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Abstract

Contreoller design for continuous and discrete multivariable systems
whose models are unknown or highly complex are frequently based upon the
use of a simple, approximate and, very often, rough-and-ready model. This
baper continues the theme of its Ffirst part(l) by quantifying the degree
of uncertainty to be expected in multivariable feedback design studies due
to observed differences in plant and model open-loop transient behaviour.
Frequency domain design techniques are extended to quantify this uncertainty
such that closed-loop stability and tracking of step demands is guaranteed.
Functional analytic methods in partially ordered Banach space are then used
to provide easily computed graphical estimates of the error involved in
prediction of closed-loop transient performance. A detailed model of plant
dynamics is not needed at any point in the design, all calculations being
based upon graphical analyses of plant step response data deduced from plant

trials or complex model simulations.



Introduction

This paper aims to continue the theme introduced in its companion
of providing a theoretical framework within which non-adaptive control
systems design for uncertain dynamic systems can be achieved using an
approximate plant model of desired simplicity. Approximate models of
engineering plant are a fact of life as, although a detailed (and usually
high order) linear model may be agood approximation to observed plant
dynamics, it never matches the (usually high order) plant exactly. In fact),
even if a high order model is a good fit, there are many conceptual,
computational and design advantages(l) of using a low order, simple struc-
ture approximate model during the design stage even if the chosen model is
rather crude or 'rough-and-ready' (see, for example, refs. (1)-(4)). If
a simple model is used however, it is of vital practical importance to take

account of the ocbserved differences between plant and model open-loop

responses during the design stage to ensure that the stability and acceptable

performance of the model in the presence of the controller guarantees the
stability and acceptable performance of the real plant when the control

scheme is implemented. This problem is the subject of this paper which

. . . . 1 . .
aims to generalize the results of its companlon( ) to cope with multivariable

systems. The development follows closely that of ref. (1) but reguires a
more sophisticated mathematical approach and introduces new problems and
possibilities of an essentially multivariable flavour. The graphical
interpretation of the results is emphasized, proofs being relegated in the
main to the appendices.

The paper logically divides into several sections. The frequency
domain design technique is described in section 2 together with its inter-
pretation in terms of 'smudging' of inverse Nyquist array(5_7) plots.

Stability assessment based on simulation data alone is described in

Section 3 and graphical bounds on deterioration in predicted transient



performance are derived. 1In Section 4, the extension of the ideas to
multivariable sampled-data plant is indicated.

Frequency Domain Design based on Approximate Models

Consider an m-output/g¢-input, strictly proper, linear system G with
output measurements generated from an m-input/m-output proper linear system
F and the problem of the design of an m-input/f-output proper linear forW@rd
path controller K to ensure the stability and acceptable transient perfor-
mance of the feedback system of Fig. 1(a). B2ll elements are assumed con-
tinuous and linear, F is known, K is to be designed and G is either unknown
or is regarded as unnecessarily or inconveniently complex for the design
exercise under consideration. Tt is supposed however that, for each pair
of indices (i,j), the response Yij(t) from zero initial conditions of the
ith output to a unit step in the jth input has been found from plant trials
or model simulations. It is convenient to define the plant 'step-response

matrix' Y (t) as

¥(r) = (1)

Let GA be an approximate model of G and suppose that the step response
matrix YA(t) of GA has been obtained by simulation. The observed open-loop

mismatch between plant and model is described by the mx ! 'error matrix'

A (1)

E(t) () ,...,8" (t)] (2)

Y(t) - v, (t) = [E
with columns E(J)(t), 1 <3j < 4. The error is not necessarily assumed to

be small! If the controller K is designed on the basis of the approximate
model GA to ensure the stability of the approximating feedback scheme of
Fig. 1(b) then we consider the problem of how to use the graphical

properties of E(t) to ensure that the resultant design guarantees the

stability of the real configuration of Fig. 1(a).



As in ref (1) G and GA are assumed to be linear convolution mappings

of the form
t

P
y(t) = [ H(t')u(t-t')at', y, () = [ H, (t)u, (t-t")dt" (3)
o o
where, for all(i,j), Hij(t) and (HA(t))ij have well-defined Laplace trans-

forms and the modelling error G - GA is stable in the sense that

jo ||ty - H(0)]] at <+ (4) &
(Note: If.l[m é max E I(')ij‘ is the matrix norm induced by the vector
i
norm ||.||m g max [(.)i[ in the linear vector space c™ ot complex mxl column
i
vectors) .

Finally, note that
t t
v(t) = [ H(tYat' , Y, () = [ B, (that' (5)
] o]

and that the signal Yy - YA is stable due to equation (4).

Frequency Domain Stability Theory

If the designed controller K ensures the input/output stability of the
configuration of Fig. 1(b) then(B) we must have

inf |det(I_ + G(s)K(s)F(s))| > o (6)
Res>o m A

Moreover, K will also stabilize the configuration of Fig. 1(a) if

inf |det(I_ + G(s)K(s)F(s))] > O (7)
Res>o n

or equivalently, using the identity(G)

+ M M) (8)

+ = det
det(I + MM)) = det (I, My

and L xm matrix M_, if the relation

valid for any mxf{ matrix Ml 5

inf |det(I, + K(s)F(s)G(s))| > o (9)
!
Res>o
holds.
Following the development in ref. (1) we can combine (6) and (9)

using the identity



= + -
det(I, + KFG) = det(I + KFG, + KF(G-G,))

-1
det(IE + KFGA)det(I2 + (I + KFGA) KF(G—GA))

L

- -1
= det(Im + GAKF)det(IK + (IE + KFGA) KF(G-GA)) (10)

to replace (9) by the sufficient condition

-1

inf ldet(zE + (I, + KFG,) KF(G—GA))l > 0 (11)

Res>o

)

Lo : -1
or, noting that the stability assumptions guarantee that (I+KFGA} KF(G_GA)

is analytic and bounded in Re s > o, by the equivalent relation

inf |det(I, + (I. + KFG )_lKF(G—G )| > o (1.2]
e 2 £ A A

where D is the usual Nyquist 'infinite' semi-circle in the closed-right-
half complex plane. (Note: Although these relations bear a superficial
similarity to those seen in the single-input/single-output case, note
that the ordering of the terms in (11) and (12) is important as matrices,
in general, do not commute) .

Using (12) the following stability result is easily proven:

Lemma 1: If the controller K stabilizes the approximate model G_ in the
e — A
configuration of Fig. 1(b), then it will also stabilize the real uncertain
plant G in the configuration of Fig. 1l(a) if

(a) the composite system GKF is both controllable and observable, and

(b) A g sup r( (I +KFG )-lKF(G—G J) <1 (13)
o ity 2 A A

(Note: the spectral radius r(M) of an %x% matrix M with eigenvalues

mom (9), (10)

prMyrenym, is defined by

r(M) = max Imi| ) (14)
i

Proof: Condition (a) ensures that asymptotic stability is implied by

input/output stability whilst (b) ensures that (12) holds. More precisely,

il 1
if (I + KFGA) KF(G—GA) has eignevalues nys M /M, , then, for all s € D,

2"



- B
-1
|@et(z + (I, + KFG,) "KF(G-G,) |
= [ #ng) e +ny)|
i (l "|T]ll)(l - lnzl) v (l -Ingf)
> @1 -2a0%s o0 (15)
= o}

The computation of Ao bPresents a problem as it depends upon the detailed
frequency domain structure of the modelling error G - GA whereas, by assuﬁp—

tion, we only have available (or only wish to use) the time-domain data E(t).

To circumvent this problem we introduce the partial ordering(g'lo) n the
space of nlxn2 real matrices defined by the relation
A <B iff A,, < B .
- TELIA P (e

and define the 'absolute value' of a complex nlxn2 matrix A to be the nlxn

real matrix

,All| ‘Alng
| 2] lp £ (17)
‘Anllt 5 & i lAnln2|

The following 'norm-like' properties of the absolute value are easily proven:
Fact 1: ||a]| > o0 (18)
P

Fact 2: If ¢ is any complex number, then

[leal| = |a|.]|2]] (19)
P P
Fact 3:  ||a+ 8[| < [|a]| + [|5]] (20)
P P P
Fact 4:  |[aB[| < [[a]| . [|B]] 121
P P P

We will also need the following simple spectral radius results for square
matrices. The proofs are elementary and can be based on theorem 2.4.9 in

reference (9).

Fact 5: O<A<B r(ad < r(B) (22)
Fact 6: r(a) < r(||a]] ) (23)
e L

Finally we will need the following matrix measure of the 'magnitude' of



2.

an nlxn2 continuous matrix function of time defined by

t
F(t) =F, + [ F (t)ar’ (24)
o
(regarded as the step response matrix of a proper n2—input/nl—output
system) with FO constant and the elements of Fl(t) smooth enough to ensure
that the elements of E(t) have local maxima and minima at a finite number

of points only on any finite subinterval of [O, + W[. The measure used

is the nlxn2 matrix (c.f. (15) of ref.(l))
P~ A
NL(F) = [ ]F ||, j I|Fl(t)HPdt ; T8 (25)

which can be written in the element form

(NT(Fll) NT( ln2)
B e s .
NT(F) = ) (26)
NT{Fn l) NT(Fnln2)

s

where NT(Fij) is the scalar measure of Fij introduced in Proposition 1 of

reference 1. Nate(l) that Ni(g} can hence be deduced by graphical analysis
of the time-variation of the elements of E(t) without the need to compute
FO or Fl(t) explicitly.

The importance of Ni is expressed by the following lemma which follows

trivially from Lemma 2 in reference (1) by considering elements.

Lemma 2: If the plant modelling error is stable in the sense of (4), then

| lezy - GA(S)HP iNz(E) VRe s> o (27)

A Graphical Stability Criterion for Uncertain Systems

The following result is a generalization of theorem 1 in reference (1).



Theorem 1: If the controller K stabilizes the approximate model GA in the
configuration of Fig. 1(b), then it will also stabilize the real uncertain
plant in the configuration of Fig. 1(a) if,
(a) The plant modelling error is stable in the sense of
equation (4),
(b) the composite system GKF is both controllable and
observable and
(c) the inequality
.

-1 P
A, =sup x(]] (I,+ KFG)) KF | |P N (E)) < 1 (28)
s&eD

The result is proved below but it is of interest to compare this result
with the single-variable equivalent described by theorem 1 of reference

(1). Conditions (a) and (b) are identical but condition (c¢) does not have,
in general, a Nyquist-like interpretation unless(l} m=4%4 =1 or K,F and

GA are diagonal (see Corollary 1.2 below). It does have the common gquality,
however, that it enables the stability of the uncertain system G to be
assessed in terms of the known dynamics of K, F and GA and the computable
measure Nz(E} of plant/model mismatch. It is probably best checked in
general in a point-wise frequency sense by evaluation of r(l[(IQ

P ’
Nw(E)) at a selected number of frequency points covering the bandwidth

=
+KFG, ) KFIIp

of interest.

Bearing in mind that repetitive eigenvalue (and hence spectral radius)
calculations can be time-consuming, the following relaxed versions of
theorem 1 are stated. 1In general, they generate distinct stability condi-

tions unless m = § = 1.

Corollary 1.1: The result of theorem 1 remains valid if (28) is replaced

by any one of the following computable conditions,

(1) r(supf{|| (I
SED

-1 2
o YKEG,) KFIIPNm(E)}) <1 (29)



g -
(i1) r({zzgl|(I£+KFGA)_1KFIIP}N£{E)) % i (30)
(iii) :1515 Gz(, [ (IE+KFGA)_1KF’ [PNE)(E)) <1 (31)
(iv) o ll(l'(IR+KFGA)_1KF|IPNi(E))llm % 1 (32)
(v) A" S ::g H(H(IR+KFGA)_1KF!’P)Hm.HI\i(E)l’m <1 (33) s

(Notes: In (i) and (ii) the supremum is interpreted as a least upper

1

bound in terms of the partial ordering. 1In (iii), the singular values( L

Ul 5_02 B sas E-UR of a complex #x% matrix M are the ordered positive square
* *

roots of the eigenvalues of M M where M is the conjugate transpose of M).

Proof: (i) and (ii) follows from fact 5 and the ordering, for any s € D,

oz |la, + K(S)F(S)GA(S))—lK(s)F(S)|IP N (E)

= P
< sup {[|(IQ+KFGA) KFI!P Nw(E)}
seD
=1 b
< sup |[[(1, + KFG) "kF||_} N (E) (34)
- 2 A P o
s€D
g e g JGT) ;
Condition (iii) follows from the observation that all eigenvalues of a

£x8 matrix M are bounded in modulus by its largest singular value. Conditions
(iv) and (v) follow from the related fact that the eigenvalues of a matrix

are also bounded in modulus by any induced norm.

The above alternative expositions of theorem 1 can lead to more convenient
graphical representations of the stability criterion. For example, the
following special case represents a generalization of both theorem 1 of
reference (1) to the multivariable case and of Proposiition 6 in reference

4 and is proved by replacing (28) by (32).




Corollary 1.2: The conclusions of theorem 1 remain valid if m = £ and

GA' K and F are all diagonal (non-interacting systems) and (28) is replaced

by the condition

K (O E, (80 1

1+ Kkk(s)Fkk(s) (GA(s})kk

)
N (E_.)
=1 ©

S g ,Vseo ., 1<x<m @5

In particular, if (GA)kk' F and Kkk have no zeros on D, (35) can be

kk

written as

m
=, =1,
|1+ ((6,(s)) ()F,, (1) | > (6, (s)) | 'z N_(E

kxk kk kj)

/
gdk(s} \7 s€ D , 1<k <m (36)

4
The condition (35) is probably best checked( ) by splitting the

procedure. Firstly, the 'infinite' semi-circular component of D requires

that
i
lim sup IK (s)F (s)| < l<k<m (37)
T e Re v }
\

Res > o
whilst the imaginary axis component of D requires that the normal frequency
1 F 1+(G 1i
response locus of Kkk /{ A Kk kk kk} ies in the interior of the circle
of centre the origin and radius Rk’ 1 <k <m. Verification of (36) reduces

to verification of (37) and a graphical check that, for 1 < k < m, the

'confidence band' generated by the inverse Nyquist locus of (G_)

A" kk kk kk
for s = iw(w > o) with superimosed ‘confidence circles' of centre
-1 , .
({_GA(S))kk kk{s)F (s)) and radius dk(s) at each frequency point does not

contain or touch the (-1,0) point of the complex plane. These ideas have

1,4)

been discussed in special cases previously and will not be expanded on

here except to note that they enable diagonal/non-interacting models of



2.

_lo_

multivariable plant to be used &g the basis of controller design provided

that the interaction effects observed in the time-domain are small enough

to produce confidence eircles that are not so large as to make (35) or
(36) invalid. This possibility has clear advantages in practice and has
loose connections with the Gershgorin-circle based method of the inverse

Nyquist array and dyadic expansion techniques(5—7)'

Proof of Theorem l: Condition (a) is required for the validity of lemma li

Conditions (b) and (c) imply conditions (a) and (b) of lemma 1 as, for
Res > o,

o 37|](I£ + K(S)F(S)GA(S))_lK(s)F{sJ(G(s)—GA(SD||P
]

| A

[|(12 + K(s)F(s)6, (s)) "k(s)F(s) ][, [|Gts) - G, ()],

< 1@, + x()F()6, () T(s)F(s) | o No(E) (38)

by Fact 4 and lemma 2. Facts 5 and 6 then indicate that, for Res > o,

-1
r((IE + KFGA) KF(G—GA))

5_r(|l(12 + KFGA)_l

KF (G-G,) | [P)
< r(||(x + xFG )_lKFfl N (®)) (39)
s £ A P o0

The proof is completed by noting that (28) clearly implies (13).

Discussion and Robustnes Analysis

A comparison of the above results with the single-input/single-output
theory(l) indicate a basic structural similarity with (a) the multivariable
case introducing many more possibilities both in choice of approximate model
and choice of stability criterion (see Corollary 1.1) and (b) a general
increase in mathematical complexity. Both of these observations, in the
authors opinion, merit regarding the multivariable case as a distinct field
of study possessing characteristics that cannot be found in scalar systems.
This will be further supported by the time-domain analysis in the next
section where non-commutation of multivariable convolution systems requires

a fundamental change in the analyses. It can be simply illustrated here by



= 11 7=
; (12) . , . .
noting that input/output transformations (with suitable safeguards).
can be used to simplify a design problem yet both II.I|P and r(l[.||P)

are not invariant under such transformations. It is possible therefore
to generatean infinity of stability criteria simply by choosing different
transformations. Unfortunately there are no explicit guidelines available
to simplify the choice of 'best' transformation.

Finally, we note that the design based on theorem 1 is inherently

(11,13)

a robust design in the sense that, if the plant G changes over a

period of time to the plant G with step response matrix Q, stability will
be retained provided that the change G - G is 'small enough'. This is
obvious from theorem 1 when it is noted that the spectral radius will only
change by a 'small amount' if the transient error E changes by a 'small
amount'. A computable measure of the size of the permissible change is
not easily obtained from this expression however. Suppose, for simplicity,

therefore that the more conservative conditions (33) holds. We can prove

the following result paralleling Proposition 2 of reference (1).

Proposition 1: If the conditions of theorem 1 hold with (33) replacing (28),

then the closed-loop system of Fig. 1l(a) will retain its stability if GKF is

both controllable and observable, G - G is stable and

1 - A"
O

sup*|(||(I+KFGA)—1KF!IP)|I
seD

(40)

P ~
[ (v -v|| <
[ee)
' m
Proof: The conditions of theorem 1 are satisfied as GKF is controllable
and observable by assumption, G - GA = (G-G) + (G- GA) is stable and (33)
holds with E replaced by ¥ - YA' More precisely, by considering elements,

P -~ - P
note that Nm(Y - YA) f_Nm(Y - Y) + Nm(E) and hence that

=1 P o~
sup [[([] @, + xeo) el [ [, + P2 - v 1],

seD




- 12 s
-1 P <
< sup| [ ([ @, + xee) x| | ][O E - 0]
s€D
+ HNz(E)Hm}
<1 (41)

by (40) and the definition of A;.

Time Domain Design Based on Approximate Models ‘

It is the purpose of this section to generalize the results of
section 3 of reference (1) and hence provide techniques for stability
assessment of uncertain multivariable dynamic systems based upon time-
domain data alone. The use of timé—démain data in stability assessment
is unusual but it may have a number of advantages over frequency domain
calculations, particularly in the multivariable case. For example, the
checking of the frequency domain stability condition (13) requires the
calculation of the inverse of the { x/ complex matrix I + KFGA at a large
number of frequency points. This is a feasible proposition even if § is
large but the corresponding time-domain result (see theorem 2 for example)
is simpler requiring only system simulations and one eigenvalue calculation.
A more important benefit of time-domain analysis is, however, the possibility
of providing bounds on the deterioration in predicted transient performance
to be expected due to the approximation used. The benefits of such bounds
have been illustrated in the scalar case(l) but there are several technical
problems here due to the non—commutationjionvolution systems that require

substantial modifications in the form and proof of the design results.

Mathematical Background

1)

The contraction mapping theorem was a basic tool in the scalar case
but for multivariable studies the extra degrees of freedom available merit
the use of a generalized contraction theorem that reflects the multi-input/
multi-output nature of the problem. The required mathematics is outlined

below.
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Let X be a Banach space (we will take X = L_(0,t) in the following
) d th
sections) and X be the d Cartesian product of X regarded as the
linear vector space of columns x = (xl,xzy---rxd)T of elements of X.
‘ d
The absolute value of x € X will be denoted (c.f. equation (17))

r 3
1%, ]|
=11, 4 | - e = (42)
1%, |
where ||.]| denotes the norm in X. If L is a bounded linear operator
d
mapping X into X 1, it can be represented as the operator y = Lx with
y, = Z L,.x, and L, , bounded, linear operators in X. The absolute value
1 3 1] J 1]
of L is defined to be
r 3
’lLll’f""HleI’
A ) 2
Hellp = . . (43)
REAY [z, q !
dll § ¥ & & dldz
where |[.l| is the operator norm induced by the vector norm in X. It is

easily shown that y = L u implies |ly|[P §_||L|]P ||u||P and that, if

[lv]]; < ] |u]|, for all u, then ][L]|p < M.

d 9
Let W be a mapping of X into itself, then( ) W is a global P-contraction

if there exists a real dxd matrix P > O with the property that r{(P) < 1 and,

for all x,y & Xd,

[weo -we ], < 2llx -yl W

The example of greatest relevance to this paper is an operator W of the
d ,
form x - Ix + x_ with xOEE X" and L bounded and linear. It is easily

verified that W satisfies (44) with P = IIL!|P and hence is a P-contraction




= IH =

i r(||L||P) < 1. Moreover, if (44) holds for any other P, it is easily
seen that ||L]|P < P and, using fact 5, that the condition r(Ilﬂ |P) < 1
is hence both necessary and sufficient for W to be a P-contraction.

We now state the natural generalization of the global version of
the contraction mapping theorem under partial ordering given in ref. 9.
(p. 433).

|

Lemma 3: Suppose that W is a global P-contraction in the (Banach) product

(k+1) (k)

d d
space X . Then, for any x{O)EE X , the sequence x = W(x Y 2 By

. ; : ; d
converges to the unique solution of the equation x = Wx in X . Moreover,

we have the error estimate

(l)|| < (1. - P)—lP ||X(l)_ X(O)IIP (45)

d

(Note: the proof of the result is given for X = R in ref.(9) but it carries
through with no change to an arbitrary Banach space. It can also be deduced

from section 12.1 of ref. (10)).

The following corollary follows by taking norms in Rd of (45).

Corollary: If ||P||m < 1, then

(1) 1=, (1) ()

max X b < ma &
% || k xk || 1- P o kXHXk xk

Time Domain Stability Theory: Output-based Formulation

Due to the noncommutation of multivariable convolution operators the

main result (Theorem 2) of reference (1) does not carry through to the

; . . 6,7 ;
multivariable case unless commutative controllers( :7,14) are designed.

6,7)

As commutative controls suffer from severe realizability difficulties
unless, for example, the plant has a degree of symmetry, this possibility

is not considered here. The nearest generalization of the scalar case
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appears to be the following result:

Theorem 2: Suppose that the controller K has been designed to stabilize
the approximate model GA in the feedback configuration of Fig. 1(b) and
that the mxm matrix function VA(t) is defined by, t > o, the convolution

A t

2 1 1 1
v (t) £ [ H (E-tHE (t)dt (47)

o {

where :

(1) HKF(t} is the &xm impulse response matrix of the composite

system KF and

(2) the mx{ matrix HE(t) has the form

_ (D) g
Hy(0) = (B, (), ()] (48)

th j '
where the j columns Héj)(t) is the response from zero initial

. - E
conditions of the proper system (I + GAKF) < to the j h column

E(J)(t} of the known error matrix E(t).

Then the controller K will stabilize the real uncertain system in the
configuration of Fig. 1l(a) if
(a) the modelling error is stable in the sense of (4),

(b) the composite system GKF is controllable and cbservable,

1

(c) Dboth of the systems (I + GAKF)— (G - GA)KF and (I+a KF)_l(G—GA)K

A
are input/output stable and

(d) if the following spectral inequality holds

POV (V) <1 (49)

Moreover, under these conditions, suppose also that
(1) the demand signal r is the response from zero initial conditions

of a mxm stable system HO to the step #(t) = a, t > o,
(o)

(ii) vy (t) is the response from zero initial conditions of an mxm

stable, proper system H. to the step §(t) = B8, t > o, and

1



= 36 =

(1iii) n(t) is the mxl vector defined by the convolution
E
_ —1 ] — ] 1
n(t) = [ B (et {H (tYo - H . (t')6ldt (50)
o o 1
where H and H are the impulse response matrices of KH and KFH
- KFHl o 1.
respectively. Then, for all t > o, the response y(t) of the real feedback
scheme Fig. 1l(a) from zero initial conditions to the demand r(t) satisfies
|
the bound
(1) .
ly.(8) =y, ()] <e.(t) , 1<3<m (51)
J J - ] -0
where
El(t)
= A P -1 P 1
gt} = = (1 - N (v,)) N (V) sup ||y )(E)—y(O)(t')llp
° o<t<t
€”(t) %
(52)
(1) . :
and y (t) = yA(t) + n(t) where yA(t) is the known response of Fig. 1l(b)

from zero initial conditions to the demand r.
Finally, (51) holds with e(t) replaced by Em(t) obtained from (52)
g P P
by replacing Nt(VA) by Nw(VA) and with e(t) replaced by Eu(t) obtained from

i P
(52) by replacing Nt(VA) by the matrix

e e o = v
. oM @l Vak) Mo WValim)
N tl—i(v y £ y 1m
t A (53)
N (tvy)y Y. ... N () N
uml(t) A1 umm(t) A" mm
where, for each pair of indices (i,7j), uij is some function satisfying

uij(t) > t, for all t > o.

The theorem is proved in Appendix 8 but despite its complex structure,

careful scrutiny indicates that, subject to the conditions (a) (c), both
stability and performance of the implemented feedback scheme can be

assessed in terms of quantities defined in terms of known data
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GA’K’F'E'HO and Hl. More precisely, stability calculations require the
evaluation of the matrix function VA(t), and an eigenvalue calculation
based on Nf(VA) to check (49). Xnowledge of E(t) and Ni(VA)(subject to
conditions (i) and (ii)) then enables the calculation of n(t) and e (t),
gm(t) or eu(t) from which the error bound (51) is obtained. The graphi-
cal interpretation of bounds such as (51) have been discussed in reference
(1) and will not be discussed here, BMote, however, that evaluation of

e (t) requires matrix inversion. This may not be a problem but, if it is,!

it can be avoided in the following special case.

Corollary 2.1: Under the conditions of theorem 2, suppose also that

]INPAVA)IIm < 1, then, defining Al(t) = |[Ni'“(vA)’lm for any p,
AL (E)
(1) i (L, ,,_ (o)
|yj(t) of (t) | < Ti';??)_o%’%*stlfy (e =y = e ]|
r L3 <m (54)

P P
Proof: From the definition, N 'U(V ) f_Nm(VA) and hence X

B e L, &8 g
. (¥ (t) t>o0

1
The result follows from (51) and (52) by bounding [}E(t)||m by the right-

hand-side of (54).

The application of the result as part of a design procedure paralleling
that outlined in reference (1) is a clear possibility provided that condi-
tions (a) - (d) can be satiéfied. Conditions (a) and (b) are required in
the scalar case and will not be discussed further here. Condition (d)
brovides a computable measure of whether or not the modelling error E is
small enough to allow stability prediction based on transient data only
and presents no problem in principle. There can be a major problem in
satisfying (c) in the multivariable case however as, even if K stabilizes

the approximate model GA and the error G—GA is stable, the systems
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. =1,
(I + GAKF) l(G—GA)K and (I + GAKF) (G - GA)KF could be unstable if
integral action is included in the controller. To illustrate this
suppose that m = ¢ = 2, F = I, and GA'K and G - GA are defined by the

transfer function matrices

1 i (0]
G (s) = —— I » K(s) =
A s+2 2 o 1+ & 4
S '
1 (0] 1
G(s) - G_(s) = — (55)
A s+2 Lo o

o . - . -1 .
then it is easily verified that (I + GAKF) (G - GA)K has transfer function

matrix
(12 - GA(S}K(S)F(S))_l(G(S) - GA(s)K(s)
(s+1)
- s (s+3)
0 0] (56)

which is clearly unstable due to the pole at s = o introduced by the inte-
grator in K. This probiem is avoided in the analysis of the next section
but at the expense of producing more conservative bounds on performance
degradation.

To complete this section, we made the following observations concerning
the application of the result:

Spectral Radius Evaluation: If m is large then (49) may be more conveniently

checked by evaluation of any upper bound © of r(Ni(VA)). If £ < 1, then

. \ ! A A P FS
(49) is clearly true. Obvious choices of r are r = |'¥n(VA)||m and r =
om(Nz{vA)), but there are many others that could be more convenient.

Choice of Hl: This operator plays the role of H in Theorem 2 of reference

(L). It can be used to decrease the uncertainty in the prediction of y by
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reducing £(t). The obvious choices are

(o)

(1) Hl = 0 yields y (t) = 0, and, when F = Ho' yvields q= Vﬁd,
i 1 Hl = F_%HO (1f F has a proper stable inverse) yields n = O
(1)
d =
and y ¥y and
(iidi) Hl = (I + GAKF)_ GAK and B = g yields y(o) = yA. This choice

probably produces the smallest prediction error as y(O) is the first guess

in a successive approximation scheme and yA is our best available estimate

of y. {

. , L ;
Choice of € and pu: This has been discussed elsewhere ). There is no

change in the multivariable case.

Restrictions due to HO: The result is only valid for demands r that are

the step responses of the proper ;table system HO. B HO = Im we obtain
standard step responses but the result also holds for inputs of the form,
say, r(t) =oa, o <t < T, and r(t) = 0, t > T by identifying H_ as the
mah E(E) =+ £t ~ BT

Time-Domain Stability Theory: Input-based Formulation

The problems associated with condition (¢) of theorem 2 can be
eliminated by focussing attention on the behaviour of the input u to the

plant G. The following result is proved in Appendix 9.

Theorem 3: Suppose that the controller K stabilizes the model GA in the

configuration of Fig. 1(b) and that

)

L (t)] (57)

_ (1)
Wa(t) = [W (e ,o.., W

where W(i)(t) is the response from zero initial conditions of the system

* (])(t). Then the controller K will stabilize

(I + KFGA)_ KF to the input E
the real uncertain system G in the configuration of Fig. 1l(a) if
(a) the modelling error is stable in the sense of (4),
(b) the composite system GKF is controllable and observable and

(c) the following inequality holds
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r(Ni(WA)) <1 (58)

Moreover, under these conditions, suppose also that

(o)

(1) u (t) is the response from zero initial conditions of
an xf stable, proper system H2 to the step alt) = B,t > o and
(ii) £(t) is the ¢xl vector defined by the convolution

e
E(t) = ~( [ W _(t-t') H_ (£')dt")s (59) |
o & H2

where HH (t) is the impulse response matrix of Hz. Then the input response
2

u(t) of the real feedback system of Fig. l(a) from zero initial conditions

to the demand r(t) satisfies the bound
(1)
u,

~

luj(t) - {8y | = sj(t) : 12328 (60)
where
El(t)
. P -1 P (1) (o),
elt) = = (I, -N_(W)) "N (W) sup |]u (£)-u'? (&) ]]
“ 2 t A t A o<t <t P
£y (8] (61)
and u(l}(t) = uA(t) + E(t)

(Note: As in theorem 2, €(t) can be replaced by Em(t) or Eu(t) in (6Q)

P P
by replacing Nt(WA) by N M (WA) given by (53). The details are ommitted

for brevity).

Comparing theorems 2 and 3 indicates that the difficult condition (¢)
of theorem 2 has vanished butthat theorem 3 provides bounds on the input
u rather than the output y. It is of course of value to have input estimates
to avoid excessive input magnitudes but output estimates are probably more
important in general. The input estimate can be converted into an output
estimate under certain conditions stated in the following corollary (proved

also in Appendix 9):




Corollary 3.1: With the conditions of theorem 3 suppose also that

G is stable. Then (60) can be replaced by the bounds, t > o,

' (1)
(1) P . P(E) max ||u'"’ (£ ]|
[y -y e[ <N () e(e) + N St 12
(62)
where y(l)(t) is the open-loop response of GA from zero initial conditions
to the input u(l)(t).

This bound is not expected to be as tight as (51) however, as it is deduced
from (61l) via norm inequalities

The interpretation of theorem 3 is similar to that of theorem 2 with

e and p as before and H2 playing the role of Hl. The two choices that
suggest themselves are:
(i) H2 = 0 when u(o)(t) = O and u(l)(t) = uA(t) i
(i) H2 = (I2 + KFGA)FlK Ho where HO is a stable proper system when
u(o)(t) = uA(t) if the demand r(t) is the response of HO from
zero initial conditions to the step input %(t) =g, t > o.
The first choice is the simpler but, as u(o)(t) is the first guess at u(t)

in the successive approximation scheme, (ii) probably provides a more
accurate estimate. In both cases, all required responses, WA' £ and € are
computed from known data with no need to use any available model of the
plant G.

Finally, we state the following simple alternative to (60) that avoids

the inversions required for E(t).

Corollary 3.2: Under the conditions of theorem 3, suppose also that

P ¥
HNm(WA)Hm < 1, then, defining X, (t) = | | {WA)[|m , for any u,
A ()
lu, (t) - ugl)(t)] f-i:_§P7E3 max {|u(l)(t') - u(o)(t')||
3 2 <t'<t n
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3.4 A Note on Robustness of the Design

The frequency domain result on robustness outlined in section 2.3

has the following time-domain analogue (see Appendix 10 for the proof) :

Proposition 2: If the conditions of theorem 3 hold with (58) replaced

P
by IlN (WA)ll < 1, then the closed-loop system of Fig. 1l(a) will remain
stable with G replaced by G if CGxF is controllable and observable, G-G
is stable and

B
1 - N W]
o A m (63)

P"’
|In cv-v) || <

: o =i
where zA is the step response matrix of (I + KFGA) KF

3.5 Stability and Measurement Nonlinearities

In reference (1) it was shown that the effect of the inclusicn of

measurement nonlinearities on stability can be assessed from simulation

data. The extension of these ideas to the multivariable case suffers again

from the noncommutation of multivariable convolution operators. It has not

been possible to see how theorem 2 can easily be generalized to the non-

linear case but the following analysis indicates that theorem 3 is capable

of generalization. Attention is focussed on the problem of stability

assessment only for the purposes of brevity.

Suppose that F is a nonsingular scalar mxm gain matrix used in the

approximating feedback scheme of Fig. 1(b) but that the real feedback scheme

takes the form of Fig. 2 where the memoryless nonlinearity N has the

structure

Niy) = Fy + N )+ n P (p (64)

(1)

where N is an m-vector valued nonlinearity of finite incremental gain

in the multivariable sense that, for 1 < j < m and all y, y'GE Rm,



e T
m
(1) (1, '
|Nj () - N Ay )| <} Vo |9 - ¥y (65)
k=1
for suitable choice of positive constants vjk' The nonlinearity N(z) is

m
assumed to be bounded in the sense that, for all y(E R and some choice of
constants {qj},

a,
2
IN;)(y)li%-., 1<j<m (66)

More compactly, defining

( (

Y Y
s g 1

11 m ql

vo= . » Q= 9, (67)
Ymp vmmJ “n

then (65) and (66) can be written as
1
||N( )

i
@ -8l <vlly - vl (68)
(v) || <%q (69)
respectively.

The following result is proved in section 1l:

Theorem 4: Suppose that the conditions of theorem 3 are satisfied, then
the controller K will input/output stabilize the nonlinear system of Fig. 2
if G is stable and

F_l) v NE(Y)) B I (70)

P ..—1 P
r((I£ - NW(WK:) Nm(zA

where zA is as given in Proposition 2.

Note as in all previous results that all elements of data in (70) can be

computed from the data GA,K,F,E and v. Note also that input/output stability
(2)

is independent of N and is guaranteed for all 'small enough' gain matrices v.
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Controller Design for Discrete Plant using Approximate Models

1)

It has been seen( that an approximation theory for continuous scalar

systems has a natural extension to discrete systems with synchronous sampling
simply by replacing transfer function matrices by z-transfer function matrices,
the D-contour by the two contours z =1 and z =R (R 'large') and a
suitable definition of the error measure NT(E). The continucus multivariable
theory described in this paper relies explicitly on the underlying scalar
definitions. It is clear therefore that all oflthe results described here
carry over to the case of discrete synchronous systems with the same
modifications. The details are omitted for brevity.
Conclusions

The paper has presented a theoretical generalization of the results of
the companion paper{l) to the multivariable case by providing a computa-
tionally feasible set of techniques for incoporating the observed differences
between the step response data obtained from an uncertain or unknown plant and
that of an approximate model into stability and performance assessment pre-
dictions based on the approximate model. The frequency response analysis
of section two has a natural graphical interpretation that is well-suited
to computer—aided-desién and, in one special case (Corollary 1.2), is similar
to the Gershgorin based procedures of the inverse Nyquist array(S'G) and
dyadic expansion(6} methods. The major problem with this analysis is that
of all frequency-domain analyses i.e. it is only possible to make precise
statements about stability. The techniques of section 3 do make possible
the calculation of transient bounds on the implemented feedback scheme in
terms of transient responses deduced from the approximating feedback scheme
(Theorem 2iand 3) but the technigques necessarily base both their stability
and performance assessment on time domain analysis only. The use of

transient data in closed-loop stability assessment is notusual in control

design but the benefits in both performance assessment and inclusion of
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nonlinearities (theorem 4) are self-evident and have been amply demon-
; (1)
strated in the scalar case .
A vital aspect of all the analysis is that stability and performance
assessment is possible using only simple data and without the need to know
or have available a detailed plant medel. In this sense the work is in the

i 34 . 6
same spirit as that of Dav1soﬁ15)’ Porter(l )' Koivo(l7), Rstrom(z) and

(1,3,4)
s

Owen but, in contrast to much of this work, stability is guaranteed

over a computable gain range and the approximate model enables the designeL
to have the choice of using a fairly accurate (and normally high order) model
to reduce the uncertainty at the expense of increased design complexity or

of using a rough-and-ready model to simplify the design exercise at the
expense of producing a conservative design with large uncertainty in tran-
sient performance. In both cases the results of the paper guarantee
stability!

When compared with the scalar case(l), the multivariable analysis in
this paper shows an overall structural similarity but requires (i) a more
sophisticated mathematical approach to avoid non-commutation problems and
to enable performance assessment in each output separately and (ii) a
slight increase in computational complexity to evaluate convolutions of
plant responses. The multivariable case is certainly not as straightforward
as the scalar case. It opens up a wide variety of computational routes to
the solution of the problem e.g. the spectral radius conditions may be
more assessable to graphical analysis if an upper bound is used. There
are an infinity of upper bounds and it is natural to search for the most

convenient for the problem at hand. This will be the subject of further

study.
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Appendixes

Proof of Theorem 2: We regard the stability problem as an input-output

t
stability(B) problem in gﬁ(o, + ®) (the m a Cartesian product of %ﬂ(o, + ®))

(8)

m m
and denote by Lme(o, + «=) the extended space of Qw(o, + ®)). The

natural projecticon of f € Ige into LS(O,T) (regarded as a subspace of
d d
Lm{o, + «)) 1is denoted PTf. IE Ie 2 Lm2(o, + ®) - L& (o, + «) is defined

by the relation y = L u with ¥y = Z Lijuj and
: §
t
y(t) = F_u(t) + [ F (t)hult-t')at’ (71)
o

then, P_ L,. has induced norm
i SR i |

T
o+ fo |(Fl(t))ij|dt (72)

| ppny

It is clear from (43) and (25) that we then have

I

T
ety = 1l + [ lImy], e (73 /

1l

P -

NT(F)

where ; is the step response matrix of L given by (24). ;
Assuming =zero initial conditions, the feedback system of Fig. 1(a)

can be regarded as the eguation
y = GKr - GKF y (74)

in Lze. Applying the truncation operator Pt' invoking causality and, after

a little rearrangement, noting that the stability of Fig. 1l(b) ensures the

invertibility of (I + GAKF), indicates that (74) has the form, for any t > o,

_l _l
= + KF - P + KF - 75
P.¥ Pt(I GA ) GKPtr & (T GA ) T (G GA} KFPty (75)

The system is input/output stable if, and only if, this equation with

m m ;
t = + ©» has a solution y& Lm(o, + ®@) whenever rEE_Lm{o, + @) . Applying
lemma 3 regarding (75) as an equation of the form y = Wty, we see that

Wt maps Lm(o,t) into itself as condition (c) and the stability of Fig. 1(b)
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_l i -
ensure that both (I + GAKF) (G—GA)KF and (I + GAKF) lGK = (I + GAKF) 1

(GA + G - GA)K are bounded. Clearly stability is ensured if W is a

; =1,
P-contraction. But ||Wt(x) - W (y)|| = |[Pt(I + GAKF) (G“GA)KFPt(x‘Y)II

t P

P
< ||Pt(I + GAKF)_l(G—GA)KFHP ]|Pt(x—y)||P S0 thatrqt is a P-contraction if

!
r(||P (I + G KF) (G-G)KF|[) < 1 (76)

-1
i + S
Using (73),]|Pt(I G,KF) "(G-G

P
A)KFHP can be replaced by Nt(VA) where

. -1
VA{t) is the step response matrix of (I + GAKF) (G—GA)KF. Our proof of
stability concludes with the observations that suitable controllability
and observability assumptions convert input/output stability predictions

into asymptotic stability predictions and that, using Laplace transforms,

vy =L+ GA(S)K(S)F(S))_l(G(S)—GA(lS))K(S)F{s) -
-1 -1
" ({(1_ + 6, (S)K(s)F(s)) "E(s) IK(s)F(s)) (77)
where E(s) = (G(s)—GA(S)}é- is the Laplace transform of E(t). VA(t) can

hence be computed from (47).

P B
As Nt(VA) £ Nm{VA) for all t 2 o, Fact 5 indicates that W, is a

P-contraction if w_ is a P-contraction and hence Pty can be obtained by

. , k+ ;
successive approximation Pty( L = WtPtY(k} for any choice of y(O)EE
m ; a (1) (o)
L (o, + ®). Using (75), the equation Pty = thty takes the form, after
a little rearrangement,
(1) -1
= I+ KF K r
PtY Pt( GA ) GA

-1
+ Pt(I + GAKF) (G—GA)(K Hoa - KFHlB)

Il

+ P 78
Pt A N (78)

where, for all t > o,
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=1
nlt) = (I + GAKF) (G~GA)(KHOa = KFHlB))(t)
i—l -1
= ((I + G_(s)K(s)F(s)) " (G(s) - G_(s))(K(s)H (s)a
A A o]
K(s)F(s)H, (s) B) l)
S Byl S
t
- H = 1 — 1 1
[ B (e-t") (B (tDa - B . (£)B)dt (79)
o] o] L L
by an argument similar to that used in (77). Using lemma (3) we cbtain
the error estimate
(1) P -1 P (1) (o)
P - P I - N v -
ey - Py 7], < (1 - M) Nt(A)HPtY Py |l, (80)
which implies (51) by the definition of [I.I[P and the norm in L_(o,t).
The final observations follow from the observation that P (VA) >
P
N (V_) for all choices of u, . (including p,.(t) = + =) and that
t A i 1]
P, P . , )
Nt “(VA) E_Nm(VA) when it follows from the series; expansion of the inverse
P -1 P P,u -1 P,u
that (I - N _(V,)) N (V) < (T N v N V)

Proof of Theorem 3 and Corollary 3.1: The stability problem is regarded as

in appendix 8 but the closed-loop relations are written in terms of the
input

u = Kr - KFG u (81)

After a little rearrangement this becomes

=T =
-+ -_ -+ -
P (I KFG_ ) "KP r P, (I KFGA) KF (G GA)P u

&)
o
1l

-1
= - + -
Pt uy Pt(I KFGA) KF (G GA}Pt u (82)

Regarding this as a relation Pt u = WtPtu in Li(o,t), the assumptions ensure

that Wt maps Ll(o,t) into itself and, noting that



.
P -1
0 <N (W) = |[P (I + KFG,) "KF(G - ) g
i =1
< lj +xrey) K@ - G|,

P
= Nm(WA) (83)

where WA(t) is the step response matrix of (I + KFGA)"lKF(G - GA)’ it is
seen that Wt is a P-contraction for all t > o (including t = + w) if
r(Ni(wA)) < 1. 1Ilpput -output stability follows as in the proof of theorem
2, noting that WA can be computed in the manner indicated iﬁ theorem 3.

Asymptotic stability then follows from condition (b).

Given the above conditions, u can be obtained by successive approxi-

mation with initial guess u(o). More precisely, lemma 3 indicates that,
if
P u(l) =pu - P (I + KFG )_lKF(G - G, )P u(O
t T "tA t .\ At
=pu_ - P (I + KFG )_lKF(G - G_)P_ H.B (84)
T TtA t A At 2

then, for all t > o,

(1) P -1P (1) (o)
||pu - Pu ||P < (1, - N (W) Nt(WA)IlPtu -pu | (85)
which implies (60) as required. The form of u(l} is u{l)= Uy + £ where
- _ -1 _
E(t) = ((I2 + KFGA) KF (G GA)H2B)(t)
-1 -1 1
= L1, + R(9IF(8)G,(5) TK(SIF() (G(8) - G, (s))H, (s) B3
_o4-l -1
= 377 ((1, + K(s)F(s)G_(s)) K(s)F(s)E(s)H,(s))B
4 A 2
- Tt ()8, ()8 (86)
A 2

which is simply (59).

Finally, Corollary 3.1 follows by writing
(1) (1)

1
|ly(e) - ! )(t)IIP < |lp vy Dl = ||p, (Gu - G,u 5

/(/“
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11

= TH
1 (1
< ||per - u | +]e (e - RERSTR
(1) (1)

< 112 pellp ™ ], + 1r @ - ol L e @I @)
which is simply (62) as ||PtG||P = NE(Y) and ||Pt(G - GA)HP = Ni(E) and
[P, (u - ) [, < ett).
Proof of Proposition 2:

Let %A be the 'WA— matrix' generated by é, then, by considering |
elements, note that Nz@ﬁA) E_quqA) + Ni@{A —qu) and that
| | (1+KkFG ) kF(G-6) - (T4xre.) "lkr(G-c) . < ||(r+xre) xrl]_|lG-c]| (88)
A A A A P — A P P

indicates that

B P P -

Nm(WA o WAJ iNm(ZA) Nm(Y - ¥) (89)

P - P P -
It follows that |[N_(W,-W,) || < ||V (z) [|m. | N (v-v) Hm
and hence that
P - P P =
N6 ) Ty < T e )+ T wy = wl]
P P P ~
< Il o+ Tzl isgeen 1]
< 1 (90)

by (63). Equation (90) implies that r (Ni(ﬁA)) <1 and hence, with the
other assummptions, that the perturbed feedback system is stable.

Proof of Theorem 4: The feedback system of Fig. 2 is characterized by the

equation

un}l =Kr—K(F+N(l} +N{2))G ung (91)
or, after a little rearrangement

u, = L - 8% a ) -8 Ve ) (92)
where Lz is the map r + u defined by Fig. 1(a). The conditions of theorem

; ; , 2
3 ensure that Lz is bounded in ij3f+q_ Regarding r - N( )G UDQEE Lik)p)

2
as k 92 be written as =W u where W maps L “(o,+«
nown, (92) can be un!l " ( n,Q) - p 3y



i
into itself and satisfies

HWnﬂ(u') - W, ] = ||L2 w Ve - N(l')GLl") | |p .

<zl 1 Peur - nPeun||

< 2l v [ear - eun]|

< Mgl v el [u-a] ] (93)

an is hence a P-contraction if rt,lel'P v ][G[]P) < 1 and the nonlinear map

r > unjl defined by (91) is then bounded. The stability of G then implies the

boundedness of yng = Gung. The proof of the theorem follows by noting that

_ P u P =L ..P -1
|16][p = N_(¥) and that RE < (I, = N_(W,)) " N_(z,F 7). To prove the
second inequality, use H2 = O in theorem 3 to yield £ = O, u(o) = 0 and

u(l) = uA when the bound (60) takes the form

P -1 P
| |u - w ]y = (T, = N (W,)) "N (W) HuAHP (94)
Clearly |fu,[P f_lfu - uA"P + ’IUAIIP and hence, using (94)
2 -1
Hall, < (@ - om0 [ u, I, (95)
-1 -1 P _-1
but [|uA||Pf_l|(I£+KFGA) Kl[P |lr||P and ][(IR+KFGA) K|IP = N_(2,F )

from the definition of 2y The required bound on ’|L2|IP is hence obtained

by substitution into (95) to obtain

P =1 P =]
Hull, < @ - N, (,0) N (2, F ) | [2] ] (96)

and comparing with the inequality I'ullp f_llel]P ||rl[P.
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Fig. 1 (a) Real and (b) Approxmating Feedback Systems

SHEFFIELD UN1V.
| APPLIED SCIENCE

| IRRADY



Fig. &

Nonlinear Feedback Scheme
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