL HEXADECIMAL

w U o

Table 2 (Cont.)

SIFVOLUME fd (tests
BIFEXTENSION fd (tests
BIFX fd (tests
ZIFNX fd (tests

These commands test the retun

ZIFE n (if equal)

3IFL n (if less than)

BIFG n (if greater
than)

whether fd has a volume name)
whether fd has an extension)
for the existence of fd)

for the non-existence of fd)

code:

ZIFNE n (if not equal)

'gIFNL n (if not less than)
BIFNG n (if not greater than)

These commands test parameter existence:

IFNULL n

gIFNNULL n

s "

7 Using Overlays in Fortran with the Link Editor

7.1 Is Your Program Suitable for Overlaying?

Overlaying normally reduces the size of a Fortran task. Against that
advantage you must weigh the disadvantage: a slight increase in time taken
to establish the task. If your program is so large that it will not easily
load into the available memory, you will without doubt gain time by over-
laying because the time spent waiting for space in which to load and run
the task will decrease. The operating system works on a time-slicing |
basis: when a task has been in memory for its allocated time slice, it
is rolled out of memory into a queue of disc files waiting to run. When
memory is freed by other jobs,; the roll-queue is searched for a task with
memory requirements that can be satisfied by the available memory. If the
memory is in full use by jobs of varying size,; a large job will be found
sufficient free space less often than a small job.

Link allows multi-level overlaying. The overlay structure takes the
form of a tree; the main segment is the root node, and the subroutines in
overlay segments are nodes on the tree's branches. A node is the group of
routines loaded at one time. A path is defined as a set of nodes one at
each level, each of which is a descendant of the node at the previous level.
Cnly nodes in the same path may be in memory at the same time, therefore a
routine may call only routines in nodes which are in the same path as the
nede containing the calling routine.

The total overlay area required at any one time is the total size of
all nodes in the current path. The size of an overlaid task is the size

of the root plus the size of the largest overlay path.

- 25 -

Sample Overlay Structure

Main Segment

)
)
J
)
)
)

Subroutine A Root Node
Subroutine B
|
| sub C | Sub F | Level 1
i(Node 1) | | (Noce 4))
S e
T B oo o o S [‘
Sub D | | Sub E | Sub G Sub H | Level
(Node 2)’ (Node 3)} (Node 5) (Node 67 2

In this example any of subroutines A;B;C...,H may be called from the
main segment. Subroutines A or B may call any of subroutines CyDyeceqHe
Subroutines CyDy...,H may call any subroutine in the root node. Subroutine
C may call subroutines D and E and D and E may call C. Subroutine D may not
call subroutine E. Subroutine C may not call subroutine F. Subroutine F
may call G and H, and G and H may call F. Subroutine G may not call H.

To sum up, if your program is larger than the average job size on the
3220 (about 50 Kb), and if you are able to structure the parts of your
program into a tree with a root and multi-level nodes, then your program

is a good candidate for overlaying.

- 26 -

7.2 The Link Commands necessary to create an Overlaid Task

Compilation and establishment of Fortran programs on the 3220 are
currently performed by the system CSS file 'COM7'. The commands to Link
are taken from a system command file that establishes a non-overlaid task
including the object file produced by the Fortran compiler and any library
routines called in the object file. The user can vary the choice of
libraries to search (by altering the third parameter to COM7},; but the
task structure remains single level. To create a task with overlay seg- |

ments, the user needs to write a link command file which is tailored for

his task structure.

The link command file should consist of the following commands; and
the commancds should appear in the order in which they are described here:

INCLUDE fdl,program label] Include in the task the object program(s]
that will form the root. f£d is the file
descriptor of the object file that is to
be included. If the cbject file contains
more than one program, a single program
may be extracted by specifying the prog-
ram name. If a program label is not
given, the entire object file is included.
At this point, the user should use as
many include statements as necessary to
form his program root.

OVERLAY name,level Tell Link that an overlay segment is to
be defined. 'Name' 1s the name of the
overlay segment. You may use any name
(hopefully one that is meaningful to you)
of one to eight characters, first char-
acter alphabetic. 'Level' is a decimal
number from 1 to 256 specifying the num-
ber of overlays between the root and the
overlay being defined. The number must
be at most one greater than the previcus
level.

INCLUDE fd[,program label] Include in the overlay segment the object
program(s) that will form the overlay.
'fd' and ‘'program label! are described
above. Use as many include statements
as necessary to define the overlay node.

Use as many overlay commands as you have overlay segments, following each
with INCLUDE, EDIT and RESOLVE commands.

- 57 u

LIBRARY fdl[,...,fdn] Specify libraries to be searched.
fd, is the file descriptor of the
library to be searched. Libraries
are searched in the order they are
named. Possible libraries are the
user's owns: USERLIB7.0BJ, the NAG
library: TEMP:NAGORJ.OBJ/S, the
SCIENCE library: TEMP:SCIENLB7.0BJ/S
or the SYSTEM library: TEMP:SYSTLIB7.
OBJ/S. The Fortran 7 Run-Time Library
must be searched; 1its file descriptor
is TEMP:F7RTL.OBJ/S. If a library's
extension is not named, .OBJ is used
as default.

SHARED TEMP:F7RTL.SEG/S Specify the re-entrant part of the
Fortran 7 Run-Time Library to be ref-
erenced by the task at execution time.

OPTION FLOAT,DFLCAT Set task options that are to apply at
execution time. Specification of single
and double precision fleoating point hard-
ware availability (FL,DFL) is necessary.
Other options may be set here, but the
defaults will be sufficient for most
programs. For information on other
options available see the 05/32 Link
Reference Manual (on Microfiche).

MAP fd Produce a map of the established task.
'£d' may be any pre-allocated file or
'CON:' (the terminal you are using) or
'PR:' (the lineprinter). Please use
lineprinter paper only when necessary.

BUILD fd ‘ Tell Link that an executable task is to
be built. 'fd' may be any task name you
desire, and should include the extension
<T5K .

END Finish the task linkage.
Having built a link command file, you can establish a task with the
command LINK.
Form:
LINK Commandfile
where Commandfile is the name of the file which contains the commands to

the Link Editore.

= 58 =

7.3 Calling a Subroutine from an Overlaid Segment in Fortran

Overlay loading is autocmatic, therefore Fortran call statements need
not be altered in any way if the called subroutine resides in an overlay

nodee.
When your Fortran file is ready to compile, use the system CSS file
COBJ7 to produce an object file. For more information about COBJ7, type

HELP COBJ7 when signed on to the 3220.

7.4 Example

C..PROGRAM TEST.FTN TO CALL 2 SUBROUTINES FROM OVERLAID SEGMENTS
A=1.90
B=2.90
CALL SUBA
CALL SUBB(A,B)
END

BBATCH
C..SUBROUTINES TO BE OVERLAID IN A FILE CALLED SUB.FTN
SUBRCUTINE SUBA

WRITE(2,19)

19 FORMAT (' IN SUBA')
RETURN
END

SUBROUTINE SUBB(A,B)
YRITE(2,10)A,B
10 FORMAT(' IN SUBB,A = ',F1#.5,' B = ',F10,5)
RETURN
END
SBEND

NOW PRODUCE ORBRJECT FILES TEST.OBJ AND SUB.OBJ:

COBJ7 TEST
COBJ7 SUB

BUILD A LINK COMMAND FILE CALLED TEST.CMD:
IN TEST.CBJ
OV SUBA,1
IN SUB.OBRJ,SUS
o b SHEFFIELD
- ! ADD ey =
LI TEMP:F7RTL/S AFFLIED Seicpipr
SH TEMP:F7RTL.SEG/S {,ﬁﬂ#f“”uh
OP DFL,FL ~SOHARY
?
MAP CON:
BU TEST.TSK
END

AN s
LER Y

NOW ESTABLISH THE TASK:
LINK TEST.CMD

AND, AFTER RECEIVING THE MAP AND END OF TASK = @ MESSAGE, RUN:
RUN TEST

- 29 -

Ba Summary
The points so far covered with particular relevance to optimising

system efficiency and program execution speed may be summarised as

follows:
i. 05/32 manages task memory on a priority and time-slicing basis.
A small task is found memory space more easily than a large task.
Once a task is in memory it is more likely to make full use of
its time slice if terminal I/O is not intermixed with other
pregram steps.

ii. User files can be indexed or contiquous, with the indexed structure
best for sequential access or unknown file size and contiguous
structure best for random access of a large, fixed-size file.

The total filestore and the number of files on disc influence
directory search times and disc and memory space available.

iii. MTM allows interactive use of up to 31 user terminals. A user
may submit jobs involving no interaction to a batch queue and
continue interactive work at a terminal. Operator commands
may be placed in CSS procedures tailored to a user's needs.

iv. Overlaying may be used to decreass task size and therefore
improve the speed of task execution. Overlaying necessitates

a modular program structure.

