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[1] We utilize energy budget diagnostics from the Coupled Model Intercomparison Project
phase 5 (CMIP5) to evaluate the models’ climate forcing since preindustrial times
employing an established regression technique. The climate forcing evaluated this way,
termed the adjusted forcing (AF), includes a rapid adjustment term associated with cloud
changes and other tropospheric and land-surface changes. We estimate a 2010 total
anthropogenic and natural AF from CMIP5 models of 1.9� 0.9Wm�2 (5–95% range).
The projected AF of the Representative Concentration Pathway simulations are lower than
their expected radiative forcing (RF) in 2095 but agree well with efficacy weighted forcings
from integrated assessment models. The smaller AF, compared to RF, is likely due to cloud
adjustment. Multimodel time series of temperature change and AF from 1850 to 2100 have
large intermodel spreads throughout the period. The intermodel spread of temperature
change is principally driven by forcing differences in the present day and climate feedback
differences in 2095, although forcing differences are still important for model spread at
2095. We find no significant relationship between the equilibrium climate sensitivity (ECS)
of a model and its 2003 AF, in contrast to that found in older models where higher ECS
models generally had less forcing. Given the large present-day model spread, there is no
indication of any tendency by modelling groups to adjust their aerosol forcing in order to
produce observed trends. Instead, some CMIP5 models have a relatively large positive
forcing and overestimate the observed temperature change.

Citation: Forster, P. M., T. Andrews, P. Good, J. M. Gregory, L. S. Jackson, andM. Zelinka (2013), Evaluating adjusted
forcing and model spread for historical and future scenarios in the CMIP5 generation of climate models,
J. Geophys. Res. Atmos., 118, 1139–1150, doi:10.1002/jgrd.50174.

1. Introduction

[2] Radiative forcings (RFs) are used extensively to quan-
tify the drivers of climate change. Forcings can prove very
useful in understanding differences between model responses
to alternative forcing agents [Shine and Forster, 1999;Hansen
et al., 2005]. Offline comparisons between the radiative trans-
fer codes used in atmosphere–ocean general circulation mod-
els (AOGCMs) with more accurate line-by-line codes have
identified potentially important sources of error (> 20%) in
how AOGCM radiative transfer codes compute RF [Collins
et al., 2006; Forster et al., 2011] so it is important to test the
veracity of their forcing estimates when running in coupled
mode. However, this calculation of RF is difficult in practice
and within climate models adjusted forcings (AFs) are more

readily calculated from standard diagnostics using either fixed
sea-surface temperature (SST) [Hansen et al., 2005] or linear
regression techniques [Gregory et al., 2004].
[3] AFs are similar to RFs but additionally include rapid

adjustments to the land-surface and troposphere that typically
occur within a few days of applying a forcing and are largely
due to cloud changes in the troposphere [Andrews and Forster,
2008; Dong et al., 2009; Andrews et al., 2012a]. Importantly
these rapid adjustments depend on the magnitude and nature
of the forcing agent rather than on global-mean temperature
change [Gregory and Webb, 2008; Andrews et al., 2010], and
it has been argued [Rotstayn and Penner, 2001; Gregory and
Forster, 2008; Lohmann et al., 2010; Bala et al., 2009] that
they are more appropriately regarded as forcings rather than
feedbacks.
[4] Forster and Taylor [2006], hereinafter FT06, devel-

oped a methodology to diagnose globally averaged AF in
Coupled Model Intercomparison Project phase 3 (CMIP3)
models, and we use the same approach here within Coupled
Model Intercomparison Project phase 5 (CMIP5) models, tak-
ing advantage of their improved diagnostics and additional
integrations to improve the methodology.We use these CMIP5
diagnostics to determine globally averaged AF components
and energy budget changes since 1850 and use these to
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investigate how gross characteristics of the models evolve, con-
centrating on the factors influencing the spread of simulated
time series for global average surface temperature and AF.

2. Methodology

[5] The FT06 method makes use of a global linearized
energy budget approach where the top of atmosphere
(TOA) change in energy imbalance (N) is split between a
climate forcing component (F) and a component associated
with climate feedbacks that is proportional to globally aver-
aged surface temperature change (ΔT), such that:

N ¼ F � aΔT (1)

where a is the climate feedback parameter in units of
Wm�2 K�1. To remove the effects of any preindustrial en-
ergy imbalance, N and ΔT are quantified as the difference
from a preindustrial control simulation. CMIP5 models
provide a long preindustrial control simulation from
which the historical simulations branch. AOGCMs require
a long spin up period for the ocean, and their preindustrial
control simulations are not necessarily in equilibrium.
Further, even if the surface climate is near a steady state,
the TOA net radiation anomaly may still be nonzero as
deep-ocean temperatures continue to evolve. The preindus-
trial climates of the CMIP5models analyzed weremuch closer
to equilibrium and had less drift than the CMIP3 models.
Nevertheless, some energy imbalance remained (Figure 1).
In most models, this imbalance was due to problems with clo-
sure of their energy budgets rather than a discernible drift. To
address this, the individual flux terms and temperatures used in
equation (1) were generated by subtracting any imbalance and
its drift from the equivalent segment of each model’s own
preindustrial control simulation. This drift was calculated as
a linear trend over the control segment and removed from
the N and ΔT time series of the forced scenarios.
[6] As in FT06, we use a two-step process to derive time

series for F. Step 1 uses CO2-only climate-simulations to diag-
nose a terms using linear regression. As in Andrews et al.
[2012b], this analysis uses the CMIP5 abrupt 4xCO2 simula-
tions and regresses N against ΔT to diagnose the 4xCO2 AF
as an intercept term and a as the slope of the regression line.
Component a terms are presented in Table 1. Then, assuming
a is both independent of forcing agent and time invariant, Step
2 employs equation (1) to diagnose the time series for F in a
transient scenario run, using diagnostics of N and ΔT. In step
2 we substitute these a terms into equation (1), using N and
ΔT diagnostics from various forced scenarios to compute each
model’s AF. The AF calculation is performed for the three
historical scenarios from the late 19th century to 2005
(Historical - all natural and anthropogenic forcings; Histori-
calGHG - long-lived greenhouse gas changes only; and
HistoricalNat - natural solar and volcanic forcings only), and
the four Representative Concentration Pathways (RCPs) of
future anthropogenic changes in atmospheric composition
(RCP2.6, RCP4.5, RCP6.0, and RCP8.5). These RCPs are
named after the 2100 RF they aim to generate relative to 1750
[Meinshausen et al., 2011]. RCP2.6 should have a peak RF of
3Wm�2 declining to 2.6Wm�2 by 2100. RCP4.5 and RCP
6.0 should have RFs close to 4.5Wm�2 and 6.0Wm�2,
respectively, on stabilization of greenhouse gas concentrations
after 2100. RCP8.5 should lead to a RF close to 8.5Wm�2

by 2100. However, Meinshausen et al. [2011] found that inte-
grated assessment models generated smaller RFs in 2100,
namely 2.5, 4.1, 5.3, and 8.2Wm�2 for RCP2.6, RCP4.5,
RCP6.0, and RCP8.5 respectively.
[7] The original FT06 analysis differed from the analysis

here (hereinafter referred to as FT06-updated) into its approach
to step 1. In the original FT06 method, each modeling groups’
estimate of their model’s 2xCO2 RF, along with N and ΔT
values from 1% per year CO2 increase runs, were used to deter-
mine a. The RF was taken as the stratospherically adjusted
Intergovernmental Panel on Climate Change (IPCC) forcing
definition [Ramaswamy et al., 2001], whereas the forcingmeth-
odology in Step 2 has a component of rapid adjustment, as the
N time series used to diagnose F was measured as monthly
TOA fluxes in a scenario integration that would be continually
adjusting to the underlying forcing. Therefore, steps 1 and 2 in
the original method used inconsistent forcing definitions. By
contrast, in FT06-updated, step 1 diagnoses both AF and a as
the intercept and slope of the regression line, respectively, and
therefore uses AF consistently in steps 1 and 2.
[8] To elucidate the role of historical forcings other than

greenhouse gases, the HistoricalNat and HistoricalGHG
scenarios were subtracted from the full historical simulation.
Assuming linearity, the resulting residualHistorical-nonGHG
scenario was taken to represent the combined effects of aero-
sol as well as any land-use and ozone changes. Previous
assessments have suggested that forcings from ozone and
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Figure 1. Preindustrial TOA energy imbalance (Wm�2)
for the CMIP5 models. These were averaged over the entire
preindustrial control period. Note additional models are in-
cluded, compared to the main analysis (compare Table 1).
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land-use could more or less cancel each other in the global
mean so that this residual would be dominated by aerosol
effects [Forster et al., 2007; Skeie et al., 2011]. For example,
Forster et al. [2007] estimated global-mean RFs in 2005 of:
+0.3Wm�2 from ozone changes; �0.2Wm�2 from land-
use albedo changes; and �0.5Wm�2 and �0.7Wm�2 for
aerosol direct and indirect effects, respectively.
[9] Not all models had the complete set of energy budget

variables needed for the sensitivity and forcing analysis.
The models in Table 1 were those with the necessary data,
as of November 2012. All available ensemble members were
used in the analysis and averaged over.

3. AFs

[10] Figure 2 shows the time evolution of globally aver-
aged surface temperature and calculated AF, relative to the
preindustrial climate, for historical and future scenarios.
The variation of AF across models and scenarios is shown
in Figure 3. Figure 4 breaks down the components of AF
in the models for year 2003 (2001–2005 average) and year
2095 (2090–2100 average).
[11] AFs and temperature changes for the individual mod-

els in these years are given in Tables 2 and 3 respectively.
In the historical simulations, the 2003 AF (2001–2005 aver-
age) was found to be 1.7� 0.9Wm�2 from the Historical
simulation, 2.4� 0.8Wm�2 from the HistoricalGHG simu-
lation, 0.1� 0.2Wm�2 from the HistoricalNat simulation,
and �0.8� 0.9Wm�2 from the Historical-nonGHG resi-
dual simulation. This gives an anthropogenic (Historical
minus HistoricalNat) AF of 1.6Wm�2� 0.8 in 2003. All
errors represent the 5%–95% model range. Multimodel mean

AFs for the RCP scenarios all depart from their expected RFs
(Table 2 and Figure 2). RCP forcing estimates in 2095 are less
than their targeted forcing, but agree very well with the forcing
estimates derived from Integrated Assessment Modelling
[Meinshausen et al., 2011]. When the different efficacies of
the various forcing agents are accounted for, Mienshausen
et al. find effective forcings in 2095 of 2.3, 3.9, 5.2, and 8.0W
m�2 for RCP2.6, RCP4.5, RCP6.0, and RCP8.5, respectively,
within 10% of the CMIP5 model mean given in Table 2.
[12] The 5%–95% uncertainty range of AF in the Histori-

calGHG simulation in 2003 is� 0.8Wm�2, which is nearly
as large as the spread associated with nongreenhouse gas AF
(Table 2). The evolution of net AF and surface temperature
shows considerable spread among models (Figures 2
and 3). The fractional spread of net AF tends to grow much
more in the historical period than in the future (Figure 3).
Examining Figure 3a and Table 2, natural forcing differ-
ences contribute least to the fractional model spread and
greenhouse gas, and nongreenhouse gas forcing contribute
in roughly equal proportions.
[13] Figure 4 examines the components of AF. The positive

longwave (LW) clear-sky forcing is associated with greenhouse
gas changes and has least spread between models. The cloud
AF terms are calculated from anomalies in cloud radiative effect
(CRE) where all-sky and clear-sky fluxes are differenced.
Because radiative anomalies due to changes in forcing agents,
water vapor, surface albedo, etc. are smaller in the presence of
clouds than they would be in the absence of clouds, CRE-
derived cloud AF estimates include a component of cloud
masking. Model differences in aerosol forcings, rapid adjust-
ments, and/or cloud masking effects can all contribute to
the CRE-derived cloud AF spread. [Zelinka et al., manuscript

Table 1. CMIP5 Models Employed in This Paper and Their Feedback Components Computed

Adjusted Forcing Climate Sensitivities (K)
Transient Feedbacks

(Wm�2K�1)a Feedbacks (a) (Wm�2K�1)

2�CO2 (Wm�2) ECS TCR r Κ LW clear sky SW clear sky Cloud: CRE derived Net

ACCESS1-0 2.98 3.83 2.00 1.49 0.71 1.63 �0.77 �0.08 0.78
bcc-csm1-1 3.23 2.82 1.70 1.90 0.76 1.91 �0.83 0.07 1.14
bcc-csm1-1-m 3.55 2.87 2.10 1.69 0.45 1.98 �0.68 �0.06 1.24
CanESM2 3.84 3.69 2.40 1.60 0.56 1.88 �0.71 �0.13 1.04
CCSM4 3.57 2.89 1.80 1.98 0.75 1.95 �0.87 0.16 1.23
CNRM-CM5 3.72 3.25 2.10 1.77 0.63 1.73 �0.78 0.20 1.14
CSIRO-Mk3-6-0 2.59 4.08 1.80 1.44 0.81 1.70 �0.84 �0.23 0.63
FGOALS-s2 3.85 4.17 2.40 1.60 0.68 1.46 �1.02 0.48 0.92
GFDL-CM3 2.99 3.97 2.00 1.50 0.75 1.94 �0.70 �0.48 0.75
GFDL-ESM2G 3.09 2.39 1.10 2.81 1.52 1.65 �0.61 0.26 1.29
GFDL-ESM2M 3.36 2.44 1.30 2.58 1.20 1.63 �0.58 0.33 1.38
GISS-E2-H 3.81 2.31 1.70 2.24 0.59 1.67 �0.49 0.47 1.65
GISS-E2-R 3.78 2.11 1.50 2.52 0.73 1.66 �0.36 0.48 1.79
HadGEM2-ES 2.93 4.59 2.50 1.17 0.53 1.66 �0.65 �0.37 0.64
inmcm4 2.98 2.08 1.30 2.29 0.86 1.98 �0.67 0.12 1.43
IPSL-CM5A-LR 3.10 4.13 2.00 1.55 0.80 1.99 �0.53 �0.70 0.75
IPSL-CM5B-LR 2.66 2.61 1.50 1.77 0.75 1.88 �0.59 �0.28 1.02
MIROC5 4.13 2.72 1.50 2.75 1.23 1.85 �0.84 0.51 1.52
MIROC-ESM 4.26 4.67 2.20 1.93 1.02 1.93 �0.83 �0.19 0.91
MPI-ESM-LR 4.09 3.63 2.00 2.05 0.92 1.79 �0.71 0.04 1.13
MPI-ESM-P 4.31 3.45 2.00 2.16 0.91 1.80 �0.65 0.10 1.25
MRI-CGCM3 3.25 2.60 1.60 2.03 0.78 1.99 �0.83 0.09 1.25
NorESM1-M 3.11 2.80 1.40 2.22 1.11 1.86 �0.86 0.11 1.11
Multimodel mean 3.44 3.22 1.82 1.96 0.83 1.81 �0.71 0.04 1.13
90% uncertainty 0.84 1.32 0.63 0.73 0.41 0.25 0.24 0.53 0.51

a1% CO2 increase scenario per year numbers are used to derive TCR, r, and k. 4xCO2 abrupt CO2 scenario changes are used to determine the other quan-
tities. Method follows Andrews et al. [2012b] updating to account for additional model availability. Larger feedback values represent greater radiative damp-
ing of surface temperature anomalies and therefore smaller equilibrium climate sensitivity.
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in revision, 2012]. A LW cloud masking effect of roughly
+0.6Wm�2 is expected from a doubling of CO2 [Andrews
and Forster, 2008; Soden et al., 2008; Colman and McAvaney,
2011]. We adopt the sign convention that the cloud masking
effect represents an additional positive forcing that needs to be
added to CRE-derived terms. As the forcing from CO2 is
currently around half of its doubled CO2 value, this suggests
that around +0.3Wm�2 of cloud masking needs to be added
to the Historical CRE-derived cloud AF terms. The RCP 8.5
CRE-derived cloud AF would need to have a larger compo-
nent of masking added, around +0.6Wm�2. The shortwave
(SW) clear-sky AF and CRE-derived cloud AF split would

also be affected by cloud masking of sea-ice changes.
Nevertheless, a negative CRE-derived cloud AF beyond that
which is expected from cloud masking is seen in all the
scenarios in Figure 4.
[14] The Historical-nonGHG AF shows a generally

negative trend that turned weakly positive around 1990 in
most models (Figures 2 and 3), although some models show
a strongly negative AF and others have an AF near zero or
slightly positive (Figure 3). Because of the multiple forcing
agents represented in the Historical-nonGHG scenario, the
CMIP5 model spread in its AF of �0.8� 0.9Wm�2 in
2003 is difficult to interpret (see section 4).

Figure 2. (Top) The globally averaged surface temperature change since preindustrial times and (bottom)
computed net AF. Thin lines are individual model results averaged over their available ensemble members,
and thick lines represent the multimodel mean. The Historical-nonGHG scenario is computed as a residual
and approximates the role of aerosols (see section 2).
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4. Comparing Forcing Definitions

[15] In order to interpret the AFs given in section 3, it is
important to understand their uncertainty. Here we test three
aspects of the analysis: (1) limitations of the two step AF
process, (2) representing cloud AF using CRE-derived
AFs, and (3) using the Historical-nonGHG scenario as a
proxy for aerosol AF.

4.1. Limitations of the Two-step AF Process

[16] FT06 found that forcings from the two-step regression
procedure agreed with offline RF calculations in two models.
However, variation in climate sensitivity could in principle
bias the AF estimates. While some bias cannot be ruled out,
for a scenario with CO2 increasing at 1% per year, ensemble
mean AF (derived using the FT06-updated method) has been
found to increase linearly with time (to within the precision
set by internal variability), as expected if climate sensitivity
were approximately constant [Good et al., 2012]. To test this
further, we compared the FT06-updated AF with an AF de-
rived from transient experiments where SSTs are prescribed
from observations [Held et al., 2010]. The SST-derived
method used two transient integrations, one with forcing
agents and one without. The run with changes in forcing
agents gives a heat balance described by equation (1), and
the run without changes in forcing agents gives a heat balance
described by (note the primes):

N
0 ¼ F

0 � aΔT
0

(2)

where F0 =0 by definition. As SSTs are identically prescribed
in both, ΔT~ΔT0, and substituting equation (2) into equation
(1) gives:

F ¼ N � N
0

(3)

AFs derived from these two definitions are compared in
Figure 5. Although there is considerable variability in the
FT06-updated AF, its AF seems to agree very well with
the prescribed SST-derived AF from a 10-ensemble member

Figure 3. (a) Time series of AF from the different historical scenarios. (b) Time series of AF from the
different future scenarios.
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HistoricalGHG in 2003

RCP8.5 in 2095

Figure 4. Diagnosed AFs (since preindustrial) for the
Historical, HistoricalGHG, and RCP8.5 scenarios. The his-
torical scenarios give the AF for 2003 (2001–2005 average)
and the RCP scenario for 2095 (2091–2099 average). AFs
are given for the LW clear-sky forcing, the SW clear-sky
forcing, the CRE-derived cloud forcing, and the net forc-
ing. Note that the CRE-derived cloud forcing includes a
component due to cloud masking effects. Error bars repre-
sent the standard deviation of the model range.
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average in this one CMIP3 model. The AFs calculated from
the two methods could diverge if the integration continued
beyond 2000 out to 2100. Nevertheless, this comparison
gives some confidence that differences between the FT06-
updated AF and other AF estimates are comparable and
not affected by an error associated with possible climate
sensitivity drift with the FT06-updated methodology.

4.2. Representing Cloud AF Using CRE-derived AFs

[17] To test the CRE-derived AF estimates and examine if
they arise from a rapid adjustment of cloud or from cloud
masking, cloud-induced radiation anomalies can be computed
directly from cloud anomalies diagnosed by the ISCCP simu-
lator [Klein and Jakob, 1999; Webb et al., 2001] in combina-
tion with cloud radiative kernels [Zelinka et al., 2012]. The
kernels quantify the impact on TOA radiative fluxes of cloud
fraction perturbations for each of the 49 different ISCCP simu-
lator cloud types. Multiplying cloud fraction anomalies by the
kernels yields TOA radiation anomalies that are purely a result
of cloud changes and are free of any noncloud effects. There-
fore, we refer to the cloud AFs and feedbacks that are computed
from these cloud-induced anomalies as “unmasked,” to be dis-
tinguished from those derived using CRE, which include mask-
ing effects.
[18] To derive cloud AFs, we follow the exact same FT06-

updated procedure as described in section 2, but replace N in
equation (1) with cloud-induced radiative flux anomalies, so
that a is the unmasked cloud feedback. The unmasked cloud
feedback a terms are derived from the abrupt 4xCO2 runs in
Zelinka et al. [manuscript under revision 2012] for the five
models that have archived the necessary diagnostics. The
CRE-derived and unmasked LW, SW, and net cloud AFs
in 2003 for the Historical run are compared in Figure 6.
As expected, the unmasked LW cloud AF is systematically
more positive than the CRE-derived value in every model
(0.56Wm�2 larger on average), and the unmasked SW
cloud AF is systematically less positive or more negative
than the CRE-derived value (0.32Wm�2 smaller on aver-
age). This brings the unmasked negative net cloud AF in
2003 closer to zero (�0.33 rather than �0.57Wm�2) and

Table 2. AFs for Different Scenarios Given at 2003 (2001–2005 Average), 2010 (2008–2012 Average), and 2095 (2091 to 2099)

Adjusted Forcing (Wm�2) for Scenario and Period

Hist
2003

HistGHG
2003

HistNat
2003

Hist NonGHG
2003

RCP 4.5
2010

RCP2.6
2095

RCP4.5
2095

RCP6.0
2095

RCP8.5
2095

ACCESS1-0 1.1 1.4 3.3 6.2
bcc-csm1-1 2.2 2.0 0.1 0.0 2.0 2.5 3.3 4.5 7.0
bcc-csm1-1-m 2.2 2.2 1.9 3.3 4.3 7.0
CanESM2 2.0 2.4 0.1 �0.5 2.2 2.9 4.3 8.4
CCSM4 2.5 2.3 0.1 0.1 2.7 2.8 4.3 5.4 8.3
CNRM-CM5 1.5 2.2 0.1 �0.8 1.2 2.3 3.7 6.9
CSIRO-Mk3-6-0 0.9 1.4 0.1 �0.6 1.0 1.9 2.8 3.4 5.7
FGOALS-s2 2.3 2.8 2.5 4.3 6.5 10.0
GFDL-CM3 1.1 2.9 0.5 �2.2 1.7 3.1 4.2 4.9 7.2
GFDL-ESM2G 2.0 1.9 1.2 2.8 3.9 6.4
GFDL-ESM2M 2.0 2.5 0.2 �0.7 2.2 2.5 3.5 4.9 7.3
GISS-E2-H 2.3 3.2 0.2 �1.0
GISS-E2-R 2.5 3.3 0.2 �0.9 2.5 2.6 4.7 5.9 8.6
HadGEM2-ES 0.8 1.9 0.1 �1.1 1.0 1.7 2.9 4.0 5.9
inmcm4 1.7 1.9 3.8 7.3
IPSL-CM5A-LR 1.9 2.4 0.2 �0.7 1.8 2.2 3.5 4.3 7.1
IPSL-CM5B-LR 1.0
MIROC5 1.6 2.0 3.0 4.5 5.3 8.7
MIROC-ESM 1.1 2.2 0.0 �1.0 1.5 2.8 4.0 5.1 8.2
MPI-ESM-LR 2.1 2.3 2.2 3.9 7.7
MPI-ESM-P 2.3
MRI-CGCM3 1.2 2.1 0.2 �1.1 1.2 2.1 3.6 4.3 7.0
NorESM1-M 1.4 2.3 0.0 �0.9 1.7 2.0 3.6 4.2 7.0
Multimodel
mean

1.7 2.4 0.1 �0.8 1.9 2.3 3.7 4.7 7.4

90%
uncertainty

0.9 0.8 0.2 0.9 0.9 0.8 0.9 1.3 1.8

Figure 5. A comparison of two methods of calculating AF
in the CMIP3 GFDL CM2.1 model. The black line is a
calculation of AF that uses two prescribed SST integration
experiments, with and without forcing agents, and compares
TOA fluxes [Held et al., 2010]. The AF in the red line
employs our FT06-updated method in the same model.
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increases the spread in this quantity among the five models.
That the unmasked net cloud AF is nonzero indicates that
cloud rapid adjustments are physically occurring and are
tending to reduce the effective climate forcing. The differ-
ence between the unmasked and CRE-derived cloud AFs
quantifies the amount of cloud masking in the section 3 esti-
mates of AF. The net cloud masking effect at the end of the
Historical run in these 5 models is systematically positive

and averages to 0.24Wm�2. In agreement with expectations
from section 3, this is roughly half of the value expected for
doubling of CO2.
[19] The SW cloud AF dominates over the LW cloud AF

in every model, in agreement with previous studies. How-
ever, Zelinka et al. [manuscript under revision, 2012] find
a positive unmasked SW rapid adjustment cloud AF under
4xCO2 for all five models, which raises the question of
why most (three out of these five) models give negative
unmasked SW cloud AFs in 2003 given that CO2 is the
dominant forcing agent in the latter part of the Historical
run. This may be evidence that the non-CO2 forcing agents
(which are present in the Historical run but not in the ideal-
ized 4xCO2 runs) cause significant cloud adjustments, even
if they are not the ones responsible for most of the unad-
justed forcing (just like cloud feedbacks are responsible for
most of the spread in climate feedback, whereas water vapor
is responsible for most of the ensemble mean feedback). Pre-
vious studies have found large cloud forcing from rapid
adjustments associated with perturbations to the solar con-
stant, black carbon, and ozone [e.g., Hansen et al., 2005;
Bala et al., 2009; Ban-Weiss et al., 2011], but these cloud
forcing vary considerably between the location and magni-
tude of the forcing agent and the model. On the other hand,
our diagnosed cloud AF could be an artefact of the assump-
tions inherent in the two-step regression technique.

4.3. Using the Historical-nonGHG Scenario as a Proxy
for Aerosol AF

[20] To test the aerosol AF estimate, we examined fixed-
SST experiments existing in the CMIP5 archive. In these
experiments, individual forcing agents have been intro-
duced; present-day aerosol perturbation experiments exist

−2 −1.5 −1 −0.5 0 0.5 1

SW 

LW 

Net

Cloud Adjusted Forcing, 2003

Adjusted Forcing (W m−2)

CRE−derived
Unmasked
Masking

Figure 6. Multimodel mean and standard deviation of the
global-mean cloud AFs for the unmasked (i.e., cloud kernel-
derived) AF and CRE-derived AF. Cloud AFs are given for
LW, SW, and net variables for five GCMs averaged over years
2001–2005 of the Historical simulations. Unmasked minus
CRE-derived cloud AFs gives an estimate of the cloud mask-
ing of the forcing.

Table 3. Temperature Changes Since Preindustrial Times for Different Scenarios Given at 2003 (2001–2005 Average), 2010 (2008–2012
Average), and 2095 (2091 to 2099)

Temperature Change Since Preindustrial (K) for Scenario and Period

Hist
2003

Hist GHG
2003

Hist Nat
2003

Hist NonGHG
2003

RCP 4.5
2010

RCP2.6
2095

RCP4.5
2095

RCP6.0
2095

RCP8.5
2095

ACCESS1-0 0.6 0.8 2.7 4.8
bcc-csm1-1 1.2 1.4 0.1 �0.3 1.4 2.0 2.5 3.1 4.6
bcc-csm1-1-m 1.7 1.8 2.0 2.7 3.2 4.8
CanESM2 1.0 1.6 �0.1 �0.4 1.2 2.3 3.2 5.5
CCSM4 1.3 1.3 0.0 �0.1 1.3 1.9 2.7 3.2 4.7
CNRM-CM5 1.0 1.3 0.1 �0.4 1.1 1.8 2.7 4.5
CSIRO-Mk3-6-0 0.7 1.2 0.2 �0.7 0.7 1.9 2.5 2.9 4.8
FGOALS-s2 1.8 2.0 2.1 3.0 4.4 6.6
GFDL-CM3 0.3 1.8 �0.1 �1.4 0.9 2.1 2.9 3.5 5.1
GFDL-ESM2G 0.8 1.0 0.8 1.6 2.2 3.6
GFDL-ESM2M 0.8 1.0 0.0 �0.2 0.8 1.3 1.8 2.3 3.5
GISS-E2-H 1.2 1.4 0.1 �0.3
GISS-E2-R 1.1 1.2 0.2 �0.3 1.1 1.4 2.2 2.6 3.7
HadGEM2-ES 0.5 1.5 0.0 �1.0 0.7 1.7 2.8 3.6 5.2
inmcm4 0.8 0.9 2.0 3.5
IPSL-CM5A-LR 1.4 1.9 0.2 �0.7 1.5 2.3 3.3 3.8 5.8
IPSL-CM5B-LR 0.9
MIROC5 0.6 0.8 1.4 2.1 2.5 4.0
MIROC-ESM 0.7 1.3 0.0 �0.6 1.0 2.3 3.1 3.7 5.5
MPI-ESM-LR 1.0 1.2 1.5 2.5 4.6
MPI-ESM-P 1.0
MRI-CGCM3 0.6 1.1 0.1 �0.6 0.5 1.3 2.1 2.4 3.9
NorESM1-M 0.7 1.2 �0.1 �0.4 1.0 1.4 2.2 2.5 4.0
Multimodel mean 1.0 1.4 0.1 �0.5 1.1 1.8 2.5 3.1 4.6
90% uncertanity 0.6 0.4 0.2 0.6 0.6 0.7 0.8 1.1 1.4
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for three models, and their AFs can be compared to the
FT06-updated AFs, taken from the Historical-nonGHG
simulations. The fixed-SST AFs are taken as the difference
of TOA fluxes between a forced and a preindustrial control
experiment (as in equation (3)). These AFs are given in
Table 4, which also shows AFs from the FT06-updated
method, repeated from Table 2. The AFs derived by the
two methods are appreciably different, indicating that other
nongreenhouse forcing agents, such as land-use and ozone,
as well as the aerosol signal affect the Historical-nonGHG
simulations.
[21] This section has shown that it is not appropriate to

represent aerosol AF by the Historical-nonGHG residual
scenario and that CRE-derived cloud AFs may not be rep-
resentative of actual AFs from rapid cloud adjustment.
Nevertheless the net AF does correctly capture both RF
and cloud adjustment and could be expected to match other
AF estimates over 1850–2100 simulations and can there-
fore provide useful insights into the causes of global-mean
temperature change, examined next.

5. Intermodel Temperature Spread

[22] This section uses the AFs diagnosed in section 3 to help
understand the gross characteristics of the CMIP5 models’
surface temperature response. In particular, we focus on how
differences in forcing and climate sensitivity affect the inter-
model spread of surface temperature change.
[23] A model’s historical temperature trend depends on

forcing, climate sensitivity, and ocean heat uptake. As aerosol
forcing and climate sensitivity are uncertain, modeling centers
could be modifying their controlling factors to reproduce the
observed globally averaged 20th century temperature trends
as well as possible. There was some evidence of a trade off
between climate sensitivity and forcing in CMIP3 and earlier
generations of models [Kiehl, 2007; Knutti, 2008]. Figure 7
reproduces Figure 1 of Kiehl [2007] for CMIP5 models and
finds considerably smaller correlation than in either the
CMIP3 analysis of Knutti [2008] or the older model analysis
of Kiehl [2007] that are reproduced as blue and red symbols,
respectively. The R2 fit in CMIP5 models is slightly smaller
than in CMIP3 models and is not significant. The green
squares show a subset of the CMIP5 models that match the
observed century-scale linear temperature trends (0.57 to
0.92K increase over 1906–2006, IPCC [2007]). This subset
reproduces the Kiehl [2007] fit almost perfectly. The CMIP5

models that are not in this grouping tend to have a larger
positive AF compared to those that match observations and
thereby overestimate the observed temperature trend. Varia-
tion in the magnitude of the CO2 AF affects both the AF in
2003 and the equilibrium climate sensitivity (ECS). Figure 8
shows that both AF in 2003 and the 2xCO2 AF are positively
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Figure 8. Scatterplots of (a) Historical 2003 AF against
a and (b) 2xCO2 AF against a.
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Figure 7. The relationship between 2003 AF and ECS in
CMIP5 and earlier generations of models. CMIP3 numbers
are taken from Knutti [2008] and older models from Kiehl
[2007]. The solid line fits are made using the inverse rela-
tionship between forcing and climate sensitivity postulated
by Kiehl [2007]. Data are shown for all CMIP5 models as
black diamonds, using the Historical simulation. A subset
of CMIP5 models is shown by the green squares that are
within the 90% uncertainty range of the observed 100 year
linear temperature trend. These models have 1906–2005
linear trends between 0.56K and 0.92K, the IPCC [2007]
90% uncertainty range. R2 values are computed with respect
to the nonlinear fit shown.

Table 4. AFs Calculated for Aerosol-only Perturbations in Fixed-
SST Experiments Compared to AFs for 2003 From the FT06-
updated Historical-nonGHG Residual Scenario

Model

Net Clear Sky Cloud: CRE Derived

Forcing (Wm�2)

Fixed SST

CanESM2 �0.86 �0.59 �0.28
CSIRO-Mk3 �1.41 �1.04 �0.37
HadGEM2-ES �1.23 �0.35 �0.88

FT06-updated residual
CanESM2 �0.51 �0.33 �0.18
CSIRO-Mk3 �0.61 �0.59 �0.02
HadGEM2-ES �1.12 �0.66 �0.46
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correlated with a [see also Andrews et al., 2012b]. This means
that models with smaller climate feedbacks (i.e., higher sensi-
tivities) tend to also have smaller CO2 AFs which would act to
converge models towards similar Historical temperature
responses.
[24] The transient response of a model depends on ocean

heat uptake as well as the ECS. If modelling groups are
adjusting forcing to match the observed temperature trends
then one might expect that the correlation between 2003
AF and the transient climate response (TCR) to be larger
than the correlation between 2003 AF and ECS. However,
these correlations are �0.11 and �0.41, respectively, and
neither is significant at the 5% level.
[25] The causes of model spread can be further examined

by using the approach of Gregory and Forster [2008],
whereby the global-mean temperature change under a sce-
nario of continually increasing forcing is:

ΔT ¼ F=r (4)

where the climate resistance r=a+ k, k being the ocean
heat uptake efficiency.
[26] The estimates of r and k from the 1% per year CO2 in-

crease simulations are given in Table 1. The a values used are
derived from the 4xCO2 abrupt integration from section 3 and
are also presented in Table 1. The a values derived from the
1% per year CO2 increase integration (not shown) were very
similar to values diagnosed from the 4xCO2 abrupt integration
[see also Kuhlbrodt and Gregory, 2012]. Figure 9 examines
howAF in 2003, r, a, and k influence the temperature change.
As expected, AF / r (Figure 9a) explains most of the variation
in temperature, and AF (Figure 9b) is by far the most impor-
tant influence. Models with a Historical AF in 2003 that is
more positive than about 2 Wm�2 typically have a tempera-
ture change that is larger than observed. In contrast, r, a,
and k (Figures 9c, 9d, and 9e) show no systematic tendency
for affecting temperature. For example, the HadGEM2-ES
and GFDL-CM3 models exhibit two of the smallest tempera-
ture changes but also have two of the smallest a values (high
ECS). Therefore, their small temperature change results pri-
marily from a small forcing. These results suggest that AF in
some models may be too positive to accurately reproduce
historic temperature trends.
[27] Multiple linear regression was used to model the

CMIP5 spread of temperatures using explanatory variables
of AF, a, r, and k from Tables 1 and 2. Of these, the strongest
correlation was found between AF in 2003 and a at 0.62 (see
Figure 8a). r and k were somewhat positively correlated with
F, but not by as much (0.45 and 0.02 respectively). These cor-
relations mean that whilst models with larger AF generally
have larger feedback parameters (smaller sensitivities) and
more efficient ocean heat uptake (larger k), no clear pattern
of compensation emerges between climate model feedback
parameters, or ocean heat uptake, and AF (see also Figure 9).
[28] Figure 10 compares r derived from two RCPs with in-

creasing forcing over 2000–2050, with r derived from the 1%
per year CO2 increase simulation that is used to define TCR.
Estimates of r are generally well correlated between the
RCP scenarios and the 1% per year CO2 increase simulation.
k values are not shown but follow a similar pattern. The 1%
per year run has a larger forcing increase than RCP 8.5, and
models have a consistently larger k and r for this scenario than
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those derived from the other scenarios. Likewise, RCP8.5,
compared to RCP 4.5 has a larger forcing increase and larger
k and r over the period. A more rapid forcing increase would
be better at maintaining stronger vertical temperature gradients
within the ocean. These would be expected to be more effi-
cient at transferring heat from the surface to the subsurface
ocean, leading to a larger k and, therefore, a larger r value.

[29] Figure 11a shows how the standard deviation in AF
and temperature change projections between models varies
with time for the RCP 8.5 scenario. Note the similarity of
the two quantities, consistent with the expectation from
equation (4) that temperature change is proportional to AF
if climate resistance is constant. The coefficient of variation
(standard deviation/mean) is largest for the present day
(Figure 11b) because the standard deviation does not grow
as rapidly as the model mean.
[30] Multiple linear regression was performed on the

model temperature change in 2010 and 2095, regressing
the temperature change across models against their AF in
the same year and a. Examining model spread, an across-
model regression of temperature change simultaneously
against a and AF gave a good fit to the data for both 2010
and 2095 (see Figure 12). In RCP4.5, this regression explained
72% of the variation in temperature change and slope coeffi-
cients for both AF and a were statistically significant at the
0.1% significance level. For 2010 data, AF explained the larg-
est proportion of variation in the temperature change (49%)
with a improving the fit across the full range of temperature
changes. In contrast, a explained the largest proportion of var-
iation in the temperature change in the 2095 data (42%) with
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Figure 12. Modeled temperature changes for 2010 and
2095 for the RCP 4.5 scenario, compared to fitted values
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lationship. The fitted values are for the linear regression with
both a and AF included as explanatory variables.
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Figure 11. The (a) standard deviation and (b) coefficient of
variation (standard deviation/mean) between models for tem-
perature (black) and AF (red) as a function of time for the
RCP8.5 scenario. Note the different time scales on the x axis.
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forcing improving the fit particularly for data points with more
extreme (both large and small) temperature changes. Tempe-
rature change is much more sensitive to variations in a in the
2095 data than in the 2010 data, with a regression slope coef-
ficient of 1.45� 0.22 for 2095 compared to 0.56� 0.21 for
2010. There was no significant difference in sensitivity to
AF between 2010 and 2095.
[31] This analysis shows that large forcing differences be-

tween models today give a large spread in model tempera-
ture change. This is partly due to the current strong aerosol
forcing that varies considerably between models, but this
aerosol forcing is projected to weaken. Any relationship be-
tween a and AF has little effect on model spread, and there
is no indication of models herding towards similar 20th cen-
tury temperature trends. In the future, the role of forcing
remains important, and, therefore, differences in forcing will
need to be considered when comparing model simulations
within a given scenario.

6. Discussion and Conclusions

[32] The estimated anthropogenic AF of 1.6Wm�2� 0.9
and the estimated greenhouse gas AF of 2.4� 0.8Wm�2

in 2003 agree well with the last IPCC report and more recent
estimates of RF, even though the definition of the two for-
cings differ. For example, Forster et al. [2007] estimated a
total anthropogenic forcing of 1.6� 1.0Wm�2 in 2005,
and Skeie et al. [2011] estimated a year 2000 greenhouse
gas RF of 2.5Wm�2.
[33] The total AF from CMIP5 models, estimated to be

1.7� 0.9Wm�2 in 2003, grows to 1.9� 0.9 Wm�2 in
2010. In contrast to the 2007 IPCC estimate, where the
spread was principally attributed to aerosols, the spread
found here comes from both nongreenhouse gas forcing
agents and differences in the rapid adjustment of cloud to
greenhouse gases.
[34] The AF estimates made in this paper include a signifi-

cant cloud component that acts to make the AF smaller than
the expected RF. Because of this, the projected 2095 AFs are
lower than the corresponding estimate of RF from the original
RCP scenario. However, they agree well with the effective forc-
ing estimate of the integrated assessment models [Meinshausen
et al., 2011]. Consistent with a lower AF, Andrews et al.
[2012b] found that CMIP5models had a 4xCO2 AF that ranged
between 5.6 and 8.5Wm�2 and was, on average, 0.4Wm�2

lower than the expected RF of 7.4Wm�2. Figures 1 and 3 in
Andrews et al. [2012b] suggest that rapid adjustments within
this framework are not necessarily an immediate physical cloud
change but could also be associated, in some AOGCMs, with a
nonlinear response in SW CRE principally found over oceans.
This is further supported in Zelinka et al. [manuscript in prepa-
ration, 2012] who show that unmasked cloud AFs diagnosed
using this linear framework (i.e., the linear regression line inter-
cept) tend to be negatively biased with respect to those diag-
nosed in fixed SST and perturbed CO2 simulations. These
caveats limit our ability to interpret RF and AF differences as
a genuine cloud adjustment.
[35] Generally, it would be useful to test the FT06-updated

approach under a wider set of models and scenarios to
better quantify and understand its errors, quantify differ-
ences with other AF methodologies, and quantify the role
of rapid adjustment.

[36] Issues remain around the definitions of AF and the
assumption of constant climate sensitivity within a transient
forcing framework. The forcing/climate sensitivity concept
developed essentially for slab-ocean models at equilibrium
obviously does not provide a complete picture of climate
evolution in today’s nonlinear AOGCMs. Nevertheless, we
argue that forcings are useful for understanding why models
differ in their gross behavior and forcings explain the spread
of RCP projections rather well. Careful analysis of the
Earth’s energy budget examining climate response on multi-
ple timescales is recommended.
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