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ABSTRACT

A commonly accepted mathematical model for the slow-wave electrical activigy
of the gastro-intestinal tract of humans and animals comprises a set of
interconnected non-linear oscillators. Using a van der Pol oscillator with
third-power conductance characteristics as the unit oscillator a number of
structures have been analysed using a matrix Krylov-Bogolioubov method
linearisation. Thus mode analysis of one dimensional chains and two-
dimensiocnal arrays have been reported. In this paper the method is extended
to consider a tubular structure which is relevant to modelling small-intestinal
rhythms. It is shown that this structure is capable of producing stable single
modes, nonresonant double modes and degenerate modes. General expressions

are obtained for an mxn structure and examples given of two special conditions
of 3 x 4 (i.e. odd numbers of oscillators in a ring) and 4 x 3 cases. The
analytical results obtained for these two cases have been verified experi-

mentally using an electronic implementation of coupled van der Pol oscillators.
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1. Introduction

Nelsen and Becker in 1968 first made the hypothesis that slow-wave
electrical activity in the mammalian gastro-intestinal tract should be
modelled as a set of interconnected non-linear oscillators. Since then the
data available on these electrical rhythms have steadily improved and the
number of modelling simulations and analyses have increased. The common
theme in all these models has been that of mutual interaction (i.e. bidirec-

{
tional coupling), while structure and unit oscillator dynamics have varied.

In terms of simulation studies human small-intestine has been simulated
as a one-dimensional chain of coﬁpled van der Pol oscillators (Sarna et al,
1971), and the human stomach by a two-dimensional array (Sarna et al, 1972).
For the large-intestine, a fifth-power wvan der Pol chain has been considered
to account for apparent periods of absence of electrical rhythms (Linkens
et al, 1976). Using a unit oscillator dynamic based on the Hodgkin-Huxley
equations, the established gastro-intestinal phenomenon of entrainment has
been demonstrated both for small numbers (Linkens and Datardina, 1977) and
large numbers (Patton and Linkens, 1977) of coupled oscillators. These
computersimulatigﬁs of Hodgkin-Huxley based models have been complemented
by electronic simulations based on simplified dynamics. Such fast models
have enable synchronisation phenomena to be quantified rapidly.

Mode analysis of intercoupled van der Pol oscillators has also been
keeping pace with simulation studies. Harmonic balance techniques have
established the multimode behaviour for general RLC coupling of two oscil-
lators (Linkens 1977), while one-dimensional chains with intrinsic frequency
gradients have yielded analytical entrainment conditions (Linkens, 1074 ).
The same methods have also been applied successfully to the condition of

'almost-entrainment', or modulation, where multiple spectral components

occur (Linkens 1979). 1In parallel with this a matrix Krylov-Bogolioubov



method has been developed and aéplied to one-dimensional ladder (Endo and
Mori 1976a), two-dimensional arrays (Endo and Mori, 1976b), and a ring of
oscillators (Endo and Mori, 1978). 1In this paper the matrix linearisation
method is extended to analyse the case of a tubular structure of coupled
third-power van der Pol oscillators. Such a tubular structure is clearly
of relevance to the small-intestine with its tube-like nature. It is shown
|

that such a structure has a particularly rich mode behaviour. The types of
mode considered are single modes, nonresocnant non degenerate modes (i.e.
having non-equal frequencies), aﬁd degenerate modes (i.e. having equal
frequencies) which may be either regular (i.e. with exact phase) or
irregular (i.e. non-exact phase).

In section 2 the basic equations under consideration are derived,
while in section 3 the diagonalisation of the system matrices via a suitable
linear transformation and equivalent linearisation are described. Stationary
amplitude conditions are determined in section 4 and their stability found
in section 5. Iwo particular examples are dealt with in section 6 comprising
odd and even numbérs of oscillators around the periphery of the tube, and
these examples are followed through via electronic experimentation in
section 7.

2. Derivation of the Fundamental Mode Bquation

The unit oscillator of the tube structure under investigation is a
parallel resonant circuit, and consists of a capacitance C, an inductance L,
and an active element characterised by a cubic nonlinearity

3
I = - il
ij{vij) gl vij + 93 vij (gl,g3 > 0) i |

where i represents the location of the oscillator in each ring and j the
location of the ring in the structure
i=21,2, csiapm

3= 1,2, z453 0




where m is the number of oscillators in each ring and n the number of rings

in the whole structure (see Fig. 1).

Now the tubular structure is described by the integral difference -

differential equations:

=i -
T =] i (Vii_1yq = Vig'dt (2a)

where Lc is the coupling inductance,

Pl _ :
I —fL (Vs Viganyy Ot (2b)

(Subscript T means peripheral direction of the structure while L means its

longitudinal direction).
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where ITij is the current passing through the transverse coupling branch.

Iiij is the current passing through the longitudinal coupling branch
Vij is the output voltage of the oscillator of location i,j. Applying

Kirchoff's law at the node i,j, leads to

.. 3
i :
I.+C0——<+ =y,  dat=1 A+ -I  -I_,
ij dt I:f ij T(i-1)3 Li(j+l) Tij " Lij

Substituting the various currents with their corresponding values into

equation (3) and then differentiation w.r.t. time t, yields
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Substituting
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Then, (4) can be written as
d xl 1 dx
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Defining
\u _ 2L
© 2L+L
c
which represents the inductive coupling factor (O < a < 1)
g
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Then, (6) becomes
2
d xl
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where i = 1,2,...,m ; 3 =1,2,...,n

The above equation (8) can be expressed in matrix form by defining

two matrices X and Xc

(5b)

(7a)

(7b)

(8)



Both of them are of row m and column n, i.e. each matrix is of the order
mxn.
Now (8) can be expressed in the matrix differential equation

X"+BX+XD=€X'—£SX‘ (9)
3 c

where B is determined to be squére and symmetric and by using the boundary

conditions of ring connection

*o3 T Fm3 T Fmn)3 T *ij (16
it can be written as
r 3
1+a - o '
-'a  l+a - o
B = . . . (11)
- o 1+a - o
-0 - 1+a

and D is determined to be square symmetric and of the order equal to the

number of rings in the structure (n)

( ik -0
-0 140 =0
D= . ° ° {12)
-0 1+a‘ -0
L -0 1 -




Matrix D is tridiagonal when assuming that the two ends of the tube are

open, which means the boundary conditions are

%51 T %10 F Fin T *i(n+n) (13)
The matrix differential equation (9) is defined as the fundamental mode
equation of the structure.
Applying an orthogonal transformation
T {
X =P YQ (14)

where P and Q are two orthogonal square matrices of the order m and n
respectively gives
T
P P=I (PP =1I)

and

I
~

I (0 QT

n n

e
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where Im is the unit matrix of order m.

Substituting the orthogonal transformation (14) into the fundamental

equation (9)

s T

PY’ QT + B PY QT 4+ P YQT D= EPY Q %‘E X' (15)

e

v

and then multiplying by PT from the left hand side and by @ from the right

hand side, we have

Wi

Yo+ (PT BPRP)Y + ¥V (QT DQ) = EY - gPT xé 0 (16)

which is the fundamental equation.

To solve it we have firstly to solve the unperturbed differential equation
and then linearise the nonlinear term by using the Kryloff and Bogoliuboff
linearization technique.

3.1 Solution of the Unperturbed Matrix Differential Equation

The unperturbed equation of (16) (which is the fundamental equation with

E = 0) is



Y 4+ (PTBR)Y 4+ YT DQ) =0 (17)

The elements of the matrix P, to diagonalise the matrix B, can be determined
as an eigenvalue problem of matrices by solving the corresponding difference

equation (Gantmacher, 1960) which is taken from (1ll) as

+ (lm)pij = otp( = A, P, (18a)

T8 P o1y i+1) j Tij

where pij is the element of the matrix P and Aj is the eigenvalue of B witﬁ

the boundary conditions

_ " - . 18b
Poj " Pmy 7 Py T Py (18Db)

From the above two equations and the orthogonal condition, the elements of
the matrix P and the eigenvalues of B can be determined uniquely {Endo and

Mori, 1978) by

/1
Pil = e for i = 1,2;...m
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only for m is even

m+1

3 Bipd —— w1l
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of m is odd but for m even

; m m
j=zl3! ’E-_lr_2-+i
2 sin 2m(i(j-1) , m+1
= — — £ = (—) ;..., M-1, m
Pij - - or J (2), ' ’
if m is odd but for m even
i = (‘;lrz), ee., m-1, m (19)
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Aj =1+ a -2 o cos —Eiﬁr—) i e LB, eww g (20)
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Thus, the matrix combination (P BP) in (17) can be replaced by the

diagonal matrix

P" BP = (21)

Similarly, in order to diagonalise the matrix D (12) the elements of
the orthogonal matrix Q must be determined first. This can be done by

solving the difference equation

+ (l+a)qij = o, = WG, (22a)

T %94 (4-1) i3+1)  Ti%i4

where qij is the element of the matrix Q
\f is the eignevalue of the matrix D.
Equation (22a) has the boundary conditions

9. . = 49, Podg, =4q

io il in i(n+1) [27k9

From the above two equations and the orthogonal condition, the elements of

the matrix Q@ can be determined uniquely as

1
91 7 A4
/2 (2i-1) (§-1)m -
qij = . cos >0 . 2,3 e ifl (23)
v, = Ldgsdnensaetm (24)
1 n

T
Thus, the matrix combination (Q DQ) in (17) can also be replaced by the

diagonal matrix




T
Q DQ = i (25)

Substituting (21) and (25) into (17), the general equation for the element
L
ylj 1s

T+ + =
yij (Ai Yj)yij o) (26)

from which yij can be solved as

=
]

. A, . sin (w.. + 4. .) (27a)
1] 1] 1] 1]

= +
wij v Ai Yj (27b)

where Ai and }j can be determined from (20) and (24) respectively, s@

mij =/ 2+2q-2 q cos dia-Ln 2 o cos Ll:iLﬂ
. T =
=v 2 {1 +a {l—cos ST cos Sk b %) ]} (28)
m n
where i = 1,2, ..., m ; j=1,2, ..., n

Thus, the different modes yij of the unperturbed equation are given
by (27a) with amplitudes Aij and angular frequencies wij given by (28).

Here, it is clear that the angular velocity wij of the mode Yij is
equal to the square root of the summation of the eigenvalue Ai of the matrix
B and the eigenvalue Yj of the matrix D. As an example of the calculation
of the mode frequencies as functions of the inductive coupling o where the
number of oscillators in each ring of the structure (m) is 3 and the number
of rings in the tube structure (n) is 4. For the tube structure with m=4,

n=3, the mode frequencies are given by Table 5.2.
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3.2 Equivalent Linearization of Nonlinear Terms

To linearise the nonlinear term in the fundamental equation (16),
the whole equation should firstly be in the Y-space. So the elements
T
of the nonlinear term P Xc Q must be written in the form of the nonlinear
ab

3
combination of Yij ; by linearising the cubic nonlinear term x . . Now,

defining

m
1
v
b
10
Il

iy .
. b, .] (29)

where H is a matrix of the order mxn and its elements h_j given by
i

m n

3
h.,= ) )} .. . x (30)
3 a=1p=1 * "3 "ab
From the transformation (14)
m n
x. = ) 1 p y (31)
ab ~ Lo L Pax 91 Yx1
3 bec
Xab omes
m n .
5 % 8
3 »
X ) Pax %1 Yxa1

ab _ k=1 1=1

n m

+3 ? I 1 E P2 @ p_a vy
ool Tl e wal, B D% A ThE TRl Tam

i (yk1 yrs ytu terms) (32)

so that (k,1l) # (r,s) # (t,u).

From (28) no two of all the mode freguencies mij have a rational
ratio (i.e. all modes are assumed nonresonant), and ignoring resonant
interaction between modes (Scott, 1970) the ykl yrs Y terms can be

tu

2 3
ignored, butthe ykl Yrs terms and the ¥

K1 terms cannot be ignored.
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In quasiharmonic analysis, the higher harmonics can be ignored,

3
and therefore Ykl can be written as

o B S g # ) (33a)
k1~ “xa Op1 T 01 @
_3A2 y
TRkl Tk
Similarly,
= A2 A si 2 ( + ) .si ( + )
Ykl Yrs T %kl Cps ST Moy T o) esin fo o F g
o (33b)
=% M Yoo
; ; : 3
Substituting (33) into (32) xab becomes
m n
3 5 3 3 2
x =% ] ] p, 9. ALY
I gl
ab k=1 1=1 ak bl "kl 1
m n m n
3 2 2 2
o ) ) p,49.Pp_a Ay
2 k=1 1=1 §=1 s=1 ak bl "ar "bs kl “rs
where (k,1l) # (r,s) {34)
Substituting (34) into (30) produces hi* in the form of a linear combination
13
of ykl' i.e.
m n
h,, = ) ) n. (k1) y. (35)
13 kel 1=1 i k1l
where ﬂij (k,1) is written as
m n
3 D 3 2
] = L,] ' = Ll eled i 8 36
nij(l'j) 2 ! Wmn(l'J’k s W lymn(l AL B)Alj Ge
k=1 1=1
where
m n
2 2 2 2
¥ (i,3,k,1) = ) ) p., 9. P q
mn a=l poyp bj Tak bl

L.k = 2,2, cosyp M7 Jel = 126 4445 0 (37)
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Hence, the parameter Wmn(i,j,k,l) can be determined from the elements
of the two orthogonal matrices P and Q which are given by (19) and (20)
respectively.

Thus, the elements (hij) of the nonlinear matrix PTXCQ have been
linearised, i.e. the equivalent lineatrised equation of the fundamental
equation (16) has been obtained as

y o+ O Hy)y. = Ey. & i—i ? § n,.k l)y- (38f

i3 i g THEY ij 37 o1 1.1 i3 k1l

Supposing that the left hand side of the above equation has a reso-
nance centred around /_XI_:ﬁ?;T' the modes of the frequencies which are
not egual to mij have little effect upon the solution provided that each
mode frequency is separated enough, or that the Q-value of the resonance

is fairly high. So, we can ignore all the Y1 terms of the right hand side

except yij'

Therefore, (i,j) in the linearised

(k,1) can be replaced by ny

414 i

equation (38) to give the equation in simple form

‘= w2 . 1 y v 8
o = = e I i i
Yig * 044 Yij Eyij 3 Enij(l J)ylj (39)
where nij(i;j) is given by (36).

Now, equation (39) is the equivalent dinearised equation of the mode

ylj.

4. Evaluation of the Stationary Amplitude Values by Averaging the

Equivalent Linearised Equation

In order to determine which of the modes are stable, it is necessary
to evaluate first the stationary values of the amplitudes Aij' Using the
guasiharmonic approximation, the amplitudes and phases are assumed to be
slowly varying functions of time. Therefore, substituting the unperturbed

solution Yij and its first and second derivatives into the equivalent




= 13 _

linearised equation (39), the following averaged equations are obtained
i, A, 4
n, (1,3)] £ (40)
; ’ , 2
Multiplying both sides by Aij' and assuming Aij = Uij' then (40) becomes
UL =50, [3-n,.(L,9)] (41)
ij 3 i3 17

Substituting (36) and (41) gives

1 ; o n
U, ==¢U 3 -= i,3,k,1)U
ij 3 € ij [ kzzl lzl‘}’mn(l j,k,1) Kl
+ 2 i Illl ¥ j U . l‘\, -
% Wmn{l 3 719) i3 ] 42)
where 1 = 1,2, ..., m; j =1,2, ..., n.

i=
The stat%pary values of amplitudes can be taken by putting all the

first order time derivatives in the averaged eguations (42) to zero, i.e.
U, =0 For all 4.9 (43)
Consequently, equation (40) leads to

i,j) = 3 (44)
nij( +3) )
which is the condition for stationary amplitudes.

But from (36), ure is a function of the parameter y , and amplitudes of

: m
modes. So, the wvalues of\ymn should be clarified before the calculation of

the stationary amplitudes.

From (37)\11Irn can be written in the form
1.

|
~
o]
jal]
i_l.
g

v o(i,3,k,1)

mn

f q2 qz (45)
b1 bj bl

i
e
=
=

e

&
-
'_l
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where

= = 3

¥ (i,k) = ) po.p. ;ik=12, ..., m (46a)
a=1
n

. 2 2 .. _
¥ (3,1) = Z O Gy 31 =12, o (46b)



Using Appendix I for the different values of Wm(i,k) and Tm(i,l),
it is possible to evaluate the parameter Wmn{i,j,k,l) in (45) before
going on to find the stationary values of the mode amplitudes.

To make the calculation of Wmn(i,j,k,l) easier, we shall consider
the two cases when the number of oscillators in each ring of the struc-
ture (m) is even or odd.

If the number of oscillators in each ring of the tube structure (m)
i§ even, then the values of Wm{i,k) given by (i.6) and the values of
Tn(j,l) given by (I.7) are substituted into (45), to obtain the general
values of Wmn as in Table 3 which are a function of the number of oscil-
lators in each ring (m) and the number of rings in the structure (n).

It is clear from Table 3 that the value Wmn(i,j,k,l) could then be easily
calculated when we determine first which §ubspace the point (i,k) belongs
to in the mxm elements of the space (i,k) as well as the point (j,1) in
the nxn elements of space (j,l). As an example for the calculation of
the parameter wmn for the case of the tube structure with m as an even
number. Table 4 Fepresents Wmn when m=4, n=3.

If the number of oscillators in each ring of the tube system is odd
the values of ?m(i,k) and Wn(j,l) are substituted into (45) to obtain
the general values of wmn as in Table 5. Table 6 gives the wvalues of wmn
for the case of a tube structure when the number of oscillators in each
ring m=3 and number of rings n=4.

Thus, using Tables 3 and 5 we are able, for any arbitrary m and n,
to determine all the required values of Wmn to be substituted into (42)
using the condition (43) to obtain the amplitude stationary values.

5. Investigation of the Stability Problem

In order to determine which modes of the tubular structure are stable,
it is necessary to determine first the stationary states of these oscil-

latory modes by reducing the first-order time derivatives in the averaged



equations (42) to zero, as mentioned previously.

The stability of stationary states is then determined by linearising
the average equations around the stationary values and investigating the
characteristic equation of the linearised equation which is called the varia-
tional equation.

Introducing small disturbance AUkl around the stationary state so

that

+ AU 47y

=0
Ukl kolo kl

leads to the wvariational equation
m

n
(au;) = ) ) J,.(k,1) . AU (48)
k=1 1=1 ki

where Jij(k,l) is the Jacobian matrix of the structure, which is a sguare
matrix of order equal to the multiplication of the number of oscillators in

each ring by the number of rings in the whole structure, i.e. of order mn.

The Jacobian matrix which is defined as

g dU_j d(U'ij) )
g, (k,1) = (—=d =
4
ij dUkl dt dUkl (49)
can be calculated from (42) for (i,j) = (k.l) as
m n
gyt =gt -n [ ] ¥ (i,3,5,80 ] (50a)
r=1 s=1 .
But for (i,3j) # (k,1)
= - i .9 5
Jij(k,l) b E Wmn(l,j,k,l)uij (50b)

Consequently, one can distinguish the stability of a mode from the eigenvalues

of the corresponding Jacobian matrix which are the roots of the characteristic

equation
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|{Jij(k,l)} -sl| =0 (51)

where I is a unit matrix of order mnxmn.

If the real parts of the roots in (51) are all negative, the corres-
ponding mode is regarded as stable. If at least one of the roots has
positive real parts, the mode is unstable.

5.1 Stability of Single Modes

The mode stability for any mode (ioyjo) of the structure is now consi-

dered. Supposing that the mode (io'jﬂ) is the only mode which is excited,

|8,

u . . #0 ; U, =0
iejo i

for i =1,2, .., m ; 3 =1,2, ..., n (i,1) # (io,jo) {52)

From the transformation (14) and the condition (52) the mode xkl can be

written as

= & A s1i ~ 4+ B )
ey = Bt gt P W st Piede’ 153)

where w., . is calculated from (28) and the stationary amplitude A | calcu-
i0jo - iono

lated from (44), (52) and (36) to be

Aiojo ' Tiojo — . (54)
i 3

To have the condition of a stable mode, the single mode coandition of

(52) is substituted into (50) , then Jij(k’l) takes the three different wvalues

(k,1) 1, for (i,9)=(k,1) (55a)

Tk,
1]

gi-%y  (i,3,i ,i)U, .
mn o "o 1lojo

. . ¢ for (i,3) # (k,1);
iojo

== ;i E‘P (l :j J’kll)
mn o (@]

(irj)=(iofjo) (55b)
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or, = 0 for (i,3) # (k,1), (io'jo) (55¢)
where

ik=1,2, ..., m ) j,»1=1,2, ..., n

Substituting the value of stationary amplitude /EI;;; (54) into the

Jacobian matrix (55) gives the characteristic equation (51) in the following

form
m n |
T I (3. -8 =0 | (56)
i=1 j=1 J
where
2‘an(i:j;iofjoJ
T e N A A I (57}
mn (o] (@] (@] o]

Therefore, the stability condition for the mode (iO,jD) is

q"mn(lrj ’lo'Jo) § " .

Wmn(lorjo:lOrBO)

for all 4 = 1,2, wew,mt 3 3= 1,2, (..yn0

Now, it is clear that the arbitrary mode {io,jo) is stable only in the
case of the values of qﬁn given by (45) and calculated using Table 3 or 5
which satisfy the condition of stability (58).

5.2 Stability of nonresonant double modes

To investigate the stability of nonrescnant double modes, similar
procedures to what have been used in investigating the stability of single

modes are followed in Appendix IT.




S i i

2

From the results in #ss Appendix 41t 1s evident that for any nonresonant
double mode (io,jo) and (ro,so), the nonzero elements of the characteristic
equation (51) are restricted to the diagonal elements (i.e. for (i,j)=(k,1))

and to those for the two rows (iofjo) and (ro,so). Thus, the corresponding

characteristic equation to the nonresonant double mode can be written as

o o Lh o V=B J, . (r ,s) m n
iejo o "o iojo o o LT T [{J,,(i,j}}—s] -0
- 4= =g 2
(i fj ) J (r ;S )"S
roso "o'"o roso o o
where 1 = 1,2, ..., m; J=1,2, ..., n; (i,3) # (i o P (- (59)
o "o o o

Substituting the conditions (I.5) into (II.6) then

m n
(95050 g I8, . (xr_,s )] [3, . (i ,3)-s-3, . (¢ ,s)] T T
10Jo o "o 10JO0 o o 10JO0 o "o 10J0 ©o o i=1 =1
[ta 6,90} =] = o
. Y . ’- )’ , 8 -
(1,3) # (.3 ). (x_ s.) (60)

Using the value of the stationary amplitude VUiojo given by (II.4) the roots

of the characteristic equation can be calculated as

b

[3, . (i ,3)+3. . (r ,s =~ & (61a)
iojo o "o Ticjo To'To

u: [J. L 3 )=, . (r ,s ):I
10]0O (@) (o] lojo (@] (o]

2 i .f‘ '.
IJJmn(lo'jo o ]o)

- E[l - Y (23 43 rJ ) +2¥ (i ;i ,x ,s )] kel
mn o] [e] (e} o] mn O o] o] o]
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c Jij(l,j) £|1-% Tmn(l,j,lo,jo) Wmn(l,j rO;SO)} UinO

2 'I.l l'. .r.l 7 §
e |1 - {Tmn(l 3o jo) + Tmn(l Jrr, So)}

Wmn(lo'jo'lo'Jo)+2Wmn(lo'jo'ro'so))

for 8l & = 1y wawe M 3 3 = 1,25 iz B

t ..l. = .I. I
except (i,3) (1O JO), (ro so) (61lc),

From the above equations (61) it is evident that the first root of the
characteristic equation is always. negative, the second root is negative

only for
“Pmn (J—Oljolloljo)

y (i ,3 .1 ,3) +2¢ (i ,j ,r ,s)
m O O O © ml O O ©O O

> (62a)

The rest of the roots which are (mn-2) roots, are only negative for

o (i:j,i fJ )+ Y (i,j,r 'S )
(@] mn 5]

< g = >k (62b)
qjmn(lo'jo'lo’:]o) C 2Wm(lorjorrowso)
for i = 1,2, , m 3= 1:2, swer O

(i,3) Z (1L ;3), (r ,s)
o "o o o

and if that condition is applied for the (mn-2) combination of (i,j), we
can conclude that all the (mn-2) roots are negative.

Thus, the stability of a nonresonant double mode (io,jo) and mode
(ro,so) can be investigated through the wvalues of Wmn in the columns
(i ,3) and (r ,s ) of the Table 7.

o "o o o

Now, the solution of the nonresonant double mode can be given by
(II.2) in which the elements of the matrices P and Q are given by (19)

2 ti £ i d ; i b
and (23) respectively, the angular freguencies wiojo an W, oge JiVen by

(28) , and the amplitudes U, , and U given by II.4
iojo o

ros

From the mode stability criteria (58) and (62) it is advantageous

to put the wvalue Tmn(i,j,k,l) in the form which can be seen in Table 7.



Thus, we can investigate the stability of a mode by the values of Wmn
in the column corresponding to that mode only. Also, for nonresonant
double modes we investigate their stability only by the values of wmn
in the corresponding columns.

5.3 Stability of Degenerate Models

For investifating the stability of degenerate modes in this tube
structure, the phase of the mode should be taken into consideration.
Supposing two modes (il,jl} and (i2,j2) are degenerate and there are
no other degenerate modes except these, then in equation (32) for xib,
the terms concerning the producté between each of the degenerate mode,

2
and vy,

i.e.
iljl

2
il £ ’ 1 Z—
ylljl Yi2j2 rom the second, and Y1 ]1131 Yi2j2 from the

third, should be calculated dpart from the others as clarified in

Appendix III.
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Then, substituting the solution of the unperturbed equation (27) into
the linearised equation which is obtained in Appendix III equations for

the degenerate modes are

m
- = —- i_,3.,k,)u _+ \lJ r 9! U,
AP auiljlfl 3 kfl 121 ¥ (A3 kDU Y (40030

i . 2
+hY (4,00 35 145 03,00, 1292 %?mn(llfjlrlzsz)Uizjzcos ¢] (63a)

[1-% 5 E ¥ (1,3, k10 bR (5),T,08,,5,)0

k=1 1=1 ™

Y242~ Y5252 2328945

. & . i g E 8 & 2
A o3 UL =By (i.3,,4 430, cos” ¢] (63b)

Hat, Wgedyedy 11 0y =28ty 131

(J.) cos ¢ sin ¢ (64)

¢ =% EUjo40 ¥on Ly r3y rdy 0y

Investigating the stability of degenerate modes, by employing the same

procedures for the nondegenerate modes,

#0 , U,. =0 ; for all i,] (65)

Usi31 = Y242 i

except (i,j) = (il,jl), (i2,j2). The stationary values for the amplitudes
and the phase are then determined by putting all the first-ordertime deri-
vatives of averaged equations to zero, so

2
o N ;3 N R
Yoy edy ey e300, g0 + ¥ (L h3,03503)) (192 cos 900,549

2
.’.'. . % + 4, .=4
¥ (gedyed s3)) (142 cos™ )0, g + ¥ (3503,03503))05 94,

'j2) sin ¢ cos ¢ U, =0 (66)

i2j2

\?mn(llljlllz



_22_

From (37) it is clear that Wmn (11,31,12,32) = ?mn(lz,jz,ll,lz).

So, the relation Wmn (11,31,11,31) = Wmn (12132112:32} should be satis-

fied to fulfill the requirement of the equal mode amplitude assumption.
Now, two stationary states for the amplitudes of the degenerate mode can

be obtained, one corresponds to a progressing wave, which is

4

= |

8] = o 5 TR 2
i j i r F + I
i232 Wmn(ll'Jl i3y Wmn(ll 31'12;32)

U =
iljl

o
i
H+

i
2

= i +
X1 = Prio qu2 A12j2 sin wr * pkilqulAiljl cos Wt (67)

The other solution corresponds to a standing wave and given by

_ _ 4

U,,., = U = I S
i ] I r + I
iljl i292 Wmn{ll 3y jl) 3Wmn{ll 31112,32)

¢ =0,

= i + A ' -
Xei ™ Pryod) yufyga St 00 £ By @igyBy gy B00 WL L

where w is the frequency of the degenerate mode, i.e. = wiljl = wi232'

To investigate the stability of these two solutions, the characteristic

equation of the corresponding Jacobian should be examined. This Jacobian

matrix can be defined as

B e P R e e T P
B = 3w, .0 , 0,0 .0 _ Wb
117712 ¢ mn’ i131'°i252

Using (65), (67) and (68) the averaged equations give the Jacobian

matrix as in
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)
T !
Jl2 |
0
o | Q
J. . [
1]
J |
mn
I §
u’ U’ X
| 8 iljl o il41 auiljl
| Wi151 U252 ]
. . u*
[ Wioge iz Wiag
| Wigsa  FYiays e
| 3 3 B¢
| i1 Wio40 a4
where
anj
Jij = (i,3) # (llfjl), (12,32) : (70)
e
So, the Jacobian matrix JB is a square matrix of order (mn+l). Therefore,

the characteristic equation can be written by expanding the determinant

]JB o sii with regard to all possible rows or columns, as

( . . . )
u u u
il . i Y5141
0Wy191 U952 hy
1 U, . au; . m n
i2752 i2j2 _ i2j2 E 2 (U .- s) =0
30, B 2 oy ij
iljl i2j2 i=1 j=1
04" T 09 _ .
;191 95540 L

where (i,j) # (il'Jl)' {12,]2)



Following the same procedures as for the nonresonant double modes, the
elements of the Jacobian matrix can be determined and the stability of
the progressing wave can be examined by two inequalities; one 1is derived
from the determinant in the characteristic equation (71) and the other

from the Jij part of the same equation. These two inequalities

a. “an(llrjlrllljl) > wmn(ll'jl'l2']2) (72)
where
wmn(ll’jl’ll’jl) = Wmn(12,32i12,32)

B. \Pmn{l,:],llrjl) + Wmn(lrjrlzljz} 5 ;i
. S ’- . + . " ] .'
Wmn(ll,jl i03,) LN 3,)
for all i and j except (i,]j) = (il'jl)'(12'32} (73)

If the above two inequalities have been satisfied, then the corresponding
degenerate mode (il,jl) and (i2,j2) is regarded as a stable progressing wave,
and its structural solution is given by (67) where the phase difference between
the two components of the mode ¢ is equal to *m/2.

2’ . —

On the other hand, the element 36 for the standing wave is positive

and hence, it can be easily concluded that this solution is always unstable.

The stationary amplitude of the stable degenerate mode can then be

given by equation (67) as

2 (74)
= yU, . = : ; e : 2 3 3 ;
iljl ;ﬁmn(11'31'11'31)+lymn(ll'31'12'32)

Biis1 = Bioq

Also, from the two conditions of stabi ity (72) and (73) it is now clear
that any degenerate mode in the tube structure can be examined to be

stable or unstable only by the columns (il,jl) and (i2,j2) in Table 7
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which gives the wvalues of the parameter wmn. As an example for degenerate

modes, the modes (2,1) and (3,1); (2,2) and 3,2); (2,3) and (3,3); and (2,4)

and (3,4) are four degenerate modes in the tube structure with m=3 and n=4,

as already seen in Table 1. The stability of such degenerate modes can be
investigated using the two conditions of stability (72) and (73), as will
be shown in the following section.

6. Solved Examples with Different Numbers of Oscillators in Each Ring

and Different Numbers of Rings in the Tubular Structure.

Now, we can analyse any tubular structure consisting of m oscillator
in each ring and n rings. As an example, a tube structure

6.1 3 x 4 Tube Structure

This example consists ©f four rings and each ring contains three
oscillators. Each oscillator has the values

C = 0.1 uyF + 20%

H]

L 68 mH (it is a variable inductance varying from 54 to 82 mH).

The oscillators are coupled to each other by an inductor LC = 100 mH.
The active element of each oscillator is given by a cubic nonlinearity
described by (1), It is required to analyse its various modes and inves-
tigate the stability of these modes.

The angular frequencies wij are dependent on the coupling factor o

which is calculated using (7a) to be

o = 0.51923 = o' for L = 54 mH
= 0.57627 = q for L = 68 mH
or = 0.60976 = qg' for L = 82 mH

The mode frequency fij can be determined using (56) as



s

Substituting L = 54 mH, kf becomes
k, = (2.2087162) 10’

and for L = 82 mH, kf becomes

k. = (2.0192969) lO3

£
Therefore, the mode frequencies fij which correspond to the case when the
inductance of each unit oscillator of the system is adjusted to its
minimum value (L = 54 mH) are given by Table 8.

Using the above table, it is clear that the system has the following{
modes ;

I The nondegenerate modes which are the modes (1,1), (1,2), (1,3)
and (1,4)

II the degenerate modes which are the modes (2,1) and (3.1 (2,2)
and (3,2); (2,3) and (3,3); and (2,4) and (3,4)

Before we are able to determine the structural solution of each mode
it is necessary to first distinguish the nondegenerate modes to see if they
are single ordinary or nonresonant double modes.

Locking at Table 6 which represents the values of the parameter
W34(i,j,k,l), where

ik=1,2,3 ; 3,1=1,2,3,4
and investigating the case for only a single mede by employing the stability
conditions (58) it is seen that the two single ordinary modes (1,1) and

(1,3) are stable. Their stationary amplitudes can be determined using

(54) to be
2 NI
A, = m—————— = 2 /12 = 6.9282
1, v, (1L,1,1,0)
_ 2 . _
and B, ¥, 30,9 =92 V12 = 6.9282

Investigating now whether or not two modes of nondegenerate oscillations
can be simultaneously excited, we employ the stability conditions in (62a).

The resulting stable nonresonant double modes are mode (1,2) and mode(l,4).
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Now the amplitude of the stable nonresonant double mode can be

calculated using (II.4) to be

= 4.38178

Secondly, we are going to investigate the stability of the degenerate
modes, of which each mode frequency is equal; these modes are the modes
of class II. Employing the stability conditions in (72) and (73), it is
found that the degenerate mode (2,1) and (3,1) are stable.

Similarly, it can be proven that the degenerate mode (2,3) and (3,3)
are also stable; the other two degenerate modes are unstable since the
stability conditions are not satisfied.

From (74) the mode amplitude of (2,1) and (3;1) is given as

By = Kgq = —2 -2 /6 - 4.89898

For the mode (2,3) and (3,3) its amplitude is exactly the same,
The theoretical spatial variation of the normalised voltage Xy, of

the stable single mode (1,1) can be written using (53) as

= A i 1
[Xij] Pi95pRn sim (g T+ 9

¥ 1
2/3  2/3  2/3 2/3
- 1 i 1 i
= s q .
|Xij, 2/3 273 2/3 2/3 4 /3 sin (0,98058 T + ¢ )
1 4 1 1
23 2/3  2/3 2/f3

=[2]sin (0.98058 T +h,,)

for L = 54 mH, and the same for I = 82 mH but in this case mll = 0.870388,

and the phase ¢ll is arbitrary.
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For mode (1,3),x,. similarly can be written as

i]
2 -2 -2 2
= 2 -2 =2 2 sin (1.4142 1 + ¢l3)
2 -2 ~2 2

for both the two values of the inductance. The phase ¢l3 is arbitrary.
Similarly the structural solution of the nonresonant double mode

(1,2) and (1,4), is given by (II.2) as

1.6527 0.6846 -0.6846 -1.6527

[xij] = | 1.6527 0.6846 ~0.6846 -1.6527 | sin (1.1250 T + ¢ ,)
1.6527 0.6846 ~0.6846 -1.6527
0.6846  -1.6527 1.6527 ~0.6846

+| 0.6846  -1.6527 1.6527 -0.6846 | sin (1.6536 T + ¢, )
0.6846  ~-1.6527 1.6527 -0.6846

for L = 54 mH, and for L = 82 mH it is the same but with w12 = 1.0590,

= 1.6966. The two phases ¢12 and ¢. , are both arbitrary.

Wy 14

Now, we find the structural solution of the degenerate modes. The
first stable degenerate mode is (2,1) and (3,1). Substituting the mode
i = B 1 = = 4
amplitude AZl 31 and the angular frequency Woq Waq for L 54 mH,

into (67), the structural solution Can be written as

2.0( 240 2.0240°) 2.00240°) 2.0040°)

b%j] = |2.0040") 2.0040°) 2.0040°) 2.0040°)

©
2.0 (07 2.0 (0) 2.0 (0% 2.0 (0%)

Similarly, for the degenerate mode (2,3) and (3,3) it can be written as

sin 1.58771)



_29 =
2.0(120°) 2.0(-60%) 2.0(-60") 2.0(120°)
[xij1 = | 2.0(240°) 2.0(60°) 2.0(60°) 2.0(240°)| sin (1.88611)
2.0(0") 2.0(0") 2.0(0") 2.0(0%) J

if the inductance L = 82 mH, the angluar frequency Wy _ Wa3 = 1.9656.

To summarise the stability analysis of the tube structure under
investigation, we can say that the stable modes are

l.a Two single ordinary modes which are méde (1,1) and (1,3)

1.b One nonresonant double mode which is (1,2) and (1,4)

2 Two degenerate double modes which are (2,1) and (3,1); and

the second is (2,3) and (3,3).

But the other two degenerate modes (2,2) and (3,2); and (2,4) and

(3,4) are both unstable.

6.2 4 x 3 Tube Structure

For a tube structure similar to that of the previous example, but
with four oscillators in each ring and three rings, the mode frequencies
are given by Table 9. Applying the stability conditions to the system
modes, using Table 5.9, we conclude that the following modes are stable:

l.a Two single ordinary modes, which are mode (1,1) mode (3,1).
1l.b One nonresonant double mode, which is mode (1,2) and (3,3).
2. One degenerate double mode, which is mode (2,1) and (4,1)

The structural sclution of each mode of the above modes can be cal-
culated using the same procedures which have been used for the previous
examples.

7. Experimental Investigation of a Tube Oscillator System

In this section we briefly describe some results which have been
obtained using an electronic model for a tube oscillator system. The mode

has been initially developed by Davies (1977). It consists of sixteen
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oscillators arranged on four boards as seen in Fig. 2, such that the
coupling and the layout can easily be altered. The outputs of any
oscillator with its four adjacent oscillators in the structure can be
displayed by using the selector and the five sockets on the right which
are located at the upper part of the model. Also, the output of each
oscillator can be displayed directly from the corresponding socket which
lies on the right of the model and is marked by the oscillator's number.
The circuit diagram of each oscillator is shown in Fig. 3. It produces
the cubic nonlinear characteristic similar to the characteristic given by
Fig. 4.

The schematic diagram for any oscillator on the board (e.g. the
oscillator in position (i.j)), can be seen in Fig.5. From each oscillator
output branches two coupling circuits, one in the horizontal direction,
and the other in the vertical direction.

The above twelve oscillators are arranged in tube structure using
connecting wires as shown in Fig. 2. The tube system consists of four
rings, each comprising three oscillators, i.e. m = 3 and n = 4.

The circuit elements of each oscillator are exactly the same as in
the solved examples. Therefore, the coupling coefficient and the fre-

£

The cubic nonlinear conductance is constructed with an operational

quency scalar kf{fij =k m,j) have the same values as solved example.
amplifier. It includes a certaih amount of deviation from the theoretical
cubic one. We should notice that there are more than three order terms
included in the practical nonlinear characteristic. The average ampli-
tude of all uncoupled oscillators is employed as the theoretical mode
amplitude. This is reasonable because the coupled oscillator amplitude is
theoretically equal to the uncoupled amplitude of every .oscillator.. Thus,

the gscalar of amplitudes is given by kv = 4,5, i.e.

V.. = 4.5 x,
ij ij
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The inductors of all oscillators in the tube system were adjusted to

their minimum values 54 mH, and the output waveforms displayed on an

oscilloscope. The results are as shown below:

d.

Experimental value for the single mode (1,1) is

vy, = 9.6 sin (27.2300 t + ¢11)

where the phase ¢ll is arbitrary. The corresponding theore-
tical amplitude is 9.0V and the frequency is 2166 Hz as seen

in Table 8.

Experimental value for the single mode (1,3) is

le = 9.9 sin (2r.3250 t + ¢13)

where the phase ¢13 is arbitrary. The corresponding theoretical
amplitude is 9.0V and the frequency is 3124 Hz as indicated in
Table 8.

The nonresonant double mode (1,2) and (1,4), is described by

its amplitude and frequency components. The absolute theoretical
components of amplitudes in the standard space are 7.42 and 3.06
and the %heoretical frequency components are fl2' = 2485 Hz and
f14 = 3652. Practically, there was difficulty in separating the
two medes due to mode coupling. The waveform of the two modes is
shown in Fig. 6.

Experimental values for the degenerate mode (2,1) and (3,1) are:

V21 = 8.9 sin 27.3650 t ; and

V31 9.2 sin 27.3650 t

t

The corresponding theoretical amplitudes are 9.0V and the frequencies

are f = f21 = f3l = 3506 Hz

The other stable degenerate mode (2,3) and (3,3) is also measured
experimentally and found to be

V23 = 8.7 sin 27.4230 t ; and

Va3

8.9 sin 2m.4230 t



The corresponding theoretical amplitudes are 9.0V and the

frequencies are f = f23 = f33 = 4166 Hz.

All the above waveforms have been displayed on the screen of an
electronic oscilloscope with different amplitude and time scales. Using
the divisions on the screen and the time scaling, the mode frequencies
have been measured.

The output waveforms which are reproduced from oscillators 1,2,3
and 4 in one column of the structure are showﬁ by Fig. 7 and Fig. 8
respectively. Fig. 9 shows two waveforms of oscillators 1 and 5 which
gre in a boundary ring, while Fig. 10 shows the waveforms bf oscillators
3 and 7 which are in an inner ring of the structure.

The tolerances of all inductors are within 5% of the nominal values
and the tolerances of all capacitors are within 20% of the nominal values.
The experimental results of the mode frequenéies which are dependent on
such passive elements are satisfactory. But, the results of the mode
amplitudes do not agree so well with the theoretical results. This would
be due to the deviation of the volt-ampere characteristic of the nonlinearity
used in the experiments from the theoretical cubic nonlinearity. We ignored
the higher terms under the condition that they were small compared with 9,
and g3 in (1). If this fact has been taken into consi?eration, the ampli-
tude errors could have been reduced.

It should be mentioned that there is difficulty in observing some of
the multimode oscillations especially the nonresonant modes. This is perhaps
due to the fact that the mode frequencies are not separated wide enough to
be detected and hence mode coupling occurs. The mode coupling can be reduced

considerably by choosing the inductive elemtns of the electronic model with

higher Q-value.
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8. Conclusions

An analytical mode analysis for a tubular structure of coupled
non-linear oscillators has been presented in the paper. This model is
of particular relevance to small-intestinal electrical slow-wave activity
where entrainment or synchronisation is known to occur. In past studies,

a one-dimensional ladder structure has been considered, whereas it ig
known that the pacemaker activity of smooth muscle cells exists in both
transverse and longitudinal directions in gastro-intestinal tissue. For‘
both small and large-intestines a tubular model is clearly preferable.

The analysis presented gives a general solution method for a tube
comprising 'n' rings with 'm' oscillators per ring. The various possible
mode frequencies are first determined from the unperturbed linear systems
using two diagonalising matrices P and Q. The modes are then divided into
categories comprising single modes, non-resonant double modes and degenerate
modes. Stability criteria for each of these types of mode have been deter-
mined and shown to consist of terms which can be calculated using two
~general tables (Table 3 and 5). The method has been illustrated using 3 x 4
and 4 x 3 oscillator structures. In the 3 x 4 case two single modes are
shown to be stable, the lower frequency case giving in-phase conditions
throughout the tube. The higher frequency single mode has in-phase condi-
tions around the tube, and some anti-phase relationships along the tube.
Similarly, both components in the double non-resonant mode have in-phase
relationships around the periphary and some anti-phase conditions along the
axis of the tube. For the degenerate modes, one has in-phase conditions
along the axis and the other has anti-phase conditions. In each case there
is a phase shift of 120° per oscillator around the tube, but the latter
mode produces a zero amplitude 'line' along the model.

For the case of 4 oscillators per ring, one single mode gives all
in-phase relationships, while the other single mode produces complete anti-

phase patterns around the ring. The double nonresonant mode likewise
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produces a mixture of anti-phase relationships, while there is only one
degenerate mode. This mode gi&es 90° phase shift per oscillator around
the tube and in-phase conditions along the axis. Similar results have
been found for the 4 x 4 case.

It is evident that, in contrast to the linear case, only a small
number of the possible modes turn out to be stable in the non-linear case.
This is consistent with the observation that large models tend to exhibit%
only a small number of stable limit cycle conditions. Although the mode
analysis presented here determines mode stability, it should be noted
that this does not indicate the.relative ease with which different modes
can be excited. For example, regions of atraction studies performed by
simulation have indicated that some modes can be significantly harder to
excite than others (Linkens, 1979). The number of modes observable in
a model of this type is also affected by the type of coupling between
oscillators. In the analysis presented here inductive coupling has been
considered, while capacitive coupling gives dual effects as shown by
Endo and Mori (1976a) for a ladder structure. The addition of resis-
tive coupling ténds to reduce the number of modes present unless there
are delays present in the coupling pathways also (Linkens and Kitney, 1981) .
A further effect on the number of modes present is the degree of non-
linearity in unit oscillatprs. Regions of atraction studies (Linkens,
1979) and simulation studies have, however, tended to show that these
effects are not major. On the other hand, large assymmetries in the basic
waveform may contribute a large effect on the number of possible stable
modes.

The experimental results in this paper demonstrate that good
prediction of mode frequencies, amplitudes and stability can be obtained

from the theory using this matrix Kryloff and Bogoliouboff method. Some

if the modes shown by calculation to be stable would be very difficult



to observe via straight simulation studies without prior knowledge

of the mode conditions of particular interest are the double degenerate
modes which give a phase shift not equal to O or 1 and which gives the
appearance of a progressive wave-~pattern. This is relevant in intestinal
modelling where progressing phase shifts are normal and have been inter-
preted as entrainment at non-zero phase shift of a chain of oscillators
which an intrinsic frequency gradient. The degenerate modes demonstrate |
an apparently programming phase shift without an intrinsic frequency
gradient.

The analysis has considered only single and double modes which cover
all conditions in the illustrative examples. For larger models, higher
order modes could be feasible, but the extension to the analysis would be
involved. It has, in fact, been demonstrated for the ladder structure
that triple and higher order modes are not stable (Endo and Mori, 1976a).
Another extension to this work is the consideration of a tubular struc-
ture of 5th power wan der Pol oscillators which has been hypothesised as
a sutiable model for large-intestinal activity where periods of electrical
silence appear to exist. The stability analysis in this case is considerably

more involved, and will be presented in a later paper.
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APPENDIX I

Calculation of the parameter Wmn(i,j,k,l)

The parameter Tmn(i,j,k,l) can be calculated using equation (45) by
evaluation of ?m(i:k) and Qh(j,l), to calculate Wm(i,k) as in (46a), the

2
element pai of the matrix P is given by (19) hence p.. can be written as

follows: ‘
|
2 1 4 -
P, =—|1+E, cos —E—Eii—i)l (T 1)
ai m i m
if m is even, Ei is defined as
m
o, for i=1, 5—+ !;
; ‘ m
Ei = 1, for 1=2,:3; vaisy > (I.2)

-1, for i= §-+ 2, vo., m-1, m

2
Similarly, pak is obtained by permuting the variable iwithk in (I.l) and
(1.2)

But if m isvodd, Ei is defined as

(
o, for i=1
. m+1
Ei = L, for i=2,3, ..., = (L.3)
+
-1, for i = EEE-, veey, -1, m
. _ dra(i-1)
Defining Bi = Ei cos - (I.4)

2
Pk and Bk are cobtained by permuting the variable i with k. Then

Wm can be written as

Similarly,

1 m
¥k =Sy ) L+ By (L + )
m a=l
1 m
== } +B +B +B B (1.5)

m =1
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m m m
Calculating z Bi ’ Z Bk andr X Bi Bk in eqguation (I.5) using different
a=1 a=1 =1
mathematical deductions, the value of Wm is determined. Thus, for an even m,
we have five values for ?m (i,k) which correspond to the following five
groups of points in the space (i,k) using equations (I.2), (I.4) and

(I.5) :

a. for the points (i,k) which satisfy

(i,k) = (s,s), (s+ %,s + 1'23)'(5, §+ 2-s) or (s+ ? , m+2-g) ‘
m m
= ese gy T} — +
where s 2.3y 5 s # 2 1
v (i,k) =2 I.6a)
m 2m $od

These points represent subspace A, so the value of Wm corresponding to such

points can be denoted as {Wm)A-

b. for the points (i,k) which satisfy

. m m
(1,k) = (s,mt2-s),(s,s+ 3) , (s+ 3, §+ 2-5)
or (s + ?—, s)
m
where s = 2,3, ..., 5 i s #F—+1
1
Ilk == 2 . "

\Pm(l ) i (‘}:m)B (I.6Db)

These points represent subspace B.

c. for the points (i,k) which satisfy

. m m 3m 3m
= (— + — + — + == +
(i,k) (4 13 3 1) or ( T 1, - )

= (Wm)c (I.6c)

g

L (i,k) =

These two points represent subspace C.

d. for the points (i,k) which satisfy

. m 3m 3m m
= —_— e 2o
(i,k) (4 # i€ 7 + 1) or ( 2 i 2 1)

only for the case when m is a multiple of four

wm(i,k) =0 = (wm)D (I.6d)

These two points represent subspace D.

e. for any peint (i,k) not belonging to subspaces A,B,C or D
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B+

v o(i,k) =—= (¥) (I.6e)
m m

From the above five cases, it is clear that any point in the space
(i,k) which contains mxm points should belong either to A,B,C,D or E and

; ; . ; i
the corresponding value of Wm(l,k) is either {Wm)A, {Wm)B, (Wm)c, (Pm)D

or (‘i’m)E respectively.

For the case that m is an odd number, we have the following three
values for ‘%{i,k) which correspond to the different groups of points in
the space (i,k):
a'. For the points, which satisfy
(i,k) = (s,s)
where s = 2,3, ..., m
¥ (i,k) = (1.7a)
w o 2m - 08
These points represent subspace A', so the value of Wm corresponding
to such points can be denoted as (Wm)A,.
b'. For the points, which satisfy
(1,k) = (s,h-s+2)
where s = 2,3, ..., n
Y o(i,k) = 1. (¥ ) {1 .7D)
m d 2m m B' *
These points represent subspace B'.
c'. For any point (i,k), not belonging to subspaces A' nor B'
il
i .k = —_— =
?m(l, ) % {Wm)c, (I.7¢)
Such points represent subspace C'.
Thus, we have only three different values of Wm(i,k) if the number of
oscillators in each ring is an odd number.
Now, to calculate the different values of Wn(j,k) which are given by

the elements of the matrix Q (I.2), we use the same deduction as for Wm

and put



2 1
qu = H‘[l + Fj cos

where Fi is defined as
[o, for § = 1

J kl, for § # 1

Similarly, 91 is obtained by permuting the variable j with 1
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(2b-1) (j-1)m ]
n

Defining
8%, = P ooE (2b-1) (§-1)m
] 3 n
(2b-1) (1-1)7
* = F
B 1 X o n

Then, Wn can be written as

n

i = ml_“.. fal
¥y (3,1) = YL+ B¥ ) (1 + 5%))

2
n b=1

1

\ n
o e
- l_§_ *.+‘k+*l *
3 bzl (1 # B*, + %) + 8%, 6%)
Since "
n n
I g%, = 7 7, cos {220 G-1) (2b-1) (1-1)m
b=1 J p=1 4 # ) n

n
=3 for j,1) = (g,s)

where s = 2,3, ...,

or,
n i

= “E'fGI(j,l) = (g,

where s = 2,3,

or, =0 for all points

of points.

0y & g—+ 1

n-s + 2)

(I.8)

(r.9)

(T .10)

(r.11)

(J,1) not belonging to both the above two groups

(I.12)
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If the first group of points (j,l) is called subspace A*, the second
as subspace B* and the last as C*, and substitute the values given by
(r.12) into (r.1ll), the following three values of Wn(j,l) (which correspond
to the different groups of points in the space (j,l)), are given as

a. For the points (j,k) which are represented by A%

. 1 n 1 3n 3 .
Ll‘n(:l,l) == (n + 5—) =S 5 5 Bagm (I.134)
n n |
Thus, such value can be denoted as (wn}A*'
b. For the points (j,k) which are represented by B¥*
1 n 1
\.}J .'l o —_— - = — = .
n(] ) n2 (n 2} 5% (wn)B* (I.13b)
¢. For the points (j,k) which are represented by C¥
% (I.13c)

1yn(j’l) T h T (wn)c*
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The Jacobian elements for the case of the nonresonant double mode,

It is assumed that any two arbitrary modes (io,jo} and (ro,so) are
nonresonant double modes, i.e. the two oscillations are excited simul-

taneously and the ratio between their frequencies is an irrational number,

so

. i U #0; U, =0

iojo roso ij
for i=1,2, ..., m ; J=1,2, ..., n

(i,3) # (L ,3), (x ,s) ; (1L ,3) # (xr_,s) (II.1)

o "o o o R S o ©
Since the tubular structure-: is symmetrical the amplitudes Ui 45 and
o
U must be equal (Utkin, 1959).
roso

Using the above conditions of amplitudes the mode X1 can be written

as
= p. . A LT+ + A si + I1.2

X1 pkloquo iojo Sln(miojoT ¢iojo) pkroqlso roso ln(wrosoT ¢roso) ( )

Substituting the amplitude condition (II.1l) into (44), to obtain the

stationary values, then nij from (36) for (i.k) = (io,jo) gives
(1 ,3) = é-w (i ,3 ,xr ,s)U + E-T N T O 2 = 3 (II.3a)
Ni030' 0" 0 2 "mn e 0" e "xess T 2 mn e e ey iojo e
and for (i.j) = (r ,s )
o ©
3 a8 ..
1. (r )8 ) ==¥ (r ,s ,xr ,3)U + =Y (r ,s ,1 ,j)U, . =3 (II.3b)
icjo o o© 4 mn o O ©O O roso 2 mn o o o "o iojo

when the two mode amplitudes U, ., and U are equal, then
iojo roso

4

U U =
ok i ,9 i ] + 2V i ]
iojo roso ‘?mn(lO 1 lo'jo) mn(lo'jo'ro'so)

4

(IT.4)

r ,s ,r ,s + 2V r ,s ,i ,3)
Wmn( ol Sl o) mn{ o' s 0 0



Yy (i :j li rj ) =Y
mm © "o o 0O mn

(i rj 'X 45 )
O (o] (o]

Il

fi

(r ,8 ,x ,s8 )
o o o o

li

W (r ,s ,1 rj )
o mn (@] (@] (@] o

= i,3,1 .30, |
E[i lzlymn(l J lo'jo) ioje

for (4,497 = k.1

(k,1) from (50b)

(i 4,150,

= b ¥ .
mn iojo

(r ,s ,k, 1)U
mn o O Yoso

p 8 g
=3y (1 r ;8 )UO
mn ot e TS By

Applying the amplitude condition (II.1l), the Jacobi's matrix of (50a)

OCCJ

=

for (i1,3) = (io’jo)

I

1]
—

for (d.73) (r

for allother i,j
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APPENDIX IIT

The averaged equations of the system when considering the

degenerate modes

Ignoring the harmonics in the quasi-harmonic approximation when

! ;o g 2 , , ) N
expanding sin eiljl and sin eiljl cos eiljl in the higher power texrms,

and putting ¢ e.p = - ¢iljl) for simplicity, then the equivalent

ing2 ttr

; ; 3
linearised Xab can be written as

2 _B ? ? 33 a2
= g P
ab 4 k=1 1=1 ak bl k1l "kl
m 1©n m n
3 2 2 2
+= 5y § 1 ) p,9.,P _q -BA.Y
2 kel 121 rel s=1 ak bl Tar "bs kl “rs
1
* Koo TEY . FEK 4 P q. ¥
131 ak
17117 271292 3 &y 5y Tak bl Tkl
(krl) 7‘4 (rrs) H (I:S) ?é (llrjl)l(lzrjz)
with
3 . 3 Bi292
K. ==K, p . ¢ .. + =K.
1 273 Tail "bjl 4 3 Ailjlcos¢
3 3 Ailjl
= — K . T
Ky =25 Pain Tyy0 F 753 B, 5320054

= A, L. A .. COS ITT.
3 = Pai1 Fn31Pai2%52Ri191P5292 908 ¢ (L1114
In this case hij of (30) is counted and can be indicated in a lineax
combination as in (35). The necessary term in hij is only yjj for the ordi-
nary modes, while those for degenerate modes are yij and its degenerate pair
term because the two components of a degenerate mode have the same frequency w.

Hence, the equivalent linearised equations, which are given by (38)
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should be distingquished as two cases:
a. for the case of nondegenérate modes in which no two mode frequencies

are equal

hij = nij(l,j) Yis
- ' 6 (T 5
(l:]) :Ié (llrjl)r (12132} .11_.[._.)
where
m n
3 ¢ . 2
neo(i,3) =n,. == ] ) ¥ (i,k1A
ij ij 2 kel 1=l mn kl
: S - B
3 L a2 i A
- = + : a
7 g o3 BIB s + 305 o By yyrPyayz 98 ¥
L g =13 m n
11 “2°2 2 2
a _ Y Ve a.p.a.p ., q,. (ITI.3)
(53 a=l beq 2+ BRI Tai,BI,"al; Bl
From IXII.2, the linearised equation (38)becomes
vol, v, =ep, -
Yig ¥ 05 ¥4 7 850 73R4 Yy
. 3 ] : L] 2 ’ \
(i,3) # (llpjl}, (12,32) (ITI.4)
The averaged equations for nondegenerate modes are
m n
To= U L i, .k, Y0 |+ i,j,i9)0 ITI.5
Uij £ ljl b z Z \Pm(lr]i 1) Kl ‘ﬁ‘ymn(l 3 eisg) l]| ( a)
k=1 1=1
v = i, . : III.5b
¢ij 0, (i,3) # (1, Jl), (12,32) ( )
B. for the case of degenerate modes where the two modes (il,jl), (12j2)
are of equal frequencies
= i i e i ] III.6
Bipgr = Nypgr (FLe3D¥ia41 F 05041 5035) Y040 ( a)
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( +n s (izrj )y

B, . = g i, 4y ' g
1292 T Mi2gp 41731014 252 2’ Y5242 (ITT.6b)
with

3 m
Nyp51%4973y) = M5941 T 3 Z

3 . 3 . L2 (III.7a)
2 Yon G138 0308050~ 7 Yty 3 i 308500 k
iljl 2,72 2 kel 1=1 (k,1) L
3% (.3 .13 cos ¢ a A (TII.7b)
3 iy Egrdy 1131 “i292 s
”1232(11’31} = ﬂiljl(lzsz) (III.7¢)
m n
3 2
Mymuonlisd) =m,._ .. == ) ) ¥ (i_,3. .,k,1)A"
i2jz2 2 -2 1242 2 k=] 1= MmO 2772 kl
- é—w g M . e - =Y (i_,d. 1.5 )z:\;2 (IT1.74)
Z “mn 2792772792 84092 T 7 Tan a2 13 By i

Substituting (III.6) into the equivalent linearised equation (38),

it becomes

ce, 2 .1
i _ - i
Yiqteyg¥s = BV §£[}n. nizjz(ll,jl)}yiljl+{

+ + 2 . W
ol i131 N52492 niljl(lzijz)yiEjZ}J



1 V2-2a v D= VPEE /5 v 2 + /_Eh

2 Ve+a Y 2+(3- /2)u Y 2+3a /2-+(3+ V2)a
/S ——— e T |

3 /2+a, 2+ (3- /2a) Y 2+30 /;(3+ V2) o

Table 1 Angular frequencies Mij of the tube oscillator system

with m=3 and n=4.

] il 2 3
i
1 Y2-2 ¢ 2-a V2+a
2 . V2 V2+a V2+3a
3 V242 V2+3a V2+50,
4 V2 Y2+a V2+3a

Table 2 Angular frequencies m_j of the tube oscillator system
i

with m=4 and n=3



(i,k) v (1K) (3,1) v (3,1) v (1,3,k,1)

A & & % Zmn

A 2 " b s

A %E C* ;1; E"%ﬁ

D 0 AX B*, 0% %ﬁ, %ﬁ’ % 0

; T B* o 5o

: - c* . T3
Table 3 Determination of the value vmn(i,j,k,l) when

the number of oscillators m in each

the struclure is an even number

ring of
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B! e A % i
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o % o7 § Zmn
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C 1 C* ES L

m n mn
Table 2 Determination of the value ¢ when the

number of oscillators in each

of the structure m is an odd number

ring
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J
1 2 3 4
i
i 2.16582 2.48487 3:12359 3:65226
2 3.50567 3.71129 4.16605 4.57582
3 3.50567 371129 4.16605 4.57582

Table 8 Mode frequencies fij of the oscillator system with

L = 54 mH (fij is calculated on KHz)

3
1 2 3
E
L 2.46193 2.58792 3.57595
2 3.12360 3.57595 4,34148
3 3.9%718 4.34148 4.99095
4 3.12360 3.57595 4.34148

Table 9 Mode

T =

frequencies f, .
1]

54 mH (in KHz)

of the oscillator system with
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Fig. 5 Schematic diagram for oscillator located in position

(i,j) on the electronic board of oscillators




Fig. ¢ Nonresonant double mode in mutual inductive tube

oscillator system




Fig. . 7 Output waveforms of oscillators 1 and 2 in the

coupled tube oscillator model

. e |

Fig. 8 - Output waveforms of oscillators 3 and 4 in the

coupled tube oscillator system




Fig. 9 Output waveforms of oscillators 1 and 5 which lie in

a boundary ring of the structure |

Fig. 10 Waveforms of oscillators 3 and 7 which lie in an

inner ring of the tubular structure




