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Abstract

Controller design for continuous and discrete systems whose models
are unknown or highly complex are frequently based upon the use of a
simple, approximate and, very often, rough-and-ready model. 1In such
circumstances it is vital to be able to quantify the. degree fof urbcer-
tainty to be expected from the use of ;uch a model for prediction of
closed-loop characteristics. It is shown how classical frequency-
domain design techniques can be extended to incorporate information
deduced from the observed differences between open-loop plant and
approximate model step response to quantify this uncertainty and, in
particular, to guarantee closed-loop stability and tracking of step
demands. A modification of this analysis also yields the possibility
of bounding the error in prediction of closed-loop transient performance.
The approaches are all graphical in nature and could be easily implemented

in an interactive computer-aided-design mode.
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Introduction

The use of approximate plant models is an everyday fact of life
in control systems design. They arise in several different ways such as

(a) the explicit use of model reduction techniques applied to a
known but possibly large-scale plant model,

(b) the explicit wuse of curve-fitting or identification procedures
applied to transient data obtained from plant trials or simula-
tion of a complex plant model, or

(c) the implicit use of conceptual models that underly commonly used
on-lining tuning methods such as that due to Ziegier and Nichols.

In all cases controller design decigions are made on the basis of the
expected behaviour of the approximate model in the closed-loop situation.
Clearly, the technigues can be highly successful in predicting closed-

loop performance of the real plant if the approximate model chosen is

}
fairly accurate. If, however the chosen model is significantly inaccurate
then care must be exercised in interpreting theoretical predictions'

Although accurate models can be used with confidence, they tend to have

fairly high dynamic order and hence can introduce computational and

interpretive problems, particularly in non-specialist hands. In contrast,
rough-and-ready models tend to be low order and lead to rapid 'pencil

and paper' designs to form the basis for further, perhaps on-line,

investigations. The deliberate use of approximate models can produce

direct benefits therefore, but efforts must be made to cope with the

observed errors. The empirical technique of designing to ensure adequate

gain and phase margins provides a qualitative frequency domain solution

to cope with the problem of modelling errors but it would clearly be of

great value to be able to assess the effect of these errors in a more

precise manner, particulary if the revised design procedure uses only

simple open-loop plant data such as step response characteristics and

has a simple graphical interpretation that relates closely to well-known

classical design techniques. This problem is the subject of this paper



and its companion. The work represents a substantial generalization

of the technique described in ref. (2). This paper restricts its atten-
tion to single-input/single-output systems. The multivariable case with
its extra problems and possibilities is left to the companion paper(l).
The paper logically divides into several sections. In section 2 we

provide a frequency domain technique for the design of robust control

systems for uncertain dynamic systems using approximate models. In essence

this section provides a graphical means of coping with observed differences
in performance between plant and model by 'smudging' of the standard inverse
Nygquist plot commonly used in system design. Section 3 invokes some
elementary techniques from functional analysis to point out that, under
certain conditions that are easily checked in practice, closed-loop
stability can be assessed by visual inspection of the transient performance
of the approximating feedback system and carries the bonus that numerical
bounds on the deterioration in predicted transient performance can be
obtained even in the presence of measurement nonlinearities. In section

4, the generalization of these ideas to discrete/sampled-data plant is
outlined.

Frequency Domain Design based on Approximate Models

The problem considered here is the design of the proper, rational
forward path controller K in Fig. 1l(a) for the plant G in the presence of
the proper, rational measurement dynamics F. All elements are assumed to
be continuous and linear and it is assumed that the detailed dynamics
of the plant are either unknown or regarded as unnecessarily or incon-
veniently complex for the design exercise under consideration. It is
supposed however, that the response Y(t) of the plant from zero initial
conditions to a unit step input at t = o can be estimated from plant
trials or simulation of an available complex model. The response Y(t)

will, in practice, contain errors but, for the purposes of this paper,



these will be assumed to be small enough to be negligible.
Given the data Y(t) suppose now that an approximate model GA of
the real plant G is constructed by fitting to the transient data Y or
by model reduction. The response YA(t} of GA from zero initial conditions
to a unit step input at t = o can be obtained by simulation. The control

system K can now be designed, by any means at the designers disposal,

to ensure the required stability and transient performance from the
approximating feedback system of Fig. 1(b). 'The problem considered in

this section is how the observed open-loop error
E(t) = ¥(£) - YA(t) (1)

between step responses of the real and approximate plant can be used
during the design exercise to simultaneously ensure the stability of the
real configuration Fig. 1(a).

Note that we do not necessarily assume that G and GA are represented
by rational transfer functions but we do require that, assuming zero

initial conditions, they can be described by linear input-output maps of

convolution form(lg)
t t
y(t) = [ h(tHult-tHat' , v, (t) = th(t')uA(t—t')dt' (2)
o o

where]uéEiLl(o,+m) and hAEE Ll(o,+m) have well-defined Laplace transforms
(and are usually piecewise continuous)and the modelling error is stable in

the sense that

(e}

[ |nw) - h,(t) [dt < + « (3)
o

This form of model allows the possibility, for example, of time-delays
in the system.

Finally, note the obvious relations
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t E
Y(t) = [ n(eyat' , v (t) = f h(thae | t=o0 (4)
(@] o
and deduce that the signal Y - YA is stable as, using (3) and (4),
t
vy -y 0] < f |ncen - h, (t") |at’
(o]
s [ Inen -nenfaer |
" ;
g ¥ Yot (5)

Frequency Domain Stability Theory

Suppose that the controller K has’been successfully designed to
stabilize the approximate model GA in the configuration of Fig. 1(b).

19
This condition can be represented by the return-difference relationship( )

inf 1+ G, (s)K(s)F(s)| > O (6)
Re 5 2 o

If the same controller K is hooked up to the real plant in the configuration

of Fig. 1l(a) then stability will be assured only if the similar relation

inf |1+ G(s)K(s)F(s)| » o (7)
Re s 2 o

is satisfied.

These relations are most usefully combined by writing

(14GKF) = (146,KF) (1 + (146,KF) 'KF(G-G,)) (8)
when (7) can be replaced by the sufficient condition
, il
inf | 1+ (1+¢ KF) “kF(G-G )| > O (9)
A A
Re 5 2 0o

Given the assumed uncertainty about the real plant G, the authors know



of no way that this relationship can be used in design. It is however,
possible to replace it by a slightly conservative, but more easily

checked (see Theorem 1), condition based on the result:

i
Lemma 1: If the chosen controller K stabilizes the approximat; model
GA in the configuration of Fig. 1(b), then it will also stabilize the
real uncertain plant G in the configquration of Fig. 1(a) if

(a) the composite system GKF is both controllable and

observable, and

(b) Ai-Az % 1 (10)

where, if D is the usual Nyquist contour in the complex plane,

A -1
A, = osup | G, (8)K(s)F(s))

sE&D

K(s)F(s) | (11)

and Az is any known upper bound for

A
Ay = sup la(s) - GA(S)| (12)
Re s 2 o
Proof : Condition (a) guarantees the absence of hidden modes in the

system and hence that asymptotic stability is implied by input/output

stability. Next note that

=1
inf |1+ @+ 6xp) KF (G-G,) |
Re s 2 o
=],

2 1 - sup [(l+GAKF) KF| sup G - By

Re s 2z o Re s 2 o
z 1 - 13

Al 13 (13)

=1 .
The stability assumption ensures that (1+GAKF} KF is analytic in the
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interior of D and hence achieves its maximum modulus on the boundary.

The result follows as (10) implies (9) by (13).

Frequency Response Bounds from Transient Data

The clear problem with direct application of lemma 1 is that, although
Al can be computed in terms of known quantities, XZ could, on the surface,
present a problem. If, however, the error (egn. (1)) between open-loop step

responses is known, it is possible to bound X3 in terms of the graphical

procedure implicit in the following simple result:

Proposition 1: If gGE;Ll(o,+m), d is -a real scalar and

t
£(t) £ d + | aier)ae (14)
o

is bounded and continuous on the infinite open interval o < t < + » with
local maxima or minima at times tl < t2 p R satisfying sup tj = +
in the extended half-line t > o, then, taking tO = 0, we have, for any

T . 0,

T
la] + [ |g(v)|at = N, (£) (15)
o

where the functional
*
k (M)
|£(oh) | + 7§ | By = £
k=1

I

N, (£) )|+ |£(m) - £(t, %) |

t
k-1

N _(f) sup Ni(f) (16)

Tz0
(with k*(T) equal to the largest integer k such that tk < T) is simply the
norm of f regarded as a function of bounded variation(B) on the half-open
interval o < t g T.
(Note: for each fixed f, NT(f) is clearly a monotonically increasing

function of T).



Proof: Using (14) it is easily seen that the local maxima and minima of

f correspond to 'cross-over points' of g. This is illustrated in some
detail in Fig. 2(a) and (b) for the case of a finite number of stationary
points in [o,m). Note that t = + @ is a stationary point in our definition
in this case. The case of an infinite number of stationary points is
illustrated in Fig. 2(c). Note that t = + » is not a stationary point in

this case. In both cases write

Ay
ja + [ Jace)|at
(o]

k*(T) tk * ' (17)
= |a] + ] / lg(ts |at + [ - lg(t) |at
k=1 Y1 By

and note that the sign-definitenessof g on each subinterval ensures that

t t
k k

/ lg(t)] at |/ g(t) at | (18)
k-1 k=1

The result follows as f(o+)

d and, for k > 1,

t
k

g(t)dt = £(t. ) - £(t. ) (19)
x k-1
T

As an immediate corrollary to this result, we can state the following
lemma which provides an explicit technique for computing a bound AZ by
inspection of E(t).

Lemma 2: If the plant modelling error is stable in the sense of (3), then

A
sup [6(s)-g, ()| = A, s 2, SN (B) = ] [B(t ) -E(e,_D| (20

Re s20 k=1

is a convenient upper bound on the modelling error G - GA.

(Note: tO = 0 and tl < t2 < ... are points where the transient error

E(t) achieves local maxima or minima in the extended half-line t > o).
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Proof: Simply note that
oo
as) - G, (s) = [ e *Fm(r) - n,(p)at (21)
A A
(@)
and that, for Re s > o,
| fo e "T(h(t) - hy(e))dt] ¢ [ |h(t) - h (8)] at (22)
S o

The result follows by applying Proposition 1 to
t

E(t) = [ (a(e") - h, (") dt ' (23)
o]

noting that E(o+) = 0.

A Graphical Stability Criterion for Uncertain Systems

A condition of lemma 1 and 2 yields a powerful and easily applied

graphical stability criterion as follows:

Theorem 1: If the controller K stabilizes the approximate model GA in
the configuration of Fig. 1(b), then it will also stabilize the real
uncertain plant G in the configuration of Fig. 1l(a) if,
(a) The plant modelling error is stable in the sense of eguation (3),
(b) The composite system GKF is both controllable and cbservable,

(c) the inequality

Nw(E} lim sup K(s)F(s) y 1
ls| + 1+G, (S)K(s) F(s) (24)
Re szo

is satisfied, and

(d) the 'confidence band' generated by plotting the inverse Nyquist
g g

locus of GA(S)K(S)F(S) for s =1 w, w » o with superimposed

'confidence circles' at each point of radius




r(in) & N | (1w (25)

does not contain or touch the (-1,0) point of the complex plane.
(Note: see Fig. 3 for a graphical illustration of condition (d) , noting
that the radii of the confidence circles are proportional to the chosen
modelling error and are zero if the plant model is exact) .
Proof: Using (a) and (b), lemmas 1 and 2 indicate that stability will be i

achieved if

sup K(s)F(s)
N
S€ED L * K(S)F(S)GA(S) L (E) <1 (26)
Consideration of the 'infinite semi-circular' part of D yields (c). The

imaginary axis then reduces (26) to the requirement that, for - o < y < o ,

L aw) | (27)

1+ (6w FE) | > N @ |6

which is simply (d) as the contribution from the negative imaginary axis
is just the complex conjugate of that from the positive imaginary axis.

The theorem is hence proved.

The application of the result proceeds by verification of the condi-
tionsof the theorem and could proceed as follows:

Step 1: Obtain the plant response Y(t) from zero initial conditions to
a unit step input.

Step 2: Choose an approximate plant model GA with the property that the
modelling error G - GA is stable. If the plant G is stable this
reduces to ensuring that GA is stable. 1If the plant G is unstable
then GA must contain the 'unstable part' of G(see ref.(2)).

Calculate YA(t), E(t) and hence Nw(E).
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Step 3: Design the controller K(s) for GA(S) to obtain the réquired
stability and performance characteristics from the approximating
feedback system of Fig. 1(b). This design can proceed by any
means available but can be guided by (c) as (24) implicitly puts
a preliminary bound on the control gain allowed. The use of the
inverse Nyquist locus of GA KE as the basis of the design of K
may be particularly useful in the light of step 4.

Step 4: Plot the inverse Nygquist locus of GA(S)K(S)F(S) for s = iw, w > o,
and superimpose confidence circles at sufficiently many frequency
points to enable the form of the confidence band to be deduced.

If the (-1,0) lies inside or on the boundary of the band return
to Step 3. Otherwise the design is successful if the problem of
Step 5 is soluble.

Step 5: Check that GKF is both controllable and observable. As pointed
out in ref. (2), this type of problem does require some structural
information concerning the plant G. For example, if F(s) = 1.
K(s) is a proportional plus integral controller and the plant is
described by a rational transfer function G(s), it reduces to the
requirement that G(s) is both controllable and observable and has
no zero at the origin of the complex plane. This can be checked

if the plant is stable by checking that 1lim Y(t) # O.
o

2.4 A Note on the Calculation of N(E)

The application of the above technique relies on accurate calculation
of NW(E) given the (assumed accurate) step response Y(t). The two particular
sources of error that will naturally arise in practice are due to (i) the
general fact that the error E(t) is only available on a finite time-interval
O gt ¢ Tand (ii) inevitable errors creep in due to difficulties in
estimating the times tk,k 2 1, due to, for example, the use of sampled response

data where tk could be in error by up to the sample interval. These general
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problems are considered in Appendix 9 and lead to the general inclusion
that they will be negligible if the data length T is long enough and the
time errors/sampling rate are small enough/fast enough.

An Illustrative Example

To illustrate the application of the above theory in an elementary
but representative situation suppose that the uncertain plant has an unknown

model given by the transfer function

1
G(s) = (5+1) (28)
and hence that the plant step response Y(t) given by
Y(E) =1 - (1+t+%tde " (29)

is known in graphical form as illustrated in Fig. 4(a). Suppose that we

choose the approximate model described by the transfer function

1
GA(S) = (s+l}2 N (30)
we can easily verify that its step response
i
Y (t) =1 - (1l+t)e (31)

takes the form indicated in Fig. 4(a) and that the error E(t) = Y(t)—YA(t) is

stable (indicating that G - GA is stable) of the form

Bt =~ % po T (32)

illustrated in Fig. 4(b). Note that it is not monotonic and hence that

L6 ]

(2)
previous results do not apply in this case. The required parameter (QéE}

is obtained by the graphical procedure described in Proposition 1 with the

data t_ =0, t. = 2, t. = 4= i.e.
o] 2

=2
N _(E) =4 e = 0.54 (33)
The next step is the choice of unity feedback controller K for GA

Our ultimate aim is to obtain a proportional plus integral controller
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K(s) =K. +K, , XK > 0, K 3 O (34)

but initially we will take the case of proportional control K2 = 0. A

preliminary bound on Kl is obtained from (24) i.e.

N (E) lim

= N (E) !Kll <1 . (35)
" el o

1 + KG
A

or, using (33),

IKl| < 1.85 (36)

(Note: this bound is to be comparea‘with the real stability range O < Kl < 8
for G. There is clearly some pessimism in the result but this is to be
expected as the modelling error E(t) is not small. We can only remove

this pessimism by improving the model GA!). Our detailed choice of Kl

could proceed by choosing it to produce a damping of 1/V2 in the approximating
feedback system i.e. choose Kl = 1.0. This certainly satisfies (36) and

the inverse Nyquist plot of GAK F = GA with superimposed confidence circles
shown in Fig. 5 indicates that the (-1,0) point does not lie in or on the
confidence band. 1In fact, conditions (a), (c) and (d) of theorem 1 are
satisfied and we can conclude that the uncértain plant (28) will be stable
under unity feedback with gain Kl = 1 provided that GKF = G (i.e. the plant)
is both controllable and observable.

The inclusion of integral action can proceed in a similar manner with
condition (24) again leading to the fundamental constraint (36) on propor-
tional gain. Again choosing Kl = 1.0, we will also choose K2 = 0.4 to
ensure the stabilization of the approximate model with reset time Kl/K2=2.5.
The relevant inverse Nyquist locus with confidence band is given in Fig. 6.
Conditions (a), (c) and (d) of theorem 1 are clearly satisfied and hence

the designed controller will stabilize the uncertain plant if GKF = GK is
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both controllable and observable. This will be almost surely satisfied
if G is controllable and observable as the only other source of problems
could be a zero of G at s = o or a pole of G at s = -0.4. Examination of
Y(t) indicates that G has no zero at s=o.

Finally, for comparative purposes, the closed-loop responses of real
and approximating feedback systems from zero initial conditions to a unit
step demand are shown in Fig. 7. Note éhat the responses have similar
overall dynamic characteristics and identical steady-states.

A Note on Robustness of the Design

The above example indicates that it is possible to systematically
produce successful control system desiéns for uncertain plant using models
with significant errors. The tonservatism of the design depends upon the
size of the modelling error but, in all cases, the procedure is robust in
the sense that the controller will continue to stabilize the plant if,
over a period of time, its dynamic characteristics change by less than a

computable amount. More precisely, if G changes into the plant G with step

response §, we can prove the following result:

Proposition 2: If the conditions of theorem 1 hold, then the closed-loop

syétem of Fig. 1l(a) will retain its stability if GKF is controllable and

observable, G - G is stable and

1 =22
1

A
1

N_(Y - ¥) < . (37)

where ll and A2 are as defined in lemma 1 and 2.

Proof: Simply verify that the conditions of lemma 1 hold with G replaced

by G and A replaced by i2 = Nm(§ - YA)' More precisely, noting that

2
N_(Y - YA) < NW(Y - YY) + Nm(Y - YA) , (37) yields
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B v - + 3
A Ay AN (Y -y 42, <1 (38)
3. Time Domain Design Based on Approximate Models

The procedures outlined in Section 2 have a striking similarity to
well-known procedures but suffer from the general problem of frequency-
domain techngiues i.e. it is difficult_to make predictions concerning
the details of the closed-loop transient performance. In particular, it
is impossible to make confident predictions about the response characteris-
tics of the real feedback scheme in terms of the response characteristics
of the approximating feedback system except that it is stable and, if
integrators are present, tracks step demands exactly and rejects step
disturbances. Any design technique capable of resolving this problem (at
least in part) must, intuitively, rely heavily on time-domain calculations.
The general form of such a design aid is described in this section. The
proof of the results relies on the use of functional analytic methods and
hence, for simplicity of Presentation, most of these are relagated to
appendixes.

Time Domain Stability Theory and Performance Assessment

Suppose that the controller K has been designed to stabilize the plant
approximation GA and produce the desired response characteristics from the |
feedback system of Fig. 1(b). Thé method used is irrelevant to the following
discussion but the use of the techniques of section 2 would, at least,
produce a preliminary guarantee that K also stabilizes the real plant. The
following result indicates how simple time domain/simulation methods can,
under well-defined circumstances, be used as an alternative stability check

and/or as a means of bounding the error in Predicting transient performance.
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Theorem 2: Suppose that the controller K has been designed (by some

means) to stabilize the approximate model GA in the feedback configura-

tion of Fig. 1(b) and that the response VA(t) of the confiquration of

—

Fig. 8(a) froﬁ zero initial conditions to the demand input E(t) has
been computed. Then the controller K will stabilize the real uncertain
plant G in the configuration of Fig. 1l(a) if
(a) the modelling error is stable (in the sense of (3)),
(b) the composite system GKF is coﬂtrollable and observable
and if,

(c) either, defining A4(t) g Nt(vA)' we have
A, (o) = ﬂn(vA) < 1 -09r; (39a)

if WA(t) is the response from zero initial conditions of the
feedback system of fig. 8(a) to a unit step demand input and

A
€ 1 . A
A4( ) is defined by l4(t) Nt(wA)Nt(E), we have

A, (®) = N (w )N (E) < 1 (39b)

Under these conditions, let yo(t) be the response of some proper, stable
causal system H from zero initial conditions to a given piecewise conti-
nuous demand signal r(t). Then the responses y(t) and yA(t) of the
real and approximating feedback schemes from zero initial conditions

to the demand r(t) are related by the error bound

A 14(t) '
ly(t) -y ()] < e(e) = ToT, ) o{?ii{st ly, (£ -y ("]
J\S(t)

A ; R
where ls{t) = Nt(zA)Nt(E) and z, is the response from zero initial

conditions of the configuration of Fig. 8(b) to a unit step input. In



o

particular, if r(t) is a unit step demand the bound can be improved

to . in order of increasing eonservatism.

A A4(t) | J
|y(t) = (t)l § elf) = et max y.(t') -y (t") (41a)
L - 1 Atl(t) ost'gt L °©
| A A4(t) ‘ |
- y(t) -y (t)I geit) = —mMm max Y. (t') — v (t")
A k. = A4(t} ook 1 o}
+ |n(t)| (41b)
A (t)
Iy(t) = YA(t)’$ E(t) é #t) max IYA(AtI) = yo(t')’
4 ogt'gt
+ il
max ln(t')| (41c)
L - A4(t) os<t'gt
where yl(t) = yA(t) + n(t) and n(t) is the response from zero initial

conditions of the configuration of Fig. 8(b) to the input signal E(t). |

Finally, both (40) and (41) hold with &(t) replaced by either

(i) e_(t) derived by replacing A4(t) and A5(t) by A4(m) and AS(W)
respectively or,

(ii) Eu(t) derived by replacing A4(t) and AS(t) by 14{ul(t)) and
AS(MZ{t)) respectively where each uk(t) is some function

satisfying pk(t) 2 t, for t = o.

The theorem contains many possibilities in choice of H, choice of
estimate and #, as illustrated by the following remarks:
Choice of H: the stable system H is specified by the designer and,
intuitively, can be used to decrease the uncertainty in the closed-
loop response y(t) by reducing e(t). Three simple choices immediately

suggest themselves
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(i) the choice of H = 0 yields yo(t) = 0, simplifies the confi-
guration of Fig. 8(b), partially simplifies the form of the
estimates (40) and (41), when F = 1, reduces simulation re-

quirements as Va1 whereas
-1

(ii) the choice of H = F (if F has a proper, stable inverse)

yields the data zA(t} = 0, nlt) O and hence k5(t) = 0 and

yl(t) = yA(t) (the estimates (40) and (41) are identical in

this case and two simulations are avoided), and

(iii) the choice of H = (1 + GAKF) GAK is equivalent to ¥o =,
and (see appendix 9), as Y, is the first guess at y in a
successive approximatioh ééheme, it is envisaged that this
choice will be the best of the three mentioned but at the
expense of increased complexity of Fig. 8(b).

Choice of e: The four estimates in (40) and (41) represent various

degrees of pessimism. In general pessimism increases as we move from

(4la) to (41b) to (4lc) to (40) but simplicity increases at the same

time. The choice of g is therefore a compromise between accuracy and

simplicity to suit the application and computing facilities available.

Choice of p: Given a choice of estimate e(t), the choice of p(t)=t

yields the smallest error bounds but u(t) = +» yields simplicity as the

parameters A4/(l— 14),A5/(1—A4) and l/(l—l4) are constant in (40) and

(41) . This simplicity is obtained at the expense of conservatism as

el(t) < Ew(t). A compromise can be reached by the use of other choices

of p. In particular the choice of n(t) = tk if tk—l £t 2 tk (where

{tk} are the stationary points of the signal considered) will need only

estimates of the value and position of stationary points. This will be

of particular importance if the signal has some noise content.
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The proof of the theorem 2 is given in Appendix 9. It is useful

however, to give the result the following step-by-step design inter-

pretation.

Step 1:

Step 2:

Step 3:

Step 4:

Step 5:

Obtain the plant response Y(t) from zero initial conditions

to a unit step input.

Choose an approximate plant model to fit plant characteristics

to a convenient accuracy ané to ensure that the modelling error!
G - GA is stable. Calculate YA(t)' E(t) and hence Nt{E).

Design the controller K for GA(s) to obtain thg required stability
and performance characteristics from the approximating feedback
system of Fig. 1(b). Any érefered technique can be used but

the use of the technique of section 2 will have the advantage
that the stability of the configuration Fig. 1(a) will be guaran-
teed at this early stage.

Calculate the time response VA(t) or wA(t) and hence obtain
Nt(vA) or Nt(wA). (Note that Wp = zA and v, = if F=1 and H=0)
If A4(m)2: 1 the stability of the real feedback scheme Fig. 1l(a)
cannot be guaranteed unless the techniques of Section 2 are used
in Step 3. If however A4(m) < 1 and GKF is both controllable and
observable then we are guaranteed that the scheme will be
asymptotically stable.

If A4(W) < 1, choose a stable H and compute n(t) or zA(t) to
obtain an error bound e(t), Ew(t) or EU(t) between the known
rerformance of the approximating feedback system and the (as yet)
unknown performance of the real feedback scheme for the demand
signal of interest. Error bounds (40) , (41b) and (4lc) can be
represented graphically by plotting the known response yA(t)

and the 'boundary' responses yA(t) * e (t) as shown in Fig. 9(a).

The unknown response y(t) is known to lie in the band generated
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As e(t) < Eu(t) < em(t), the band e€(t) will give the best
estimate for finite, 'small' t but, as t + + », they are all
identical as, from the definition e(t) - Em(t) + 0 as t > 4w
The graphical interpretation of (4la) is illustrated in

Fig. 9(b).

Step 6: If tﬁe design is regarded as unsatisfactory because, for L
example, the transient errors g(f) are larger than anticipated,
the designer can either return to step 2 to choose a more
accurate approximate model or attempt to reducé A4(t) (and
hence e(t)) by reducing ‘the control gains or changing H.

Illustrative Examples

Example 1: Consider the example of Section 2.5 with the proposed
proportional controller K(s) = Kl = 1. It was shown that the real
plant is stable in the presence of this design and we can apply the

above theory to assess performance degradation due to the approximation

used. A simple calculation yields (with H = 0)
i, -t
wA(t) = zA(t) =L(l+e cost+e  sin t) (42)

and hence, after graphical analysis that N (WA) =N {zA) = 1.57 or

(using equation (39b))
A4(m) = AS(W) = 1.57 x 0.54 = 0.85 (43)

Clearly 14(m) < 1 (confirming the stability predictions of Section 2.5)

and the bound (40) can be written as |y(t)—yA(t )l £ Em(t) where
€,(t) = 5.67 max |y (t') |+ 5.67 max [r(t")| (44)
ogt'<t otz

Taking, for example, the case of a step input we clearly obtain the

inequality, e (t) > 5.67 for t > o and hence that the bound (40) on prediction
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error allows the possibility of transient deviations of 500% of

the magnitude of the demand signal. This bound is clearly of little
practical value for predicting the detailed response characteristics
in this particular example due to the magnitude of the modelling error
employed.

A slightly better estimate of performance degradation using (40)

can be obtained by the choice of H = (l+GAKF)_lGAK (when Yy = yA) and
th t) = t = N g
e use of A4( ) Nt(vA} rather than K4(t} Nt{wA) t(E). In fact,
after simulation investigation, it is easily verified that l4(m) = 0.41
and A5(w) = 1.06 from which
|y(t) - yA(t)| e _(t) = 1.8 max [r(t')' (45)
ogtlgt

predicting that we must anticipate prediction errors of up to 180% of the
peak magnitude of the demand signal.
Finally, if r is a unit step, we obtain the tightest bounds from

41 ith H = + K i . i
(4la) wi (1 GAKF) GA and the use of A4(t) Nt(vA) In this

case, equation (4la) has the form, for t > o,

AL (E)
lvte) (p(8) +ne) | < et i:XETE) max [n(t")| ¢ 0.12
4 <t'st

The form of n is shown in Fig. 10(a) and the error bounds illustrated
graphically in Fig. lo(b), together with y and YA'
Example 2: Suppose that a system has a known model defined by the

transfer function

B 20
€(s) = e+ (5710 L&)

and that a unity negative feedback proportional regulator design is to

be attempted by using the approximate model

(46)



= B =

2
Gp () = GiD e (48)

obtained by ignoring the fast mode. The step responses Y and YA
together with E are shown in Fig. 11. Choosing the controller gain

to produce a damping of 1/V2 in the approximating feedback system of

i

Fig. 1l(b) yields the choice of K(s) = 1.25 and excellent regulation
properties.

The success of the design can be Cheéked by simulation of the
real feedback scheme. For illustrative purposes however, we will use
the theorem 2 to guarantee stability and bound the performance degra-
dation. Choosing, for simplicity H'= 0 yields ¥, = 0 and VA(t) =7 (%)
as illustrated in Fig. 12(a). 1In particular we obtain after graphical
analysis,

,\4(«;) =N (v.) = 0.11 < 1 (49)

mA)

and hence we conclude that the controller will stabilize the real plant
if it is both controllable and observable. Performance deterioration
can be assessed, for example, using (4la) to give, in the case of a

unit step demand input,

| y(£) - {yA(tHn(t))l < e(t) = %)
4 o<t' «t
£ 0.97 \V/ t >0 (50)

max | v, (£)+n(t) |

The real and approximate responses to a unit step demand together with
the error bounds are given in Fig. 12(b). There is clearly some pessi-
mism here as the possibility of prediction errors of up to 13% of the
steady state approximate response are predicted. This pessimism is not
regarded as unduly large in this case bearing in mind the simplicity
afforded by the choice of H = 0. Accuracy can be considerably improved

LB
by the choice of H = (1 + GAKF) GAK when Y, = ¥y and (4la) reduces to
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A, (t)
y(t) -y, (£) s"‘I:;_TEB max [nft')¥| < 0.0056 (51)
4 oSt'st

which, in graphical terms, means that y is indistinguishable from Y-
This accuracy must be balanced agains the extra work and increased
complexity involved in simulating the configuration of Fig. 8(b) to
obtain n.

A WNote on Robustness of the Design ) i

The frequency-domain robustness analysis of section 2.5 carries
through with virtually no change to the time-domain to yield the

result:

Proposition 3: If all conditions of theorem 2 hold including (39b), then

the closed-loop system of Fig. 1l(a) will retain its stabilityv with G
replaced by é if GKF is controllable and observable, G - G is stable

and

N, (Y=¥) < (1 = A, (=) /N, (w,) (52)

On the Effect of Measurement Nonlinearities

The techniques described above can also be used to predict the
stability and performance characteristics of the closed-loop system
of Fig. 1(a) in the presence of a class of memoryless nonlinearities.
More precisely, suppose that F is a scalar gain used in the approxi-
mating feedback scheme of Fig. 1(b) but that the real feedback scheme
takes the form of Fig. 13 where the memoryless nonlinearity n takes the form
n(y) = Fy + nl(y) + nz{y) (53)
where nl(y) is a nonlinearity of finit incremental gain V satisfying,
for all yl,y2,
Inyv) - nytv) | € vy, - v, (54)
and n2(y) is a bounded-output nonlinearity of the form, for all y,

|n2(y}| < g2 (55)
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where g > o is a real scalar. Such nonlinearites have been discussed

4

elsewhere( and represent a large class met in practice.

The basic result is stated below and is proved in Appendix 10.

Theorem 3: Suppose that the conditions of theorem 2 are satisfied and
that the following responses have been computed,
(a) the response Y; from zero initial conditions of the linear
system of Fig. 1(b) to a unit step input, and
(b) the response yi from zero initial conditions of the linear
system of Fig. 14 to a unit step input {Note:.Y;: yi if H = 0)
Then the controller K will stabiliZe the unknown system G in the confi-

A
guration of Fig. 13 if, defining A6(t) = A7(t) v with

. B HEED Ao (E)
Ao (t) = N (Y ) + 4 H 5
7 —_— N T 5

ER Tooom W tfiTim o ey

4 4

we have

A6(w) <1 (57)
Under these conditions and assuming that nl(o) = 0, the responses

Ynl(t) and yA(t) of the real, nonlinear and approximating linear feed-
back system from zero initial conditions to the same bounded and piece-

wise continuous demand input r(t) are related by

ly

i) = yA(t)| < e, ()
A A6{t)k7(t) A7(t)
Cm—————  max |r(t")| +e(t) + ——— 2 (58)
= e t
1 A6(t) aghbek 1 A6( y 2
where e(t) is as given in equation (40). Moreover, if r is a unit step

input, (58) holds with e as given in (4lb) or (4lc) and (4la) is replaced

by

A_(E)A_ () k7(t)

g igh® iy . 1
g (B -y (0] s e (82 === max |r(t)] +e(t)+ I-x (%)

ng 1 - l6(t} ok £k

g9
5 (59)
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with £ as defined in (4la).

Finally both (58) and (59) are valid with Enz(t) replaced by either
" i i L (t t
Eng(t) (obtained from Eng(t) by replacing A4(t),A5(t) 6{ ) and l7()
by these wvalues at t = «) or Si;(t) (obtained by replacing Ak(t),
2 gk g7, by Ak(uk(t)), 4 < k ¢ 7, where each n, satisfies

The interpretation of the error bounds in graphical terms is
identical to that outlined after theorem 2 and the choice of H,e and
U appears to be governed by the same rules. Note however that, for
any given choice of e(t) for the li;ear part of the analysis, we have

nf

the nonlinearity increases the uncertainty-surrounding the response of

(=]
€ nﬂ(t) 2 Eﬁz(t) 2 e__(t) > e(t) indicating that the introduction of

the closed-loop system. Finally note that A6(m) reaches its minimum

H -1
value with respect to H when YA = (0 i.e. when H = (1 + GAKF) GAK'



= 25 =

Controller Design for Discrete Plant using Approximate Models

All of the theory and design concepts described above are easily
extended to cover the case of a discrete plant G with synchronous output
sampling and control actuation and the use of a discrete approximate model.
For this reason, only the general outlines are given here.

The problem considered is the design of a proper, rational controller
K in Fig. 1(a) for the uncertain plant G in the presence of proper, rational
measurement dynamics F. All elements are linear and discrete with synchronous
input/output behaviour. We suppose that the outpﬁt sequence Y = {YO,Y PR S
generated by the plant from zero initial conditions to a unit step input is
known and that a linear, discrete approximate model has been cbnstructed. We

denote by Y ..} the step response of this model. The error

A~ ¥

Y o_,.
a0’ a1’

..} is defined by EE =Y - Y , k 2 o.

e E =1{E ,E
sequence { - e i Ak

1"

It is assumed that both G and GA can be represented by convolution

operators, k » o

k k A
= u = 60
¥, ; Hou oo () I B (60)
3=1 j=
with stable modelling error in the sense that
I ln -8 | <+ (61)
k=1
Clearly, for k > o,
k k
A
vy = ) H ,Y. = ) H (62)
S e R R S

and the signal E = ¥ - YA is stable.
If the controller K successfully stabilizes GA we have
inf |1 + GA(Z)K(Z)F(Z)| > 0 (63)
lslz[sR
(where R is some suitably large number) and K will also successfully

stabilize G if
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inf |1+ G(z)K(z)F(z)| > © (64)
1<| z| <R
Comparing these equations with (6) and (7) indicates that lemma 1 holds in
the discrete case if the D contour is replaced by the two circles |z| =1
and ]z[1= R and the region Res > o by the region 1 < |zl & R
Frequency response bounds can be obtained from transient data in a
similar manner to that described in Section 2.2. More precisely, the fol- |

lowing result can be proved in a similar manner to Proposition 1:

Proposition 4: If the sequence fo = d and

A k
£,2da+ ) g. , kz1 (65)
k J 7
J=1
is bounded with local maxima or minima at sample instants 1 £ k1 < k2 .....
in the extended positive integers, then, taking ko = o0, we have
k
lal + F ol = w0 (66)
j=1 ]
where -
k (k)
N (f) = | £ + - f + £ = £ 67
L8 = £ ] .Z |fk. k. |+ I, k*(k)| g
J=l 3 J=L

*
where k (k) is the largest integer kl,k ., satisfying kj z K

27

This result has a similar graphical interpretation to that of Proposition 1.
Our main concern here however is that both lemma 2 and theorem 1 hold with

the region Res 2 o replaced by 1 £ |z| < R and the imaginary axis s = iw,

w 2z o, replaced by the unit circle z = eie, -T < 8 < o, These results could
form the basis of a freguency domain design procedure similar to that outlined

in section 2.4 and Proposition 2 is still valid indicating that the design is

robust in a well-defined sense.



Finally we note that all of the time domain results of section 3
carry over to the discrete case by replacing Lm(o,+w) by the Banach space

g2 of uniformly bounded real sequences {yo,yl,...} with norm |’y|!= sup |yk|
o kzo

and by replacing continuous signals by their sampled counterpart (e.g.

uA(t) in theorem 2 is replaced by uw_ = {u__, e} ). The stability

u
A AO Al

conditions (39) and (56) remain unchanged but*the transient error bounds

must be expressed in discrete form. For example, (40) will read

]yk - (yA)k| se, + kzo (68)
with
1y 00 , S0 e e |
e = e max V.). - SRS - RIS r | (69)
k 1_;\4{]{) oskl\k (A k! I (Yo)k;! l“'}L4 (k) Osk'qﬁk k

The detailed proof of these results is straightforward and hence omitted.
Conclusions

Frequency response methods for the analysis and design of feedback
control systems for both scalar and multivariable plant are now well-

sstablished o 19

and can give excellent feedback designs that are robust

to modelling errors if, for example, standard gain and phase margin guide-
lineé are observed. These ideas are successful if plant uncertainty is not
too great, but, if the plant model is rather crude, they cannot be used with
confidence. Several techniques have been suggested to cope with this problem

11)

ranging, for example, from the detailed work of Horowitz( to the more

(12) (13) (14)

qualitative work of Davison , Porter and Koivo and the important

L . ) R > B

special cases considered by Owens et a
contributions differ in scope and emphasis but none provide an explicit
relationship between the observed errors between plant and model open-loop
performance and the required stability of the implemented feedback scheme.
This problem has been the topic of this paper.

The crucial starting point of the analysis is the assumption that a

plant step response can be synthesized from plant tests or simulations of a
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complex model. Given this data the computed error between plant and
approximate model step responses can be used to compute a single numerical
measure Nt(E) of the errors involved. If design is to proceed on the basis
of frequency response analysis, this measure can be used to construct a
“confidence band' around the approximate model inverse Nyquist plot and
encirclements of this band around the (-1,0) point can be used to guarantee
stability of the implemented feedback scheme. The confidence band is \
generated by the union of 'confidence circles' at each frequency point that

- ; : ; ; 6~
are reminiscent of the Gershgorin circles of the inverse Nyquist array( 8)

7, . . . :
8) design methods for multivariable systems. The width

and dyadic expansion(
of the confidence band is, roughly speaking, a measure of the modelling
error and, by suitable choice of approximate model, this can be chosen to
provide the required compromise between accuracy of theoretical predictions
and the simplicity afforded by a simple, but possibly crude, approximate
model. This feature is regarded as an important bonus in design work.

Another important bonus following from the type of analysis used is that,
under certain well-defined conditions, the degradation in transient perfor-
mance due to known modelling erros can be bounded in terms of Nt(E) and compu-
table characteristics of the approximating feedback scheme even if measure-
ment nonlinearities are present. These results can be regarded as an exten-
sion of the frequency-domain design results or they can be regarded as a
basis for design based on trial-and-error simulation procedures alone.

Finally, in general terms, it would appear that stability in the presence
of severe plant and model discrepancies can be guaranteed as illustrated by
the examples in section 2.5.. Also, in well-defined circumstances
(Theorem 2), estimates of performance degradation can be found but, as seen

in section 3.2.1., these error bounds can be so large as to be of little

practical value. In general terms, if tight transient error bounds are
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desired then both A 6 and AS should be small when compared with unity, i.e.

4
we must either choose our approximate model GA to made N_(E) small and/or

we must reduce the magnitude of N

t(w,A) o™~ Nt(vA) by using low-gain controllers.

If neither of these solutions are acceptable then some other theoretical
bound should be derived. This problem is presently under consideration.
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Appendices

Numerical Evaluation of N(E)

Although the procedure implicit in Proposition 1 is well-defined,
it is important to know the effect of finite data records and errors in
estimation of the stationary points tl’t2"'°' The following result

simply states that, if data records are long enough, Nm(f) can be esti-

mated to an arbitrary accuracy.

Proposition 5: Suppose that N_(f) is finite. Then given any € > o

there exists a time T' 3 O such that knowledge of £(t) on any interval

EO,T] with T > T' ensures that the numerical estimate of Nm(f) defined by

N, (£) = [£(T) - £( ) |

b w JE(e) = £ )| + £ | (70)

1<kgk k-1

*
(where k is the largest index such that tk < T ) satisfies the accuracy

relation
N(f) - € £ N (f) £ N(f) (71)
a0 T oD

Proof: As Nm(f) is finite by assumption, then there exists T' such that

[ et ]at < ¢ (72)
T
for all T 2 T' and hence that

T
N (£) -e < |a] + [ |g(t)]at < N_(£) (73)
o
for all T > T'. The result is now proved as, by Proposition 1,

T
N (£) = |a] + [ lgtt)|at (74)
le]




- 22 -

The problem of errors in estimation of the stationary points tk’ k21,

is best resolved by a combination with the finite-data record problem

i.e.

Proposition 6: Suppose £ > o is an arbitrary accuracy parameter and

that f£(t) is known on the interval o € t < T where N_(f) - e/2 g NT(f) € N_(£f).
Then there exists a maximum permitted error § > o such that, if the estimates

t£ of the tk satisfying tk < T satisfy |tk = t'} £ § then the estimate

N'(E,T) 8 £ - £t

L ]f(tﬁ) - f(té_l)r+ | £ (o) | (75)
1g<ksgk
satisfies the accuracy relation

N, (f) - e s N'(£,T) £ N_(£f) (76)

(2]

Proof: By the continuity of f, there exists § > o such that |NT(f) -
N'(f,T)I < g/2 if the tk are estimated to accuracy better than §. The
result now follows trivially as a simple graphical argument yields the

cbservation that N'(f,T) < NT(f) and hence that
N;(f) 2 N'"(£,T) = NT(f) 4+ N'"(£f,T) - NT(f)

2 N (f) - e/2 -¢e/2 = Nw(f) = (77)

=+

as required.

One immediate and interesting corollary can be roughly stated as follows:

A
Corollary: Let fk = f(kh) , k > o, be the data sequence obtained by

=1 .
sampling f(t) at the sampling rate h ono £t T as defined above.

*
Then, for each € > o, there exists h > o such that, for all sampling
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-1 -1
rates h 2 (h*) , the estimate of Nm(f) is in error by at most ¢.

Proof: The sampled data sequence {fo,f r--+} Ccan be used to estimate the tk

1

" to an accuracy of, at worst, the sample interval h. Let h*§ = 1 with § as in

Proposition 6.

In effect, the result states that Nm(f) can always be accurately estimated using
long enough data sequence and fast data sampling. Unfortunately, there are no
known means of assessing whét is '"long enough' or 'fast enough' in a given
application. This is a problem of judgement for the given data and problem

Proof of Theorem 2

; 2o , 9
To prove this result, we regard the stability problem as an J.nput—output(l 120)

stability problem in Lm(D,m). We denote by LiXt(o,m} the extended space(lg) of
Lm(o,a).and by PTf, the natural projection of f‘EEIEft into Lm(o,T) (regarded as a
subspace of L,{o,”)). DNote that P f = £, It is well—known(zo? that any bounded map-
ping L of Lw(O,m) into itself of the form v = L u with the convolution description,

t .

y(t) =dult) + [ g(t') u(t-t')at’ (78)

o

is causal and, for any T > 0 (including T = + «) , PTL has norm
T

122l = lal+ f | st fae (79)
o

Comparing with Proposition 1, we conclude that
|IPTL||m= NT(f) ; T >0 (80)

provided that the 'step response' f of L (i.e. the image of the unit function)

is nicely behaved (i.e. continuous with only a finite number of maxima and minima

on any finite interval). This technique for evaluating norms using step response data

will be used several times in the following proof.
Assuming zero initial conditions, and regarding G,GA,K and F as causal,

e
linear mappings of L‘it into itself, the feedback system of Fig. 1l(a) can be
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written as the equation
y = GK r - GKF y (81)
ext : ; . :
in L . Adding GA K F y to both sides of the equation and noting that

the stability of Fig. 1(b) ensures that 1 + GA K F is invertible, we

obtain, after a little manipulation and using the commutation properties
of scalar convolution operators,

-1 -1
y = (1 + GAKF) GKr - (1 +-GAKF) KF(G—GA)Y (82)

The configuration is input/output stable if this equation has a solution

yELm(O,oo.) for every demand input r & Lm(o,oo) . Applying the global
(19)

contraction mapping theorem , this will certainly be the case if the
= l 2 -

two operators (1 + GAKF) GAK and (l+GAKF) lKF (G—GA) are bcunded maps

af Lw(o,w) inteo itself and

=1
1+ G, KF) KF(G-G,) |[ <1 (83)

. . -1
The stability of Fig. 1(b) ensures the boundedness of (1 + GAKF} GAK'

_l -
(L + GAKF) K and (1 + GAKF) lKF and G - GA is stable and hence bounded

by assumption. Applying (80) to L = (1 + GAKF)-lKF(G—GA) with T = +
yields

||+ GAKF)_lKF{G—GA)]|m= N, (v,) (84)

where Wy is the response of L from zero initial conditions to a unit

step input £(t). But v, = Lg= (l+GAKF) KF(G-GA)§ = (1+GAKF) KFE
as E = (G—GA)g by. definition. Remembering the commutativity properties
of scalar convolution operators, it follows that vA is the response
from zero initial conditions of the configuration of Fig. 8(a) to the
drive input E(t). The stability condition (83) now reduces to (39a)

as required. It can be relaxed to (39b) by noting that (83) is implied
by

(1 + .km) ‘xr|| .||c-a <1 (85)
A co

Al



- P e

and that || (1 + GAKF)_lKF|!m= N (w,) with }IG—GA|[m= N (E). Our
stability proof concludes with the observation that suitable control-
lability and observability assumptions convert input-output stability
results into results on asymptotic stability.

Given the contraction condition (83) or (85), the solution of
(82) can be obtained by successive approximation. Take as the
|

initial guess yo = Hr &L (o,») and applying the projection Pt to (82)

yvields the first iterate

-1 -1
= + + - -
Pt Yy Pt(l GAKF} GAK r Pt(l+GAKF) K(l_FH)Pt(G GA)Ptr
= o+
Pt Ve Ptn (86)
where
n= (L+ GAKF)_lK (1-FH) (G-G,) x (87)

If r is a unit step then (G—GA)r = E and n is hence the response from zero
initial conditions of the confiaguration of Fig. 8(b) to the input 3 i I
Standard successive approximation formulae then vield the estimate

Ay ()

o Rl Q B8
4

A

||p, -y ) |

1

where },(t) is simply |]pt(1+GAKF)'lKF(G—GA)f|m= N (if (39a) holds)

il

t(VA)
th ti + - . - =N N (E
or the more conservative l]Pt(l GAKF) KF||ou [lPt(G GA)Hm t(wA) t( )
(if 39b holds). This proves (4la) whilst (41b) and (4lc) follow from
the trianagle inequalitv. If r is not a unit step (88) still holds but

Q cannot be computed without detailed knowledge of G. A more conservative

result is obtained using the bound

=1
[Penll, < 117, e em xcrm || [[p_ (e-c) || .| |2 ||

co

= Nt<zA)Nt(E)[|ptr]]oo = AE(t)llPtr[]m (89)
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following from the definition of ZA and the identification (80). Using

(88) with Yy = Y, + 1 then gives

[ty = vl s Hlepty = v I, + e v, - v Il

AL (t)
e w IR | LR
Tol-a, e YA T T Y e £ e
|
A4(t) Aé(t)
© Tom P vl v - 1 el (90)
Equation (40) follows from the definition of H.Hm after a little
manipulation, the use of (89) and the observation that ’y(t) - yA(t}l

< e ty-y O[]

Finally, the replacement of A4{t) and AS(t) by A4(ul(t)) and

_ A5(u2(t)) respectively or A4(w) and AS(W) respectively is possible as

A4(t) and A5(t) are monotonically increasing in Eo,m) and 1/(1-}) is
monotonically increasing in the interval o € A < 1.

Proocf of Theorem 3

Theorem 3 is proved in a similar manner to theorem 2 by writing

the closed-loop equations of the system as

Yoq = GK(r —(I:ynl+ nl(ynﬁ) + n2{yn2})) (91)

o, d:f LC is the linear operator in L_(o,*) defined by Fig.l(a),

Ve = Llr -n(yp) -y o)) (82

The proof can now proceed in a similar manner to that found in ref. (5) and
is outlined below. Regarding r - n2(yn£)EE L_ as fixed, the contraction
mapping theorem proves that a unique solution ynQGE L _exists for every

r& L if we can choose a real number M satisfying

HLC||wvg/A<l (93)
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Using the boundedness relation HPtyAHoo < ||PtLiI|w.HPtr[|oo where

LA is the operator in La(o,m) represented by Fig. 1(b), we see that

A c ‘
2,28 1= %0 ana |y, < [yl « m oDl o)

Using ¥ = Hr, (40) implies that

lyt)| < |yA(t)l + |y(t) - yA(t)f

(t) .

s N (Y |[p x|+ A4 N

AT 7 = A4(t)l|Pt(yA v,

" A_(t)
= IIptr|| (95)
or, as
-1

Ill?t(yA—yD)Hm = let((l+GAKF) 6,k - Hz||

[|p. L (97)

4= c||Oo & A7(t}

Clearly, (57) implies (93) with p = A7{W)v. Stability is hence proved.

Applying standard successive approximation procedures with zero

S . (1)
. ; ; . - —
initial guess yields the first iterate %o Lc(r nz(ynz)) v Lcnz(yn£

_ (l))H 3\6(1:)

[fPt(Y YnE

ng BN (98)

= s A (t) 9
1 = 6 tn

=1
S IIPt((l+GAKF) G,K - H)Hm.HPter
H
= Nt(yA)HPter (96)
(from the definition of:;i and (80)), we obtain
)
leading to



- 3 =

(1 (1)
2 v, 0, < He g, v 1, + e e wll,

A (t)
6 (1) (1)
¥ I:EETEB ||Pt ynR l]w i IlPt(ynQ - Y)llw
A, (t)
6 A (t)
e M IR (1)
l—)\6{t) t Tk (t) + 1 ']Pt(ynz - Y)llw
|
A (E)A_ () X (€)
6 7 7 " g
s IREl* T 3 (99)
6 6
(1)
as |2yl < a0 ||x|| ana |2 v ) -l = ez a0 I,

. |lPth||m-l[ﬂ2(Yn£)||m < 17(t)q/2. It follows that
ety = v |, < 1lp v, - » Il + e v - vpll,

16(t)A7(t) Ao ()

- Ry SR S i
ST ® leerlle + T05m 2 +e® (1802

which implies (58) trivially. Equation (59) follows in a similar manner.
Finally, the validity of the bounds E:}(t) and Egl(t) follows in a

similar manner to the proof in theorem 2 from the monotonicity properties

of A4,15,A6,A7 and 1/(1-X).
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