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Floods, major formative drivers of channel and floodplain structure and associated

riparian and instream communities1,2, are increasing in intensity and magnitude with

climate change in many regions of the world 3,4. However, predicting how floods will affect

stream channels and their communities as climate changes, is limited by a lack of long-term

pre-flood baseline datasets across different organismal groups. Here we show salmon,

macroinvertebrate and meiofauna communities, monitored for 30 years in a system

evolving due to glacier retreat, were modified significantly by a major rainfall event that

caused substantial geomorphic change to the stream channel. Pink salmon, reduced to one

tenth of pre-flood spawner densities, recovered within two generations. Macroinvertebrate

community structure was significantly different after the flood as some pioneer taxa, which

had become locally extinct, recolonized while some later colonizers were eliminated. The

trajectory of the macroinvertebrate succession was reset toward the community structure

of 15 years earlier. Meiofaunal abundance recovered rapidly and richness increased post

flood with some previously unrecorded taxa colonizing. Our findings demonstrate

mMarkedly different responses to a this major flood event according to the organismal

group suggest a need for caution when applying general aquatic ecosystem theories and

concepts. A better understanding of the response of different groups to floods is thus

essential for developing appropriate strategies for river ecosystem management under

changing climatic regimes.

The projected increase of high magnitude rainfall events with climate change in many

regions of the world3,4 will increase alter the role of floods in structuring riverine habitat and

their communities. However, a full understanding of the effects of floods across a range of

organismal groups has been hindered by the lack of long-term pre-disturbance data which would

permit insights into the interaction of community dynamics, successional processes and stream
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channel geomorphology. Changing flow regimes influence channel development5, and,

geomorphological complexity in new channels evolving after deglaciation, geomorphological

complexity reaches a maximum in streams 120 to 160 years old6. The colonization and

subsequent succession of biological communities in such ecosystems is typically considered a

directional process7 driven by biotic (e.g. facilitation, inhibition, dispersal) and/or abiotic (e.g.

temperature, moisture, pH) processes8. While glacier retreat driven by climate warming is clearly

a strong driver of ecological succession9, predicted changes in precipitation can be expected to

introduce more stochastic events into flow regimes, the effects of which will be harder to predict.

Some impacts of changing flow regimes on floodplain vegetation succession are understood10,

but effects of floods on instream community succession in evolving stream channels have largely

been ignored. In addition, the effects of floods, in the absence of anthropogenic modifications to

flow or other stressors, have rarely been studied1,11.

Biotic responses to flood events are dependent on the resistance (ability to withstand a

disturbance) and resilience (ability to recover from disturbance) of organisms. Flood timing is

also of major importance in the context of organism life histories. For example, large floods

during autumn and winter can cause high mortality of anadromous salmonids by scouring eggs

from redds12. Among invertebrates, small body size, streamlined shape and substrate attachment

may convey resistance, while rapid life cycles and generalist resource use convey resilience13.

Studies of how different organismal groups respond to flood disturbances are lacking though,

despite comparative understanding being essential for the development of balanced river flow

and floodplain management strategies under changing climate regimes.

In 1978, a study was initiated at Wolf Point Creek (WPC), a newly formed stream system

sourced from a basin with ~70% glacial ice cover (58º59’49.84”N, 136º9’57.05”W) in Glacier

Bay, southeast Alaska. Primary succession has been ongoing following subsequent glacial
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retreat, with permanent ice being absent since 2004. We examined this unique record that has

continued to the present day to evaluate the degree to which a major rain on snow event and

associated flood, which occurred in November 2005, influenced the directional trend of stream

ecosystem development and primary successional processes in the evolving channel. Over 400

mm of rain fell over a four day period (Nov 21-24) including over 130 mm on a single day.

Intensity of rainfall over 24 h indicated this event was > 1-in-a-100 year occurrence

(Supplementary Figure 1); its severity was compounded by storm duration (xx h) and the

existence of catchment snow cover. A comparison of river channel cross-sections before and

after the flood indicated width decreased from 12.4 to 7.8 m and incised by a maximum of 1.2 m

from the active channel surface. Up to 0.7 m depth of sediment was deposited where water

flowed originally (Figure 1a and b). Cross section measurements in subsequent years indicate

continued channel deepening and no recovery to its previous profile (Supplementary Figure 2).

The deepening of the channel and deposition of sediment caused considerable mortality

to incubating pink salmon eggs, such that estimates of returning pink salmon (Oncorhynchus

gorbuscha) spawners in 2007 (i.e. 2-year life cycle) were <500 compared to the >14,000 in late

summer 2005 before the flood (Figure 2). However, in 2011 (i.e. within two generations) the

number of pink salmon spawners had recovered to pre-flood levels (>14,000; Figure 2). Juvenile

coho (Oncorhynchus kisutch) salmon densities were also reduced significantly from a mean

Catch Per Unit Effort (CPUE) of 9.3 (2003-2005) to 0.6 in 2006 after the flood. Densities

remained low in 2007 but recovered to a mean CPUE of 12.4 juvenile coho for the years 2008-

2010. These findings illustrate the rapidity with which Pacific salmon populations are able to

recover, and demonstrates their resilience to high magnitude flow disturbances in the absence of

direct anthropogenic stressors.
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Changes in abundance and addition/loss of taxa within the macroinvertebrate community

over the 30 year period were evident from a Non Metric Multidimensional Scaling (NMDS)

analysis (Figure 3a). Two clear pre-flood successional trajectories groupings were notable: (i)

years 1978 to 1994 as richness increased, and; (ii) years 1996 to 2005 due to the loss of early

colonizing taxa and the addition of larger bodied forms. A distinct ‘reset’ of the

macroinvertebrate successional community was evident in the years immediately after the flood

(2006 to 2008) with these years on axis 1 lying between the two pre-flood- groupings.

Community composition was significantly different after the flood (ANOSIM, r2 = 0.63; P <

0.01) even though overall numbers of taxa were similar.

Immediate post-flood changes involved the Chironomidae (non-biting midge)

community. Tanytarsus, typical of more stable habitats, was markedly reduced.

Paratrichocladius, the only chironomid present throughout the successional sequence14, was the

most resistant taxon with similar abundance both pre- and post-flood and was dominant in the

post-flood community. Diamesa spp., typically considered fugitive species and poor

competitors15, became extinct in 1992 but recolonized in 2006 and 2007 following the post-flood

reduction in abundance of potential competitors (e.g. Pagastia partica) and predators. As

macroinvertebrate abundance increased, Diamesa were absent from the community in 2008. The

occurrence of these fugitive taxa depends upon flow disturbances at the reach scale and this

finding illustrates the role of major flood events in enhancing some aspects of stream

biodiversity. Although overall taxa richness was not influenced markedly by the flood (Figure

4a), the relatively large bodied Dytiscidae beetles, the freshwater shrimp Gammarus and the

caddis fly Ecclisomyia, which colonized post 1996, were lost from the community and had not

recolonized by 2008.
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Total macroinvertebrate abundance post-flood was reduced by 78-92 % (mean abundance

3990 m-2 for 2001 to 2004, to 330 and 898 m-2 in the spring and summer of 2006, respectively).

Recovery of abundance was not evident by 2008 attaining only 1082 m-2 (Figure 4a). Similar

reductions in abundance have been reported in other studies following floods but rapid recovery

to pre-flood levels abundances have typically occurred16,17. Blackflies (Simuliidae) showed the

highest reduction in abundance, from 5454 m -2 in 2005, to 80 m-2 by 2006. By 2008 blackfly

densities were still only 123 m-2.

The meiofaunal response differed from the macroinvertebrates, with taxonomic richness

showing a reduction during successional development from 1994 to 2004 (Figure 4b) but

increasing significantly post-flood when several taxa were collected for the first time. New

colonisers included the harpacticoid copepod Bryocamptus zschokkei and the chydorid

cladocerans Chydorus and Pleuroxus. Other taxa collected post-flood had been absent from the

WPC meiofaunal assemblage for some time (e.g. the harpacticoid Maraenobiotus brucei for six

years previously). Post flood meiofaunal abundance in summer 2006 and 2007 (5896 m-2 and

8780 m-2 respectively) was similar to pre-flood (mean 5830 m-2 in summer 2003-4 potentially

explained by a combination of resistance (utilisation of in-stream refugia) and resilience (rapid

reproduction) traits18,19.

Changes across the entire meiofaunal assemblage were evident from the NMDS analysis

(Fig. 3b). The pre-flood successional trajectory along axis 1 was reset with post-flood points

(2006-2008) lying towards the centre of the previous trajectory. Unlike the macroinvertebrate

community, ANOSIM did not show significant changes in meiofaunal assemblage composition

pre- and post- flood consistent with our suggestion that most meiofauna exhibited high resistance

and resilience to this major flood event. Nevertheless, the post-flood meiofaunal assemblage

included previously unrecorded species. This colonization may result from the removal of fine
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sediments during the flood. Previous work in Glacier Bay indicated copepod species richness

increased as the range of particle sizes within the stream bed decreased, likely due to more open

interstitial spaces18. Fine glacial sediments are unlikely to accumulate again in the substrate of

WPC as their major source, the remnant ice, has now ablated.

This study has provided novel insights into the resistance and resilience of riverine

communities to major flood events, demonstrating different responses between taxonomic

groups with body size considered a major contributing factor. Larger bodied juvenile salmonids

and some macroinvertebrates demonstrated lower resistance but high resilience, whereas smaller

bodied meiofauna showed both high resistance and resilience. Foraging habit also appeared a

factor in resistance, with blackfly larvae that inhabit the surface of rocks, the most affected

macroinvertebrate group despite their relatively small body size/mass. Most groups demonstrated

high resilience to disturbance by recovering within three years although the abundance of some

common macroinvertebrate taxa remained low. Black flies in particular had not recovered to

high pre-flood abundances by 2008, perhaps because of the altered hydraulics (deeper channel,

swifter flow, less stable substrate). The persistence of lower macroinvertebrate abundance may

have wider implications in terms of food availability for juvenile salmonids and other predators.

Marked reductions in salmonid populations due to floods have been reported

elsewhere20,21 and most studies report recovery within five years following a pulse disturbance17.

Timing of the flood relative to the spawning season influences recovery times17 as does its effect

on habitat complexity22. Although juvenile coho salmon were markedly reduced, ocean adults

from previous year classes spawned to rebuild populations despite lower habitat complexity.

With For pink salmon, the timing of the flood clearly would have eliminated a large number of

eggs reducing markedly the numbers of returning adults in 2007. However if a small population

of pink salmon can survive to return as spawning adults, this study has illustrated that numbers
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can increase rapidly, providing habitat conditions are suitable and no additional stressors are

acting on the ecosystem. This ability appears to be a function of the evolutionary history of

Pacific salmon, which allows them to survive in dynamic environments12. These findings have

significant positive implications for the conservation of threatened Pacific salmon populations

and given their relationship ability to recover fromto catastrophic events23.

A major flood effect of the flood on the macroinvertebrate community was reduced

abundance of potential competitors enabling previously extinct pioneer taxa to recolonize.

Clearly this successional reset would have differed had the flood occurred earlier in the stream’s

development, when the community was principally dominated by pioneer Chironomidae.

Interestingly, the major channel changes observed immediately post flood were associated with

clear changes to the biota, but the channel has continued to deepen (Supplementary Figure 2).

This has not influenced the recovery of the majority of the meiofauna, macroinvertebrates and

fish species in this system indicating a large degree of biological independence from

geomorphological recovery. However, the continued post-flood absence of a number of

macroinvertebrate taxa (e.g. beetles, freshwater shrimp and a caddisfly) can be attributed to the

loss of slower flowing habitats, some of which had been created by large-wood accumulations

which were removed or repositioned by the flood. These taxa may take a considerable time to

recover either because development of this habitat is a long term process and/or dispersal

constraints limit colonization potential24. Floods can have a major influence in recruiting wood

into stream channels12 but in streams with immature riparian forests, such as WPC, the small size

and lack of complexity of coarse large wood y debris accumulations limits its hydrogeomorphic

influence6. The low abundance and complexity of instream wood and other roughness elements,

plus the relatively unconsolidated bed, is likely to account for the post-flood deepening and

constriction compared to widening that might be expected in more developed channels25. If
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climate change causes the expected increase in the frequency of high magnitude rainfall and

associated flood events4 then this may constrain ecosystem development in evolving stream

channels.

Maintaining and increasing the resistance and resilience of freshwater organisms and

protection of riverine ecosystem functions functioning in the face of projected climate change is

a key global challenge. This study of how an anthropogenically unimpaired system has recovered

from a major flood provides some key insights for river managers. The implementation of

mitigation strategies such as maintaining habitat heterogeneity, preserving remnant population

refuges and proximal colonizing sources, and the removal of migratory obstructions (e.g. for

salmonids) can maximise the resilience of aquatic biota to changing flow regimes associated

with climate change.

Methods

The mouth of WPC was uncovered by ice retreat in the mid-1940s and the stream, fed from Lake

Lawrence, is now approximately 2 km in length and flows over glacial moraine, till, and outwash

deposits. Dolly Varden (Salvelinus malma) were the first fish to colonize in 1987, followed by

pink and coho salmon in 1989. The continued decrease in glacial ice cover after this time is

associated with significant increases in stream temperature and decreases in turbidity. By 1997

(<10% glacierization), alder and willow were dominant with riparian plants exceeding 3 m in

height and pink salmon numbering >12,000 individuals24. In 2004, glacial ice had almost

completely disappeared and the upper terraces supported increasing numbers of cottonwood trees

(Populus trichocarpa) along with the occasional Sitka spruce (Picea sitchensis).

From 1978, macroinvertebrates (animals > 1 mm) were collected in August or early

September from a representative sampling station located 0.75 km from the stream mouth using
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a Surber net (ten replicates; 330-μm mesh) with the exception of 1979-1985, 1987, 1995 and 

2003. From 1994 meiofauna (animals > 63 µm < 100 µm) were collected in summer (June –

August) with the exception of 1995 and 1999 (collected mid-May) and 2005 (no sample).

Samples were collected from the same sampling station with a Surber net (five replicates; 63-μm 

mesh). Invertebrates were preserved in 70% ethanol and later separated in the laboratory from

detritus and inorganic matter. Macroinvertebrates were identified using Merritt and Cummins26

and Chironomidae larvae were identified using methods outlined in Milner et al.27. Meiofauna

were identified using Thorp and Covich28 and Smith29. Adult pink salmon spawners were

estimated using the average of counts by two observers walking the length of the stream, and

juvenile coho salmon densities with minnow traps baited with salmon eggs and fished for 2h27.

All statistical tests were undertaken using Minitab v15. Non Metric Multidimensional

Scaling was undertaken using PRIMER v6. Each year was included in an ordination using Non

Metric Multidimensional Scaling (NMDS). Analyses were run with arcsin transformed

macroinvertebrate and meiofauna log10 (abundance+1) data. Both analyses were conducted

using Bray-Curtis dissimilarity matrices and 2000 restarts. One-way analysis of similarity

(ANOSIM) tested the null hypothesis that differences in stream meiofauna and

macroinvertebrate community composition between year groups before and after the flood (i.e.

1999-2004 v 2006-2008 for meiofauna, and 1996-2005 v 2006-2008 for macroinvertebrates)

were not different to those within year groups. ANOSIM was undertaken on log10(x+1)

transformed taxon abundance (mean) per year because temporal dynamics were the key focus of

this analysis. Analyses were run using Bray–Curtis (BC) dissimilarity scores, with 10 000

permutations and Bonferroni corrections using past Past 2.0530.
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Figure legends

Figure 1 (a) Photographs of tThe pre-flood channel before (August 2004) changed markedly and

after (May 2006) the November flood in November 2005. Although at discharges are is normally

higher in May the dramatic reduction in channel width is illustrated and supported by, (b) Cross

cross sections of the representative sample sampling reach in Wolf Point Creek before and after

the flood. Broken lines illustrates comparative water levels.

Figure 2 Adult pink salmon spawner estimates in Wolf Point Creek from 1978 to 2011 showed a

marked post-flood reduction but a rapid recovery.

Figure 3 NMDS plots for (a) macroinvertebrates from 1978 to 2008 using mean numbers from

10 replicates collected in August/early September, and (b) meiofauna from 1994 to 2008 using

mean numbers from five replicates collected in summer (or occasionally mid-May). The post-

flood years are highlighted within the boxes and the arrows indicate highlight marked shifts in

community structure between groups of years.

Figure 4 Taxa Taxon richness and log total abundance for (a) macroinvertebrates from 1978 to

2008 using mean numbers from 10 replicates collected in August/early September, (b)

meiofauna from 1994 to 2008 using mean numbers from five replicates collected in summer (or

occasionally mid-May).
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