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INTRODUCTION space. The approach is related te currasnt
work on quadratic optimisation of large

Multipass processes (1) are a new class of scale systems and the underlying concepts rave

system which were introduced by Edwards (2) previously found successful application in the

to represent processes which can be charac- linear guadratic problem for time delay |

terised by repetitive action. Such systems systems (5).

are illustrated by consideration of machining

operations where the material, or workpiece, i I ;
LINEARLY CONSTRAINED QUADRATIC OPTIMISATION

involved is processed by a seguence of passes
of the processing tool and exhibit the
property that the state of the system
generated on the (n-1)-th pass acts as a

Linearly constrained quadratic optimization
problems take the general form

forcing term on the n-th pass and, hence, in (]| !F . L s T B w 0
contributes to the dynamics of this pass. fatn x SoHy B OE B & Ln de (=
The rolling of metal strip, the ploughing of 7
agricultural land and the longwall cutting where x is regarded as a point in a real
of coal are all examples of multipass pro- Hilbert space H(with inner product <., .> ard
cesses (2). : L .
induced norm || - || = <., .>?) and L
Until recently, there has been no available 1l £ 1 & m, are bounded linear operators
control theory for multipass processes and mapping H into real Hilbert spaces H_,
work to date (2-3) has emphasised frequency ¥ £ g @ ) S .
domain considerations of stability and = 1dk m, rfspe;t;ve%gi fA resent pcﬁcr (“}
control. In this paper, the linear guadratic eitin S.ET = girt, Al Df ornt e\ca%cflatlo“
problem for differential multipass processes 2 gEsLtE SHIEIGDS 0F Sonstbalig Ok
i oy ferential-algebraic systems to give a
s considered. . . .
systematic computational procedure for the

Linear differential multipass processes are solution of problem (4).

3 d b tate equations of the for
fanelle ¥ istate egiatio “ S SRR Defining the closed and convex linear

X, (£) = Ax, () + Bu (£) + cx_, (8) varieties
D, ={xe€H: Lx=D>b.}71gi sz m
te[0.1], k=1, 2, :.., W, (1) 1 . '
with boundary conditions then the following theorem (5) provides an
iterative solution of problem (4) as the weakx
—. = limit of & sequence of optimisation problems.
x (&) = £(t), te (o, 7], x (o) = x, . 2 K k
' Theorem 1 Suppose that D.nD.n...nD_ 1is
k=1, 2, ..., N, (2) _ 12 e
nonempty and define the sequence of linear
varieties

where A, B and C are real nxn, nx¢ and nxn

matrices, respectively (& < n). The quad-

ratic optimisation problem for such systems k
takes the form

i D(j—l)mod(m-l) 4 g 0d 2 1.

. T P’ Then the sequences Tié{rl(i)e rg(i)'
) _ T
min J = k k§1 J {xk(t)ka(t) i =1, 2, defined by the relations
= o ;
(1) (2) K

+ u:‘:(t) Ru, (t) }dt (3) TR B omp e el e

subject to the constraints (1) and (2), where !Erl(l}HZ = mn1{|{rH2 i re Dl}
Q0 and R are real, positive definite nxn and
Lx% matrices, respectively. Although casual, 5
feedback solutions to this problem have |ir Q)‘fzh)u
recently been found (4), they present severe
numerical problems. (2)

|

2 3
2:111,11’1{“:—1‘;1)“ rre K i

W
=

(2)f|2

W
o

‘ (& min{ || s-r s€ Dt
This paper presents an iterative technique
for computing the optimal state and control . (UI|ZA*= i () gz 6, .

trajectories xk(-), uk(-), k=1, 2, ..., N, ||5E

F7solving problem (1) - (3). The computed
control is semi-closed loop in nature and the L
algorithm is based on recently developed 13 Az . b % Ly
;“ideas (5) for the solution of linearly con- (1) (1)
Htstrained minimum norm problems in Hilbert ri+1-r2(u + Aﬁs;—r: I



are well-defined and converge weakly to the

unique point r_g DlnDzn e # an solving

problem (4). Moreover, if L; 1s compact,
{L_r_(l}} converges strongly to b, and,
ivj g% i i

if H is finite-dimensional, both Tl and T2

converge strongly to r_. Finally, for all

s e rj(l}e Dl solves the minimum norm

problem
(1)

. "
[l x 1= min{|| x{|“:x € Dy Lyx =L r ',

2 £ 1gm}

In practical terms (5) the result generates a
sequence T, = {rj(l)}E; Dl converging weakly
to the unique solution of (4). The flexi-

bility in the choice of Ai' i 2z 1 inherent in

the algorithm is of great practical signifi-
cance in that Al can be regarded as an
accelerating extrapolation factor (5,6) if

Ai = x*i > » 1. Alternatively, the choice of

1 g 4, « < A*l will present the growth of

numerical errors if they are a problem.

Consider, now, the linear quadratic problem

(5)
M

min {IJz![zq fz=z 4+ ib z+ f&(yo(l)+ 4,2))
Ho i=1
(5)

wha&eﬂo, H = HlTI are real Hilbert spaces

i
with inner products <-,->I:.I s O£ 1 g m,
i
) %
inducing the norms IIxiiL = XK,
Hi H

©sfisgm and L :H -+ H ,
o .0 o

L.tH. - H , A,:H +H., 1 s 1 ¢ m, are linear
i3 o io i
and bounded. The vectors yo{lé Hi‘ 1 g 1ism,

are taken to be fixed and it is assumed that
<y(l),a‘z>.:0forallzeﬂ,
e} i i o

1z i gm (6)

The following theorem (5) indicates that this
problem has an equivalent formulation in
terms of problem (4).

Theorem 2 Let T, > o, l s i ¢ m, be chosen
m
suchk that | y_ || a%a.|| <1 and define the
i it

i=l i
product space Y = H x Hl Xew X H

Then

dzype en ¥ ),(i.yl, R ym)> =

is a non-degenerate inner product or ¥
inducing the norm

sz,yl, - %m”ly:<(z“y1""}EJ"Z‘Yl' e b

Moreover, Y is a Hilbert space and rroblem (5)
1s equivalent to the well defined miripmem oorm
problem on v,

; | " oy e
in Zo¥s o weny ¥¥ i
min || (z.yy }nJHY 7)
subject to
- m ~
z=1z +Lz+ | Ly (%)
o o o i
1=1 |
and
v, =y 2 44z 1 £ 1em ‘3)
i o i

Theorem 2 provides a decomposition
(5) in terms of (7) - (9), which
the general class of linear quadrats:-
(4), and can therefore be solvsg wvia
iterative scheme defined in Theorem .
concepts have previously keern used tc
numerical algorithms for dquadratic oo
sation of linear differential-celay -
(5). In this paper, their applicaticr
extended to the numerical optimisatica «
differential multipass procezsas,

QUADRATIC OPTIMISATION OF MULTIPASS sl liggeEs

Consider the Hilbert spaces

# 1z
H =Ly 0.7] xL, [0.1] x ...

2 N-tuples (xlful, seer X

aan 9 L?Elfi, of N-tuples (Xl'

inner products

<(x1.u1, . XN'UN)' (xl,til,

H
o]
N7 Ty e ol
) J{xk(t)Qik(t) +u (E)Ru ()&t and
k=1 (o)
.
<(Vl: . VN);{Vl iy VN)>h =
H
1
g IT T
=%] ] v (010 ¥, (t)at
=1 g
and associated norms ii(xl,ulr , &vuviﬂ{ -
o

- 3

<(xl,ul, - xN,uN),(xl.ul, wgg xN,uN)»A and
H
1

= (v v
ifvl, i vN),i_ Ve V) Ve vees v

respectively. Defining z(t) = (xl(t\,ulft).
xN(t),uN(t)), zo(t) = {xlO,O, ceer X000, \

yO(t) = (£(t),0,




I..Oz(t) = Lo(xl(t),ul(t). tht), uN(t)) =

t
{
(JO{Axi(s}+Bul(5)}ds,ul{t), -
rt
JD{A_‘{N{S)‘FB uN(s) tds, uy {E)) »

~

a: B+ H, by az(t) = Al (B),ug (), ..,

1
xNét), uN{t)) = (O,xl(t). « xN_l(t)) and
il : él - ﬁo by .

Ly (v (8), eu, vp(E)) = (Jr o, flie, By o
o

J CvN(s)ds,O), then, with this abstract
Q

setting, the linear quadratiec optimisation
problem (1) - (3) is

. 2
min || z|| (10)
0 H
Z‘I—]O o
subject to
" ) : P o]
% = Z, + Loz + LlLYo + 4z (11)
Note that

Lhz> = G am . . S e, %
e 2>H <(f,0 o). (o % xn—l) )

1
By
= 0, for all z ¢ HO,
and hence the results of the previous section
apply to this problem.
Applying Theorem 2, then (10) - (11) has an
equivalent representation on the product
Hilbert space Y = ﬁo x él of pairs (z,y) with
inner product
ny P, * 4"
<(z,v), (z.?hy = <z, [T_-va"8]3> + y<y,¥>,
HO Hl
where y > O is chosen such that y|| 4*a]] < 1.
Defining |](z,y)|iY = c(z,y),{z,Y)>Y%, then
problem (10) - (11) is equivalent to
5 2
min|| (z.y) ] = )
subject to
z =z + Loz + Lly (13)
and
Y =y + Az (14)

For the problem considered here, it is clear
that || 4*:]| =1 and a choice of v, 0 <y < 1

will suffice.

The norm on Y is just

A

w12 = {i2li® - y|lezl| 2, +vily]) 2
Y & a i
(o) 1 1

! (T T
=% : iﬁJt)kaft) + U;(t)Rukf:):dt
k=1 ©
Wk o N
i T . e o o
skl om oy ae s § L ey, (D
k=1 e k=1 ‘07
w1 T 3
=k0-n ] | ok (tee < x £)ox,, [t} 6t
= K K N 5
k=1 o "
N o
+% [ | wltiRw et + 50 ] Gy, (vt
k=1 °° =1 0

and the constraints (13) ard (14) are
kk(t) = Axkft) + Bu (L) + Cyki:), X ACh =
k=1l 2, .... N {2350

and

Yy
Lt
P

3 = ¥ g Ziag £y ko=
yl(t) £(t), v, (t) SRR O

respectively. The linear guadrat:ic multipass

problem (1) - (3) is thereforsz equivalent to
the linearly constrainea optimisatiorn problen
N rT
mnJ=% | | x(t) (1-v)ox, iciat
£ g s
k=1
ST
! Pyos
+ 4 X leiox t)at
O -
N rT i
! C (e Ry ) + vl(t)vQy, (8) 8
+4 7 Jo{uk(u R, (& Al Qy, (£} 16t
k=1

subject to (15) and (18).
modified state equations (1
the algebraic constraints (
decoupled.

o
)} ané, irceed,
& r

‘
dre now

Defining the closed and convex lirear
varieties

Dl = {{xl,ul.yl, R XN’UK'YN) €Y : xk(t) = X
t
+ J(Ax h)-FBukﬁﬂ + jklaHCSJ}<: i, =
o
t € [0,1]}
D, = {(xl,ul,yl. p— XN’UN’)&) €Y : yl(t) E

f(t).yk(t)= Xk‘l(t), kK=2u 3 sone W i€ QT

then problem (15) - (17) 1s :ust

mn {|| z y}“2 s (z.vie D,nb
mn {2z, g ® f2y 1o
which can be solved by the algerithm &

Theorem 1 where, 1in this case ¥ = D2r 3 0% i.
J

[,



‘g (1) _ (i) (1) (i)
Defining r," = (xl(i)' Uy gy Yy(gyr ceeeee H

xNEﬂ %53 YNE'J:})' 1=1, 2, £ 2 1, then, in

(1)

computational terms rll solves
N1 T

ks I [ E® aone (e
k=1 ‘o

T

ik JO x’Nr(t)QxN(t)dt

N7
+% 7 J (ul () Re () + yo(£)yay, (t) 1dt
o s Dttt k k

subject to the state eguations (15), which
separates into N-1 independent, identical
subproblems for (xl,ul,y1), . mymid

(x

-1’ Yy_1’ Yy_p) with a further subproblem
for (

Mo Uy N)'
K-th subproblem (K=1, 2, 3, ..., N-1):

Y.

T
min b L[xi(t) (1-1)0x, (£) + ) (e)Ru, (t)

T 1
+ yk(t)yka(t)Jdt
subject to

)'(k(t) = A:ﬁ((t) + Buk(t) + Cyk(t), xk(c) =% -

This has solution
(1)

(1) ~1T
(t) = - R BK(t t
uk(l) ) ( Jxk(l)( )
(18)
(1) g (1
] = = Gk t
yk(l)( ) - 0 (£)x k(l)( )

where K(t) solves the matrix Ricecati equation

1

}.<(t) =iz KIE)A = ATK(t) + K(t)BR™ BTK{t)

1

+% k(b ek (L) — (1-y)Q, K(T) =0 (19)

N-th subproblem:

min % JT{XT(t)QxN(t) + ug(tJRuN(t) + yT(t)}QY (t)}dae
o W N N

subject to
() = A (t) + Bu (t) + Oy (t), x (o) = %,

This has solution
(1) =1 _T= (1) ]

u (t) = - R "B K(t)x (t)
N(L) N(L)
(20)
y(l)(t) = -icTQ'lﬁ(t)x(l)(t)
N(1) ¥ N (1)

where K(t) solves the matrix Riccati equation

%

R(t) = - R(t)A - ATR(t) + K(0)=™1BR(e)
Ly o 5
=~ K(t)cQ "CK(t)Q, K(TI = © (Z1)
!
The iterates r;Z), £ 2 1, solve
N-1 T T )
min k% J J [xk(t)—x (6)] Q—i2lx (0)-x "(t)]ee
e - 7 k ()
A 1y () 0-s
+ Lk J x(8) —x (6)] Ofic (£} - x "(t) de
o (R) ‘.'»)
g gt (1
) J Iuk(t) -u (t)}‘REﬁk(t} - u(l%t):dt
k=1 ‘0 k(2) k(2]
N - S
+5 ] | Ipe® -y W]y 0 -y (olé
k=1 ‘o k(2) k K1)

subject to the algebraic constraints

FoAE) =l B =x W REL 3 vy N
El k %l

ﬁ

m
<
3

This has solution

(2) (1)
u () = u (), k=1, 2, vo.u N,
k(z) k(&)
(2) (1) (1)
% () = (I=y)x (&) +vyy (2,51, 2, ..., =L
ki(g) k(1) k+l:.2)
(2) (1)
x () = x (t) (22
N(L) N(2)
(2) (2) (2)
y (k)Y = £, v = x i B=2 3
1% k(2) Ke=Lif)

Finally., the iterates s =(x1(;),u1(cy Yyiga # ee

N-1 T (2) T ; (2)
min % z i Lx'(t)—x (t)j (1-)0x (£)-x (t)]dt
k=1 s k(z) . k()
T (2) T (2)
+ b J ﬁgjt) -x (t)] olx () - x {t):dt
i N(R) N N(i)
BT ()
+% [ | o -u IR (€ -u (0 Tae
=1 ‘e K k(i) k k(i)
N T (2) T 2y
5 1 |y @~y 0] Wy e -y (0 ac
o k k(1) % k(o)



subject to the state equations (15). Again
this separates into N-1 similar subproblems

for {xl. uy yl), sk e (XN—I' Up_1- yanj'
with a further subproblem for (xN, U yN).
k-th subproblem (k=1, 2, ..., N-1):

JT G ® 07 [ ( a )1
min X {x (£) - x t 1-v)o t) - x t
K o Lk k(L) "k k(2)

[ (t) m()f[ ( (2)( 1
+ ) =% t)] Rlu (t) - u t)
“x k(&) k k(2)

(2) T (2)
+y® -y @Wlvaly ®© -y ®]ae
k x(2) k k(1)

subject to

x (t) = Ax (t) + Bu (t) + (t), ) = .
xk k( k Cyk xk(o Xko

This has solution

s <L T s (2)
u(t)= - R B[KMWx () -g (t)]+u (t)
k(2) k(2) k(z) k(2)
1T s 25
v =-2ac kx (t) - g (0] +y It
k(2) k(z) k(z) k(g)
where K(t) solves eguation (19) and gl(t)
solves the tracking equation ki)
-1 -1
g ) == ATg (t) + K(t)BR BTg () + %K(t)C'Q ch (t)
k(z) k(r) k(2) k(L)
+ K(E)Bu (t) + K(t)cy (t) + (1-7)ox (t)
k(z) k(z) k(2)
g (T) =0 (24)
k(z)
N-th subproblem:
iy
(2) T (2)
min % J (fg0)x ()] ofx ()% (1)]
o Exb‘ N(%) N N(%)

(2) T (2)
+lu (k) —u ()] Rlu () —u ()
EN N(2) ] [y N(L) -

i (2) T (2)
+*fyge) -y ()] wly ® -y (] at
N(&) N N(L)
subject to

xN(t) = AxN(t) + BuN(t] + CyN(t), xN(o) = XND'

This has solution

s -1 T 8 ) (2)
uft)=-RBKMLx () - ()] +u (t)
N(2) N{z) w(z) N(2)

(25)
s 1 Tp S . 2
Yy (£) == %-Q %CTﬁ<(t)x (£) -~ g (£)] + y( %t)
N(2) N(g) N(g) N(z)

where ﬁ(t} solves equation (21) and g Et;
N(2

solves the tracking equation

. i - ~1 7. 1 - -1 .

g (t) = -Ag (£)4K(L)BR B'g (t)+ TFKE)®D g (x)

N(L) N(2) (%) N(:)

" (2) = (2) (2)
+ K(t)Bu (t) + K(tloy (t) - 0x  (t) (28)

N(z) N(z) N(2)
gMm =o
N(z)

An iterative method for solving the linear
quadratic multipass problem (1) - (3) has
been developed which simply involves a single
integration of the 2 Riccati equations (19)
and (21) plus sequential application of the
algebraic relations (22), together with
integration of the N state equations (15) ard
N tracking vector equations (24) and (26).

APPLICATION TO A SELF-STEERED TRACTOR

The iterative algorithm developed in the
previous section is now illustrated with an
application to a linear differential multipass
process model of a self-steered tractor (2).
The state eqguation is

o o'l o]
%, () = (t) (t)
ks -1600 -4 _Xk +[_1600Juk
J'o o
+ x (t), te [0,1] (27)
(1600 0 k-1

corresponding to a system in which the damping
ratio and undamped natural frequency of the
single pass loop (2) are 0.5 and 40, respec-
tively, and the pass length, i.e. length of
the furrow, is unity. The optimisaticn
problem is concerned with minimising the
quadratic cost functional

1o (1
T 2
g=k J (X (E) %, () + uo(t) Jdt
2 L M Yk
where x, (t), k=1, 2, ..., 10, t e [0,1],

satisfies the state equation (27) with
boundary conditions

1
x (t) = £(t) = [ ] te [0,1], and
0

o]
xkfo) = [J k=ly 26 e TOL

The solution obtained is that of the
approximating discrete time system and a
discretisation step of h=0.0l is employed.

With a choice of y = 0.5 and

J l.o, i=5, 10, 15, ...

A = N ; i.e. full
i .
[ A i otherwise

extrapolation except at every 5th iteration
where the extrapolation factor is set to zero



to prevent the growth of numerical errors, the 5.
algorithm converged with respect to J in 9

iterations, resulting in an optimal value of

J* = 0.416. The optimal state and control
trajectories are presented in Figures 1-3 and

Table 1 displays the rate of convergence and
variation in Ai with iteration.

L 3 A .
1 0.4291 2.32

2 0.3179 1.17
3 0.4098 247
4 0.3970 1423
5 0.4037 1.0
6 C.4180 4.74
7 0.4154 3.185
8 0.4159 1.5 28
9 0.4158 2.94

10 0.4159 l.0

TABLE 1

It is worth notihg that when no extrapolation
was employed (i.e. Ai = 1.0 throughout) the

algorithm required 26 iterations for conver-
gence. Finally, the choice of y = 0.5 was
found to be optimal in the sense that for

¥ > 0.5 the algorithm converged more slowly,
whereas choices of vy < 0.5 resulted in
increased values of A*i at each iteration and

had the effect of introducing numerical errors
into the computation. This necessitated the
resetting of Ai to unity more frequently than

at every 5 iterations with a corresponding
decrease in the convergence rate.

CONLUSIONS

This paper presents a systematic computational
procedure for the solution of the quadratic
optimisation problem for linear differential
multipass processes. The algorithm is
iterative in nature and is based on recently
developed ideas for the solution of linearly
constrained minimum norm problems in Hilbert
Space. The computational scheme has
guaranteed convergence and the resulting
solution is of the semi-closed loop variety
Finally, the iterative technique is
illustrated with an application to a linear
differential multipass process madel of a
self-steered tractor and it is demonstrated
that convergence to the optimal solution can
be obtained in a small number of iterations.
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