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Abstract
The problem of controller design for a (possibly unknown) discrete or
continuous multivariable system using only simple graphical and computatidnal
steps based on open-loop step response data is considered. Conditions are
derived describing when a high-performance controller can be derived for a

plant for which rise-time and steady-state data alone is available and the

results illustrated by numerical examples,

Introduction

There is now a large body of knowledge available concerning the use of
frequency response ﬁéthods in the design of multivariable feedback system
(Rosenbrock 1974, Owens 1978, Harris and Owens 1979, Postlethwaite and
MacFarlane 1979, MacFarlane 1980a, 1980b) and a number of highly successful
techniques for computer-aided-design are now available. Almost all of
this work assumes that a model of the process to be controlled is available
for use as a basis for design calculations such as simulation, transfer
function matrix or frequency response evaluation, calculation of poles and
zeros etc. This paper is concerned with the problem of cdntroller design
when a plant model is not available in the sense that

(a) the plant model is not known but open-loop plant step responses

are available frem plant tests, or

(b) the plant model is known but is so complex that design calculationsl

other than simulation are not feasible with available computing
facilities,

In either case, the plant model is (from the designers viewpoint)
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partially unknown, and controller-design must proceed on some other
basis. One method is to use identification procedures based on plant
responses or simulation of a complex plant model to obtain a reduced-order model
that can be analysed with available computing facilities. It is not clear,
however, whether identification procedures will produce models that are
suitable for controller design in the sense that
(i) if agiven controller produces a satisfactory closed-loop per-
formance from the approximate model, it is not necessarily true that !
the real plant is even stable, and
(id) the identified model need not necessarily produce a design that
is insensitive to the modelling errors!
It is also not always true that the design engineer has access to
identification software!
With the above background, this paper addresses its attention to the
© theoretical identifigation of a class of multivariable process plant for
which neither a detailed process model nor the application of sophisticated
identification procedures are required for the design of high-performance
feedback controllers. More precisely, we ask
(1) What structural properties must the system have to make this
possible?
(2) What form of parametric controller structure will ensure stability
and adequate tracking of specified demand signals?
(3) What are the general conditions on available tuning parameters
necessary to ensure that (2) is true?
(4) When can the controller structure be deduced from transient open-
loop data only?
Some answers to these important practical questions are presented in
the following sections based on the use of a conceptual approximate process
model as the basis for controller design in a similar manner to Edwards and

Owens (1977) and Owens (1978,1979). Throughout the paper attention will be
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restricted to the practically most important case of proportional plus

integral :-control. Sections 2,3,4 deal with the case of discrete and continuous

multivariable systems and illustrative examples respectively.

Controllers for Unknown Discrete Plant

Consider an unknown (in the sense defined in section 1) m-input/
m-output dynamic process that can be approximated over its operating range
by the linear time-invariant model

A x(t) + B u(t) , x(H) ER

Il

x(t)

cxt) , vy ER, ut) ER (1)

y(t)
If the plant inputs and outputs are synchronously sampled with period h,

the plant output sequence ¥s = y(o),yl = y(h), Y, = v(2h),... and input

sequence uO = u(o), ul = u(h),... can be related by the discrete model
- +
xk+1 0] Xk A uk
= z k >
Yk Cc Xk >, O (2)
where xk = x(kh), k = o, and
Ah Ah - -At
o =ce , A=e" [ e Bat (3)
o

This section considers the problem of the design of a robust proportional
plus summation controller for this plant using transient response data.

Properties of the Discrete Model

As might be expected the solution to the problem depends upon the
structural properties of the discrete model. The required properties of
the model are that

(i) CA is nonsingular, and

(ii) the model S($,A,C) is minimum phase in the sense that all solutions

of the relation

z In —?ﬁ - A

=0 (4)



(i.e. the system invariant zeros) have modulus strictly less than unity.
The following results provide useful sufficient conditions for the

above to hold and generate an important parametric system decomposition.

Proposition 1: If the underlying continuocus system (1) is stable and

invertible with no zero at the origin of the complex plane, then CA is
nonsingular for almost every choice of sample interval h.

Proof: As CA is an entire function of h, it is sufficient to prove that

|CA|# O at some point of the complex plane for then every solution of the
relaéion |CA| = 0 is isolated! But the stability assumption and the final
value theorem lead to the identity

h

lim CA = lim [
h s+ h 4o o

et g ¢ = Gc(o) (5)

where Gc(sl is the mxm transfer function matrix of the continuous under-
lying system, Both the stability assumption and the assumption that there

is no zero at s = o immediately vields the fact that Gc(o) is nonsingular.

Proposition 2; If CB is nonsingular then CA is nonsingular on some interval

*
o<h<h (i,e, CA is nonsingular at all fast enough sampling rates)

.Proof: Follows directly from (3) and the relation

h
-1 A(h-
un b ltc [ e PP par - (6)

h+o+ o

‘Proposition 3; If CA is nonsingular then the discrete system (2) can be

realised in the form

L (@11 - D)yk + CA(uk - vk) (7)

where the signal v, is generated from the inherent feedback loop

k
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n-m
= -+ 2
i1 - Y B Tin % % & R
= - (@) t@., z +Dy) (8)
Yk 12 “k T
and the mxm matrix D is arbitrary. Moreover the system is minimum phase

if, and only if, all eigenvalues of @22 lie inside the open unit circle in

the complex plane.

=i
Proof; Tet T = [A(CA) ,@} where the columns of M span the kernel of C,

then the assumption that |CA|# 0 trivially implies that T is nonsingular. |

~ =],
Consider the change of state variables defined by X, = T Xy 1 k 2 o. Then
the transformed system has the form defined by
[ o
. -1 Tl ®l2
=T oT-= (¢, (mxm))
¢2l @22
\
CA
- =1 -
E=T"2 = , &=cr= [1 o] (9)
O

The representation (8) follows easily by noting that the transformed state
LT T T ,
has the structure Xk = [Yk . zk]. Finally, the last part of the result

follows by using similarity transformations and row and column operations

to show that

zI - @ - A zI = 3 = K
n n
g 0 c o}
= Jea| . |z -0l (10)

Proposition 4: If the underlying continuous system (1) is minimum phase

and CB is nonsingular then the discrete system (2) is minimum phase for h

*
in some interval o < h < h (i,e., the discrete system is minimum phase at

fast sampling rates!)

Proof: The result can be deduced from the Appendix in Owens (1979) or

Molander (1979) p. 72.



Construction of First Order Approximate Plant Models

Given the existence of the discrete model (2) of the unknown plant
we suppose that controller design is to be undertaken on the basis of an
approximating first order (Owens 1979) multivariable model described by
the inverse z-transfer function matrix

=1
G, ~(z) = (z-1) B_ + B B | #0 (11)

1 I
or, equivalently, by the state-variable model
= (T ~B B + Bt B | #o0 (12)l
Y1 m o1 Yk o "k o
Assume also that CA is nonsingular (some justification for this assumption
can be found from Propositions 1,2) and identify (12) with (7) via the

relations

B = CA ; @ - D=1 —B B (13)

i.e. we regard the approximate model as being generated from (7) by neg-
lecting the inherent feedback loop variable implied by (8). We make no

other assumptions about the choice of B, but there are clearly two natural

1
choices:
(1) Bl = 0 will simplify the structure of the approximate model but

the open-loop input/output behaviours of the real and approximate
sy$tem will differ greatly in such a case, or

(ii) if we define the system z-transfer function matrix

il
G(z) = C(z In -3) A (14)
1
then the choice of Bl = Gv (z)!z_l will ensure that the real and approximate
systems have identical steady state characteristics. We do not reject the

possibility that otherchoices of B, may be more useful however:

1
Finally note that the first order model can be computed quite easily

from a model or from simulation/plant transient data as follows:
(a) If a plant model is available then the evaluation of CA is a straight-

forward task even if the plant model is of very high order. If we

choose Bl = O then there is no computational problem: If however,
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we choose Bl to match the plant and model steady state
characteristics, then it can be obtained directly by evaluating

=L
C(In - @) A (involving the numerically feasible inversion of

In - ¢ even in high order cases) and setting

-1,.-1 -1
B. = (c(x_ - @) A = G(1) (15)
1 n
whenever the inverse exists.
(b) Suppose that plant tests or model simulations are undertaken toE
; (i) (i)
estimate the output vector sequence {y Y }  generated

1 ¥ o

. . ; .th ; Tt
by a unit step input in the i plant input from zero initial con-

ditions and that these experiments are repeated for all inputs,

: 6 (1) (2) (m)
1¢1ig¢m. Then, defining ¥, = [Yk P Y v oeesr Yy 1 (mxm),
k 3 o, it is clear from the model equation that
cA = Yl (16)
and, provided the plant is stable,
. - .
G(1) = C(In - ®) "A = lim Yk (172

koo

. Controller Design for the First Order Approximation

The controller design problem considered is the choice of forward path
controller K(z) for the real plant G(z) as illustrated in Fig. 1l(a). 1In
the case of an unknown plant G, controller design is taken to proceed on
the basis of the approximate model GA. That is, the controller K is designed
to ensure satisfactory stability, steady state, transient and interaction
characteristics from the. approximate feedback system of Fig. 1 (b). The
final design will then be ‘hooked up' to the real system as in Fig. 1(a)
and final fine-tuning of controller parameters undertaken. This procedure,
of course, introducesthe question of whether or not the designed controller
is capable of producing stable, high-performance sequences from the real
plant? An answer to this question is left for the next section. Here we

restrict our attention to the design of K for GA!
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Following Owens (1979) the controller K(z) for the approximate model
GA is taken to have the proportional-plus-summation form

(1-k.) (1-c.)z
J J

(z-D) D ==

1€jsm

¥K(z) = B diag {1 - k.c, +
o & 1]

where k., 1 £ j € m, and cj, 1 £ j ¢ m, are available proportional and

reset tuning parameters respectively and the matrices BO and B1 are obtained

from the approximate plant model data. Egquivalently, in state-variable form,

the controller has the form k

= +
TG+1 -~ % T %k
= B i ‘ . -
w . diag {1 kj)(l cj)}lstm @
+ (B_ diag {2-k.-c } - B )e (19)
o s ! tedsm 1k
or, in cases where (l—kj)(l-cj) = 0 for indices jl""'ji' a minimal reali-

zation of (18) obtained from (19) by deleting the jl'jz"“’jg—th elements
of the control state.q.
A simple piece of algebra yields the following expression for the

closed-loop transfer function matrix

H (2) = (1 + %Jz)K{z))"l%Jz)K(z) = (G;l(z) + K(2) TK(z)
= diag{ > } (z(diag{2-k_ -c.}
(z-k.) (2-c.) Tiefem i 3 S
-8’8 ) + ®7'B. - diag {1 - k.c,} )) (20)
o 1 o 1 33 Ledgi

and hence that (Owens 1979).
(a) The épproximating feedback system (Fig.{(b)) is asymptotically
stable if
-1 < kj <1 , -1 < Cj <+ 1 (L £ 3 < m) (21)
(b) The responses of the approximating feedback system to a step
‘demand in the kth output element have zero steady state errors
if (21) holds and Cy # 1

(c) If the chosen procedure for specifying B1 is such that
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0

lim B B, =0 (22)
o+

then it is trivially verified that

z(2-k,-c,)-(1-k c.)
J LN (23)

1<j<m

lim Hc(z) = diag{
h-o+

(z=k.) (z~-c.)
J
uniformly on any closed subset of the complex plane not containing
the closed-loop poles kl'k2'""km'cl’c2""cm' That is, the
closed-loop system will be almost non-interacting at fast sam- |
pling rates with loop dynamics ¢lose to those described by the right-
hand-side of (23).
Clearly, under fast-sampling conditions, the controller (18) is capable
of generating an approximate closed-loop system with excellent steady-state

and transient characteristics. Some insight into the required condition (22)

is obtained from the following proposition:

Proposition 5: If the chosen procedure for specifying Bl is such that there

exists M such that

lim sup ||B,|| s M ' (24)
Bt 1 im
(where ||.f|m is any norm on L(Rn)) then relation (22) is satisfied.

-1
Proof: Follows directly from (b) by noting that BO = CA.

Specific instances when the conditions of the proposition are valid

are obtained by the choice of B1 = 0 (when (24) follows trivially) or the

choice of Bl = GTl(z)IZ_l (when the real and approximate plants have the
same steady state characteristics which are identical to those of the under-

=1
lying continuous plant and hence independent of sampling rate h 7). It can

easily be satisfiedin practice therefore.

-Stability and Performance of the Real Feedback System

Consider the problem of predicting the stability and performance charac-

teristics of the feedback system of Fig. 1l(a) with the controller (18) in




terms of characteristics of the approximating feedback system Fig. 1(b).
The main mathematical tool used in the solution is the familiar contracticn
mapping theorem from functional analysis (see, for example, Dieudonne 1969,
Holtzmann 1970 or Martin 1976).

Denote by 2™ the real vector space of infinite sequences f = {fo,fl,

£ yasat With kaE Rm, k 2 o, and the natural definition of vector addition

2 -
and multiplication by scalars. It is clear that linear systems with m-inputs

m
and m-outputs can be identified in terms of linear operationson g . TE;

m
also, we denote 2: the (Banach) subspace of §  of bounded sequences with

norm
[1£l], = sup []£]] (25)
© e K'm
(where llx|l = max ]xk' is the normal uniform norm on Rn), then
Igksm

stable systems (in the input/output sense) can be identified with operators
m m . . )
on { that map L, into itself. We will use the notation y for the output
sequence {yo,yl,yz,...} and similarly with other variables. Finally, the
. g m ¢ . . ¢
linear operator in { associated with a linear system with z-transfer func-

tion matrix T(z) will be denoted T and the truncation operatcr P, is taken

k
to be the linear operator defined by the relation
Pk-{fo,fl,fz,... } = {fo,fl,..,,fk,o,.., 1 (26)
when k 2o is finite and the identity when k=+w . An operator T is causal

if, and only if, PkT = Pk T Pk for all k 3 o,
Using the identification of equation (13) and assuming zero initial
conditions, equation (7) can be written as an equation in Q? of the form
y = GA(u - V) (27)
In a similar manner (8) takes the form
v=B Hy | (28)

with H defined in the obvious manner. The following result forms the

foundation of later developments:
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Lemma 1: Let Lc be the linear feedback operator in B defined by the
relation r+ y with (Fig. 1 (b))
Y = G K{r-y) (29)
and Let LCA be the linear feedback operator in zm defined by r -+ yA with
(Fig 1(b))

YA = GAK(I - yA) (30)

m

> ™ and is bounded and causal if
0o oo

m
Then L |g i 9
c! T

(1) K has an inverse defined in Rm

.. m.m m )
(ii) L |2 :% -+ and is bounded and causal
CcAl T8 Vo oo
(iii) LCAK?lBOHIEE :22 > 22 and is bounded and causal
+1
(iv) 2 é][IbAK BOH ||m< 1 (where Il.]lm is the operator norm in

9,;:1 indicéd ™ BY the norm (25))

Under the conditions, for a given choice of r,

3!
2ty - YA)||W § o P valla \f g w

where A' < 1 is any upper bound for ). (31)
EEEE£= Using the representation (27)-(28) of the plant operator G converts
(29) into the form

Y= GA(K(I—y)~V) . v=B Hy (32)

or, more simply,

Il

-1
¥ GAK((r - K BO Hy) - y) (33)

and hence

-1
L - K H 34
Y CA(I BO V) (34)
Taki GE Rm th thi ted takes the form = Wy where w: L% =+ 2"
aking r - en s equation ta y = \% O -
is a contraction with contraction constant A'. It follows directly from

m
the contraction mapping theorem that the solution yEE;Zm with

1
Hyll, < 55+ |l _, =l (35)
1-) cA

(proving the boundedness of Lc) and

A
Hy = vall, < =57 1] vl (36)




(proving (31) in the case of k = + w). Finally, multiplying (34) by Pk
and using causality, yields

-1
= - L
Pk v (Pk LCA)PkI (Pk CAK Bo H)Pk v (37)

Equation (31) follows from a similar argument to the above noting that

HPk Loa K_lBOHH00 < |]LCA k1 BOHII = A g A'< 1. The proof of the

lemma is now complete.

Corollory: With the above assumptions

kl
ey g - 7y 2y ot 35 112y LcAHwV sl (38)

Proof: The result follows directly from (31) by writing y = Lcr and

=L r.
Y cA

The above results are of a quite general nature and provide

sufficient conditions for the stability of the approximating feedback

system of Fig. 1(b) (i.e. the boundedness of LcA) to guarantee the stability
of the real feedback system of Fig. 1l(a) (i.e. the boundedness of LC) with

the added bonus of providing an upper bound on the error of prediction of

" transient performance (31). More precisely, for each k 2 o,

max (v.)., = (¥ ). )P (y-v, ) | |
e J; < 0, | el ol

)\(
<

e v | (39)

}\l
[[py || =+ max max | (v
e Loyt ogigk 1gigm

Aj)i
the RHS depending only upon the approximate system responses and the
contraction constant f.

Clearly the above results can only be applied if the approximation
error H is known explicitly or if an upper bound for the contraction constant
X is known, Neither of these situations will apply if the system G is

unknown?! This does not preclude the possibility that the given controller

will prove to be an excellent control system however, but it does imply that
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the design engineer will have no guarantees of its success:!: Progress

can be made, however, if the system is unknown but is known to have certain
structural properties and the available tuning parameters satisfy some simple
relations. These ideas are formalized in the following main result of this

section, generalizing that of Owens (1979):

—

Theorem.l: An unknown discrete multivariable plant (2), known to be

generated from an unknown continuous multivariable plant (1) that is mini-
mum phase with CB nonsingular, will be stable in the presence of unity
negative feedback with forward path proportional plus summation controller
of the form of eguation (18) if

(i) the tuning parameters kl,k k 4e_sc ,...,cm satisfy the

2077 m’ L2
constraint (21),
(ii) the procedure for cheoosing Bl is such that condition (22) holds,
and
; =1L . -
(1iii) the sampling rate h is sufficiently fast
Moreover, under these conditions, we have, for each given reference

demand sequence r, the relation

lim {ly - yA} =0 (40)
h+o+

indicating that the responses of the closed-loop system Fig. 1l(a) will be

very close to those predicted by the approximating closed-loop system

Fig. 1(b) at fast sampling rates,

gggéf; We proceed by verifying that the conditions of lemma 1 are satisfied:
(a) We brove initially that K has a causal inverse defined in [ by

writing the realization (19) in the form

qk + ek 7 u = Mg + M_ e (41)

Yy ~ k 1% 2 %k

~1
where, using (i), (ii) and (iii), it is true that M2 exists at fast

sampling and



o] (k) (1-e))
lim M~ M. = diag {-5—1——>}. . (42)
brep 21 (2=k;-c) " I<ism

A little manipulation soon yields the relations

-1 -1
= (I - M2 Ml)q + M_u

Up+1 2 "k
e. ==-M" M PRCE Y (43)
X R e L
which proves the invertibility of K on ™. Also note that (42) implies that
-1 1-k.c, t
Lim (I - M, M) = diag {552=2") (44)
o+ 0 379 1gj<m

-1
and hence that K [ o

2" 22" + o] as the identity
@< l-kc, =2-k, —c, - (1L -%k)((1 -2c.)
b i j 3 j j
<2 -k, - c. (45)
j j

indicates that the realization (43) is stable.
(b) The conditions (21) on the available tuning parameters ensure
that the approximate closed-loop system is stable and hence that

m m m
L |2 : & - % is bounded and causal.
chl Ve ®

(c) The result (b), (44) and propositions 3 and 4 imply that each
-1

term in the composite operator LCA K BO H represents a stable, causal

system and hence that its restriction to 2: is bounded and causal.

(d) We prove that

1im ||z k' B_H|| =o0 (46)
o) ®

hro+ e
and hence that the contraction condition is satisfied at all sampling rates

=L
h greater than an unknown rate h_ and that the contraction constant can be made
to be arbitrarily small, The theorem will then be proved as (40) then

follows from (31),

To verify (46), note from (22) and (20) that, under fast sampling

conditions,

1

Hc(z)_—-adiag {(—_——z-—kj) (z—cj)

} (z diag {2-k.-c.}
1¢3<m 13 1¢5¢m

- di = 47
diag {1 kjcj} lej<m (47)
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which is stable. Equivalently, there exists a constant ey such that

Mz 0, < ey (48)

; : -1
in the ~icinity of h = o+. Next, note that the composite operator K BD

can be realized as the map v + e defined by (see (43))

=l <f
= - +
gy = (T, - My M) + My BV,

1 -1
- +
e M2 Ml 9 M2 BO Vi (49)

Il

S
which is stable and bounded in the vicinity of h = o+ by (44),(45) and
the identity,

lim M;lBO = diag {ﬁ%—"‘_ } (50)
hro+ 7% 1gism

Formally, there exists a constant c, such that

=1
[x7B ], <<, (51)

in the vicinity of h=o+! Finally, from the results of Boland and Owens (1980) ,

it can be seen that

lim || [|=0 (52)
h-~o+ e n )
and hence that

1 =1

im [z gal L ¢ 25w ]| el
< c.c lim ||H||OD =0 (53)
12 h-o+

which proves (46). The proof of the theorem is now complete.

For the purposes of applications the result guarantees that, with
suitable choice of control parameters and sampling rates, the proposed
control system is capable of generating excellent responses from the unknown
plant. In particular, if the responses in a particular case are not satis-
factory, then the theorem states that the use of an increased sampling rate
will improve the performance, In general there does not appear to be an
easy technique for estimating the required sampling rate so, in general,

the choice reduces to trial and error. In the next sub-section, however,
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a class of unknown processes are identified for which the adequacy of
the sampling rate can be checked from a knowledge of the steady-state
characteristics of the open-loop real and approximate plants only.

Unknown Systems with Monotonic Feedback Errors

As noted in the discussion following lemma 1, a knowledge of the
contraction constant A = HLCAK_]'BOHH00 or, more probably, an upper bound
A" for A would enable the stability and transient characteristics of the

i
real feedback system to be directly assessed in terms of the stability and
performance of the approximating feedback system. An upper bound A' is

calculated below in the specific case of systems with monotone feedback

errors.

Definition 1: A linear m-input/m-output time-invariant system is said to

e

be monotonic (resp. sign-definite) if, and only if, the response from zero
S sk . th . i .th | .
initial conditions of the i output to a unit step in the j input is
either monotically increasing (resp. positive) or monotonically decreasing
(resp, negative), 1 ¢ i & m, 1 £ j € m.

(Note: In effect, this definition generalizes the property used by Astrom

(1980) to the multi-input/multi-output case).

- Proposition 6: The discrete system

= -+ = +
xk+1 @xk Auk r Uy G Xk D uk (54)

is monotonic ‘and sign-definite iff the Markov Parameter matrix sequence

k-
H =D 7 H =C59d lA(k>,1) (55)
o k

s O H , (H
has the property that the sequence of elements (Ho)ij.( l)ij ( 2)

is either all positive or all negative, 1 £ i £ m, 1 £ j £ m. If HD =D

o
1]

is the only violator of this condition, then the system is simply monotonic.

Proof: Write the solution of (54) from zero initial conditions in the form




k
v, = E H . u, , kzo (56)

and consider the case of unit step inputs in each channel. The result

follows then quite easily.

Proposition 7: With the notation of proposition 6, denoting the system
~1

z-transfer function matrix by G(z) = C(zI-0) A + D and assuming that the

system is stable, monotonic and sign-definite, then the operator G in 22

induced by the system has norm equal to the matrix norm ||G(l)|!m (where

n
.ILm is the matrix norm in L(R ) induced by the vector norm !I.

| 3

m
Proof: Consider initially the scalar (m=1) case and note that
k @
lv I« ¥ I .0 lul <1} m _. |swp |ul (57)
k j=c k-] o j=o o jzo
with equality holding if uj =1, 9 2@ l.&.
(o] "
e[l = [ 1 B _ sl = [ew] (58)
j=o

; =1
from the series expansion of G(z) about the point z = 0. The more
general case of m-inputs and m-outputs now follows trivially by noting that,

using proposition 6:

k m
vl =max |5 § @ @),
o lgigm =0 4=1 k-37i2 3 %
m k
lgigm 2=1 Jj=o k-3 is @
m k I |1
= max Y|y m || )
lgigm 2=1 9J=o k-3 i%
P el
& max E | ( . [ )
leign g=1 =0 0 M4
] Ll
= max ) Je (W] . [|u
l¢igm g=1  * e
= lel]_ Ilull, + k2o -
equality holding when {uk}k>o is a constant seguence {a}k>o with all

elements of o of unit magnitude and carefully selected sign. This completes

the proof of the proposition.
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The following is the main result of this section and identifies a
Flass of multivariable plant for which transient data above is sufficient
to design the controller (18) and guarantee the stability and performance

of the real closed-loop system.

Theorem 2: Given an unknown discrete multivariable plant (2) where @A is
nonsingular and where the feedback operator H is stable, monotonic and sign-
definite, it follows that the unity negative feedback system with forward |
path controller (18) will be stable if
(i) the tuning parameters kj,cj, l¢jgm satisfy (21)
(ii) the controller XK(z) is invertible and minimum phase, and
(iii) the inegquality

max y(kj,cj) < 1 (60)

2
is satisfied, where the function y:R - R is any upper bound for the norm

in ¢® of a minimal realization of (z-1)/(z-k) (z-c). For example, if kj>cj'

l g ] g m, we can choose

(61)

(1-k.) (1-c.)
J c, #1

y(k,,c) = T o -
373 (ey~k,) (1 |kj|) (e k) (1=[e ) j

Moreover,under these conditions, equation (39) provides an upper bound on
the approximation error due to the design of K based on the approximate model.
The proof follows the general lines of theorem 1 but computes an

explicit expression for an upper bound

-1 -1 ' ;
| At s IILcAK Bollw-|'H|lm > l|LCA BOHH00 = ). More precisely, the

theorem is proved if we verify that

-1

K < max
cA

[[EaK Boll ¢ ma
lgigm

k..c. (62)
v ( 5 Cj)
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and

1zl = 118" ™ @ - sl (63)

Equation (63) follows quite simply by applying Proposition 7 as, taking
z-transforms of (27) and (28) leads to the identity

G(z)

f

=1
(Im + GACZ)BOH(z)) GA(Z) (64)

and hence

-1, -1 -1
By (G 7(2) -6, () (65)

H(z)

Equation (62) follows in a similar manner by noting that the operator

* =1
LCAK BO can be represented by the diagonal z-transfer function matrix

(I + G(z)K(z)) G(z)B = WV @ K(z)) 1B
m o o
= .. { z-1
diag (z-k.) (z-c.) 1<i<m (66)
J J
and that a minimal realization of (z—l)/(z—kj)(z—cj)=((l—kj)/(cj—kj))(l/

(z=k.)) + ((l-c.)/(k.-c.))(1l/(z-c.)) has norm bounded by yv(k,,c.). 'This
] ] d 3 J J 3]

completes the proof,

This result clearly provides a means of checking the stability and
performance of the closed-loop system for a given sampling rate at the
expense of needing to know or compute the required properties of H and K!
If however, H has the desired properties, the required properties of K are
easily checked and the constant A' evaluated from the steady state charac-
teristics G(l) of the real plant deduced either from a model using (15)
or, if the system is open-loop stable, from plant tests or plant simula-
tions using (17). The remaining problem is to find a systematic technique
for checking the stability, monotonicity and sign-definiteness of H from
transient data only. For this purpose, write H as the map v' = v = Hv'

defined by
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k

v. = ) H__.v! (67)
k-

k 154 n |

and note the easily proven proposition:

Proposition 8: H is stable iff 1im Hk = 0
Jeroa

A check on monotonicity can be obtained if plant tests or model simulations

are undertaken to estimate the vector output sequences {yil), yél},...}
(1) (1) ;
and {YAl r Yao ;++.} from the real and approximate plants generated by a

" . .th : o e o o
unit step input in the i plant input from zero initial conditions, and
if these experiments are repeated for all inputs 1 & i £ m. Defining

1 1) (
Yk= [-y}i)r---: Ylim)_’] ,YAk=[Y3§k reeay YA]T)J (68)

then it is easily verified that the plant equations (27, (28) take the

form
b = B H
Yo Y GA L (69)
or, in difference form, noting that Yo = YAO = 0,
Yo
A -1 g
F,_ = - + E = ¥
k = B T B+ BUBE .Z Be-3%
J=1
E =Y “« Y ' k20 (70)

k Ak k

Suppose now that data is available for 1 € k £ M. Equation (70) can be

expressed as an equation of the form

( ) )T
[HO, Hl,...,HM_i] T, Yy owowom s o = ( Fy (71)
@] Yl YM_l F2
6 .
which can be solved recursively for Ho' Hl,..., HM—l as (equation (16))
Yl = CA is, @y'assumption, nonsingular. As assessment of whether or not

H is monotonic and sign-definite can then be undertaken by applying the test



of proposition 6 to the finite number of Markov Parameter matrices

available and an assessment of its stability undertaken by considering

the validity of proposition 8 in the light of the finite data set available.
Note that the choice of model data Bl could have some impact on the

success of the above procedure in the sense that, from (8), it is clear

k 2 1, are independent of the choice of D

that the Markov Parameters Hk'
(and hence, by (13), Bl) whilst HO = -D = Im = Qll - B;lBl depends explicitly
on our choice of B.,. This observation could be of some significance if

1

the computed Markov parameters Hl,HZ,...,HM_l satisfy the requirements of

proposition 6 whilst H does not (i.e. H is monotonic but not sign-definite).
It is easy to see that we can introdﬁce an addition SHO to Ho to remedy this

problem (e.g. SHO = - HO) and that this beneficial change can be incorporated
in the model by changing Bl to Bl = BO SHO in the approximate plant model

and designed controller. Finally, note that the existence of a choice of

Bl ensuring the mon;tonicity and sign-definiteness of H can be guaranteed

in a certain special case:

Proposition 9: If the discrete model (2) is minimum-phase with fCA]% 0O and
n=m+ 1, then there exists a choice of Bl such that H is monotonic and
sign-definite.

EEQQE: The assumptions guarantee that H is stable with transfer function
matrix of the form H(z) = (l/(z+y))Hl + HO. Clearly H is monotonic and,
using the argﬁment preceding the proposition, we can choose Bl to ensure

sign-definiteness! This proves the proposition.

Controllers for Unknown Continuous Plant

Consider an unknown m-input/m-output dynamic process given in equation
(1) and the problem of designing a robust proportional plus integral con-

troller for this plant using transient data only. The development follows
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- FD
a similar line to that of section 2 and, for this reason, proofs will,
at times, be simply outlined. Throughout, however, the use of variation
of sample rate to investigate system behaviour is replaced by variations
in controller gains,

An Important Property of the Continuous Model

Most of the properties described in section 2.1 are related to the
discretization process and hence plan no role in the analysis of continuous
{

plant. The following is the exception and represents the continuous equi-

valent to Proposition 3:

Proposition 10: If CB is nonsirgular then the continuous system (1) can be

realized in the form

y(t) = (A,, - Dly(t) + CB(u(t) - v(t)) (72)

LT

where the signal v(t) is generated from the inherent feedback loop

z(t)

= ~ n-m
A, %(t) + A, ¥(t) , z(t)ER

v(E) = ~(CB) T (aL,z(E) + D y(E)) (73)

and +the mxm matrix D is arbitrary. Moreover the system is minimum phase if,

and only if, all eigenvalues of A lie in the open left-half complex plane.

22
Proof: Identical to that of Proposition 3 with ¢,A replaced by A,B

respectively.

Construction of First Order Approximate Plant Models

Suppose that controller design for the unknown system (1) is to be
undertaken on the basis of an approximating first order multivariable model
(Edwards and Owens 1977, Owens 1978) described by the inverse transfer
function matrix

G.l(s) =s A +Aa (74)
A i o] 1

or, equivalentely, by the state-variable model
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: -1 =1,
y(t) = - A A y(t) + A" u(t) (75)

1
Assume also that CB is nonsingular and identify (75) with (72) wvia the
relations

=1 =1

= e = .—D
A CB , ARy =B, (76)

i.e. we regard the approximate model as being generated from (72) by
neglecting the feedback loop (73). As in section 2.2 we make no other
assumptions about the choice of Al except to note the two natural choices:
() Al = o will simplify the structure of the approximate model, or
(ii) if we define the system transfer function matrix
G(s) = c(sT_ - M) " B (77)
then the choice of Al = le(s)[szo will ensure that the real and approxi-
mate systems have identical steady state characteristics.
Other choices of A, are not dismissed however!
Finally note that a suitable first order model can be computed from
a model or from simulation/plant transient data as follows:
(a) CB (and hence AO) can be calculated easily if a plant model is available.

The choice of Al = © causes no computational problems whilst the choice of

Al to match the plant steady state characteristics is obtained from the

relation

A == (ca B ™t = gyt (78)
whenever the inyerse exists.
(b) Plant tests or model simulations can yield the response vector y(i)(t)

. th .
generated from zero initial conditions by a unit step in the i plant input.

Defining
Y(t) = [y(l)(t), y(z)(t),...,y(m){t)], it is clear that
o dy(t)
R = at

t=0 (79)

or, equivalently, 1 g i,j g m,
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_d
(CB)ij aE Yy
t=o (80)
Also, if the plant is stable,
G(o) = -CA—l B = lim Y(t) (81)

oo
Clearly, both CB and G(o) can be estimated by graphical constructions on

the system response curves.

Controller Design for the First Order Approximation

As in section 2.3 the design problem is considered as the choice of
forward path controller K(s) for the real plant G(s) (see Fig. 1(a)) by
designing K on the basis of the approximate model GA(S) to ensure that the
approximate feedback system (Fig. 1(b)) has the required stability, steady
state, transient and interaction characteristics. The final design is then
implemented on the real system and final tuning of control parameters
undertaken. 1In this.éection the design of K for GA is considered.

The controller K(s) for GA{S) is a generalization of the proportional-
plus-integral controller originally proposed by Owens (1978), namely the
parametric form

k.c,
K(s) = A diag {k. + ¢, + -2} - A (82)
o | J

s 1 1

where kj, l<j<m, and cj, lgjsm, are proportional and integral tuning parameters

respectively, Equivalently, in state-variable form, the controller has a

realization

d(t) = e(t)
u(t) = A diag {k.c,} g (t)

o di 1¢igm
+ i + = £
(AO diag {kj cj} _ Al) e(t) (83)
1<jsm

or, in cases when cj = o for indices jl'j2""'j2' a minimal realization of

(83) obtained by deleting the corresponding states of q(t).
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In a similar manner to (20), the closed-loop transfer function matrix

1
H (s) = diag{—————— 1 (s(diag {k, + c.}
c (s+kj)(s+cj) 1¢4<m 5 j Y4
- ata) + aiag {k.c.} Y (84)
o 1 J 3 i
1<igm

and hence, using a simple pole-residue analysis, we conclude that
(a) The approximating feedback system is stable if

k. > 0 , c, >0 (1 € 3 €£m) (85)
J J
(b) The responses of the approximating feedback system to a unit step

th
demand in the k output have zero steady state errors if (85)

holds and Ck > 0.

(c) As k 2 min k. increases the responses of the closed-loop system
L¢3 J
£Jsm
approach those of the system
% {s(k.+c.) + k.c.}
3 iJ 1

HC(S) = diag $Jsm

Bk (86)

(s+k.) (s+c.)
J i

i.e. response spreads increase and interaction effects decrease

as the 'gain' k . increases, the system exhibiting rise times and

reset times of the order of k;l and c;l respecfively in loop j.

Clearly, under high enough gain conditions, the controller (82) is

capable of generating an approximate closed-loop system with excellent
steady-state and transient characteristics and the overall form and structure
of the response can be shaped by judicious choice of tuning parameters kj
and cj, lgjgm,

Stability and Performance of the Real Feedback System

The problem of predicting the stability and performance of the real
feedback system with the controller (82) in terms of the response characteristics
of the approximating feedback system can be treated in a similar manner to the
discrete case considered in section 2.4. More precisely, replacing g by the
m ; . ; m m
real vector space C (o,») of continuous mappings of [p,+m) into R and 2*>by

m
the (Banach) subspace of & of bounded mappings with the uniform norm
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1€l], = s [|£®)]] (87)
tso

Linear systems are then identified as linear operators on Cm(o,m) and
stable linear systems as linear operators whose restriction to Cm(o,w) is
an injection, We will denote the linear operator on Cm(o,w) associated
with a linear system with transfer function matrix T(s) by T and the normal
truncation operator P 1is defined by

£(t) ' og tgr

A (88)
(PTf(t) ==

for t 3 O and the identity if 1 = 4+, BAn operator T is causal if PTT = PTTPT
for all T 20,

Using the identification of (76) and assuming zero initial conditions,
equations (72) and (73) can be written in Cm{o,W} in the form of (27) and
(28) respectively with BO replaced by AO and a natural identification of H.
In particular it is easily verified that Lemma 1 (and its corollary) remain
valid with Qm(resp. E:) replaced by Cm(o,w)(resp. Cz(o,ﬁj), Bo replaced by
AO and the integer variable k replaced by the continuous variable T. In
particular (39) is replaced by the bound

max |yi(t) - yAi(t)| < HPt(y—yA)Hm
lgigm

”PtYAHm - AT max  max IYAi(S)I (89)

o1 1-1' ogs<t 1gigm

providingan explicit, computable estimate of the error involved in using

the approximate model for control design puposes in terms of the 'contraction
constant' L' and the approximate response YA' As in the discrete case the
lemma can only be used explicitly if either H or an upper boundfor ) is
known. Neither of these situations will normally exist if G is not known!

We can however deduce the following main result of this section (c.f.

Theorem 1).




- 27 -

Theorem 3: An unknown continuous multivariable plant (1) that is known
to be minimum phase with CB nonsingular will be stable in the presence of
unity negative feedback with forward path proportional plus integral con-
troller (82) if
(i) the tuning parameters kj and Cj’ 1l £ 3j < m, satisfy (85), and
(ii) the 'overall gain' k = min k., is sufficiently high.

j
Moreover, under the conditions, we have, for each given bounded reference

demand,

lim (y(t} - yA(t}) =0 (90)
k++too

uniférmly on [o,+m), indicating that the responses of the real and approxi-
mating closed-loop systems will be extremely close at high gains.

(Note: condition (ii) can be replaced by the conditions k > k* where k* is
an unknown 'minimum overall gain'. In general terms, it is the value of

‘k* that dictates the success of the technique for a given application.

More precisely, if k* is very high the technique will fail if high gains
cannot be generated. It is anticipated, however, that, in many applications,
k* will be small and hence that the technique will succeed using only modest
control gains and also that the approach to the limit in (90) will be rapid

ensuing that yA(ﬁ) is a good working approximation to y(t)).

- Proof of Theorem 3: The proof follows the same lines as the proof of theorem

1 by verifying that all conditions of lemma 1 are satisfied at high gains.

. ; m . _
(1) K has an inverse on C (o,®) as AO diag {kj + Cj}lsjsm Al has a

causal inverse at high gains and hence (83) can be inverted in the form

(A diag {k,+c.} ~ A )—l(u(t) - A diag{k,c,} qa(t))
o i 1L o] 33 ;
lgism 1gj<m
e (t) (91)

g(t)

-1, m : i .
Note also that K wa(b,m) is an injection at high gains as it can be

approximated by

575 ) 1 -1
£33 q(t) + diag{ } A u(t)

k., *c, . k. e . i
J 3 lsigm J ] Igism

I
1
Q
s
@
Q.
—

q(t)

(92)

Il
®
)
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Moreover, it is trivially verified that

lim ||K"1|]m = iy (93)
k>t

(ii) The conditions (85) ensure that the approximate closed-loop system
is stable and hence that LCA|Q$(0,N} is bounded and causal.
(iii) Using proposition 9 and (i) and (ii) it is glear that each term
in LcAK_lAOH represents a stable, causal system and hence that its restric-—|
tion to Ci(o,m} is injective, causal and bounded,
(iv) Finally the theorem will follow if we prove that IILCAK_lAOHIIm + 0
as k»>+ «, But the approximation (86) to (84) at high gains indicates that

* d *
there exists k 2 o such that (48) holds for k > k and hence that

'e-l _l
1k BE[, s e [Ix T[] - [[a ][], + olkete) by (93).

In applications situations the result guarantees that the proposed con-
troller is capable of‘generating excellent responses from the unknown plant
if enough controller gain 1is available. The result cannot provide any in-
formation on the gains required - this is to be discovered during the tuning
phase and is an inevitablerconsequence of our assumed ignorance of plant
dynamics! It does indicate however that increasing the gain can only improve
system responses and, in many (but not necessarily all) practical applications,
it is anticipated that the required controller gains will be gquite meodest in
the sense that k* will be small, In general there is no easy technique for
estimating k* unless a detailed model of the plant is known. In the next,
section, however, a class of unknown processes are identified for which k
can be computed from the steady state characteristics of the open-loop real

and approximate plants only. The analysis parallels that of section 2.5.

.Unknown Systems with Monotonic Feedback Errors

As in section 2.5 we can compute an upper bound A' for the contraction

=1 . 3
constant A = [lLCAK ADHHoo if H has a monotocity property. More precisely,



note that Definition 1 makes sense for continuous-time systems and

Proposition 6 becomes:

Proposition 11: The continuous system

x(t) = Ax(t) + B u(t) , y(t) = C x(t) + D u(t) (94)

is monotonic and sign-definite iff the impulse response matrix

At
I(t) =Ce B+ DS§(t) (95)
has the property that each element is either positive or negative for all
t > o.

Proof: Follows as in proposition 6 by writing

it
yt) =[ I (t-s) u(s)ds , tzo (96)
(o]

The important application of the result is in the proof of the following

equivalent to proposition 7:

Proposition 12: With the notation of proposition 11, denoting G(s) =

C(sI—A)FlB + D and assuming that the system is stable, monotonic and sign-
definite, then the operator G in Cg(o,w) induced by the system has norm
equal to |IG(9)||m.

‘25995; Follows as in proposition7'replacing summations by integrals' and
noting that

co

Glo) = [ I(t) at (97)
o]

the integral existing by stability.

The following theorem is the analogue of theorem 2 and identifies a class
of multivariable plant for which transient data alone is sufficient to design
the controller and guarantee the stability and performance of the real closed-

loop system.




Theorem 4: An unknown continuous multivariable system (1) which is
minimum-phase with CB nonsingular and such that the feedback operator H
is monotonic and sign-definite will be stable in the presence of unity
negative feedback with forward path controller (82) if

(i) the tuning parameters kj,cj,l & j € m, satisfy (85) with

kj>cj, ls3j<m,

(ii) the controller K(s) is invertible and minimum phase, and |

(iii) the following inequality is satisfied
ar b |[A;1(G‘l{o) - Al)Hm max Y(kj,cj) <1 (98)
lsjsm
where vy (K,c) is an upper bound for the norm of a minimal realization of
s/ (s+k) (s+c) in Cz(o,w). For example vy (k,c) = 2/(k-c).

Moreover, under these conditions, equation (89) provides an upper
bound on the approximation error due to the design of K based on the
approximate model.

(Note: In terms of the notation of theorem 3, equation (98) yields on

*
estimate of k , namely the upper bound

=L

k* < max Gy & 2 [[A;l(G

a

(0) -~ &) [ (99)
1gism

m

that is easily computed from transient data and anticipated integral action)
- Proof: The proof is similar to that of theorem 3 but usesan explicit

; , -1
expression for an upper bound A' for A i.e, A' 3 IILCAK AD HHW.HHHm b

1 -1
ADH|lm‘= A. Firstly note that LCAK Ao can be represented by the

[z x
cA
transfer function matrix

(I + G(s)K(s)) Ta(s) A = (G L(s) + K(s)) *a
m (@] o

2
g flag e} (100)
ts+kjl(s+cj) Ledfem

and hence by the diagonal impulse response matrix
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K Kt 5 eyt
I,(t) = diag {k._c. e n R } . (1o1)
A J ] lsj<m
It is clear therefore that
o0
-1
K = dt
||z K A | ], = max / I(IG(t))jj[
1<jgm o
o k -k t g, -c .t
smax [ {—1 e I +—L— e Jlat
; k. .=c k.-c, |
lgigm o J 3
2
£ max (102)
: k.~
lgjgm 3
=1, =]
Also note that]|H|!m= |[AO (G " (o) - Al)llm as Laplace transformation of
(27) and (28) leads to the identity
G(s) = (I + G.(s) A H(s)) T G (s) (103)
m A o) A
and hence (c.f. (65))
S
H(s) = A T (G "(s) - G_(s)) (104)
o] A

yielding the required wvalue for I|H||m by Proposition 12 noting that the
minimum phase assumption guarantees the stability of H by Proposition 10.

This completes the proof of the theorem.

In practice the application of the result is straightforward if it
is known that H is monotonic and sign-definite, If there are no a priori
grounds for supposing this to be the case then the engineer must either
proceed with the assumption of monotonicity and using (99) (or some other
estimation of k*) as a guide to the required gains or he must use a systema-
tic technique for checking for the existence of the property. This does
not appear to be quite as straightforward as in the discrete case (see

section 2,5) as the basic equation (c.f.(69))

Y - YA = GA AO Hy (105)
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relating open-loop approximate and real plant requires contains the 'low-
pass filter! GA and hence, in principle, requires differentiation of data
to deduce H. This could be a problem if the transient data is noise-con-
taminated. It would appear to be necessary therefore to attempt identifi—'
cation of H by other approximate, numerical means. This problem will be
the topic of future studies,

Finally, note that the results of Proposition 9 carry through to the '
continous case with the condition ’CAI# O replaced by {CB| # 0. It is
of interest to note that the monotonicity and sign-definiteness property
of H can be guaranteed in this case by suitable choice of Al.

4, Illustrative Examples

4,1 A single-input/single-output Discrete System

In this section we illustrate the application of the ideas above by
detailed analysis of the system model,

Consider the unstable, minimum-phase continuous system

x(t} = | L 0 x(t) + 1| u(t)
o -3 1
yvie) =[ 1 1] =) (106)

subjected to synchronized piecewise constant input and output sampling of

-1
frequency h = 20. The induced discrete model takes the form

1..05 o] 0.05
0 0.86 0.047

y. = []_ l] xk i k >o (107)

with the natural identification of &, A and C and has poles at the points
1.05, 0,86 and one zero at the point 0.95 inside the unit circle. The

approximating first order lag that matches the high and low frequency plant
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behaviour is obtained from equations (11),(13) to be defined by the

data BO = 10.31 and the inverse transfer function

@
N
I

- +
(z l)BO Bl

(z-1)10.31 + Bl (108)

where we will leave our choice of B, free for the moment as, using

1

Proposition 9, it is clear that we can choose B1 to ensure that H is both

monotonic and sign-definite. Using (65), the transfer function of H is

(z=1.05) (z-0.86)

H(z) = (z-0.9%5) - (z-1) - 0.097 Bl
= 0.04 - 0.097 B, - 2:00> (109)

1 z~0.905

which is clearly monotonic and sign-definite if 0.047 - O.O9'7B:1 % 0 ie.

Bl:; 0.4. The required controller is derived from (18) to be
K(z] = 10.31| 1 - ke + A2K1U=clzf o (110)
(z-1) 1

L

Consider now the data required to satisfy the conditions of theorem 2.

Clearly (60) is satisfied if

A ={0.097 (B, + 1.5) \Yoc,e) < 1 (111)

and we stand the best chance of satisfying this inequality - if Bl = 0.41
when (111) reduces to

A = 0.185 vy(k,c) <1 (112)

Considering, for simplicity the case of proportional control (i.e. c=1)
it follows from (61) we can take vik,c) = l/(l—] k|) when (112) reduces to
the constraint

| k| <o0.815 (113)
Remembering that k is simply the pole of the approximate first order model
with the designed controller, we will choose k = o to attempt to obtain a
deadbeat response. With this choice }' = 0.185 and it is trivially

verified that the (proportional) controller is minimum phase. The unit




step response yA of the approximate closed-loop system is deadbeat with
steady state value0.96. :Allconditions of theorem two are clearly satisfied.
The real feedback system is hence stable and applying the estimate (39)
of the error involved in the use of the approximation, it is seen that the
error involved in using the approximate model to predict the closed-loop
response is less than 24% of the approximate response. This value is
disappointingly large but is not pessimistic as can be seen from the exact|
responses shown in Fig. 2.

4.2 A Multi-input/multi-output Continuous System

In this section we apply the results of section 3 to design a propor-
tional plus integral level controller for the three tank system illustrated
in Fig. 3. Although we will use a process model to illustrate results it
will be clear that the designed controller could have been obtained (in the
manner outlined in Section 3) from graphical analysis of plant step response
data.

Using the data shown on the figure (where a, denotes the cross-
sectional area of tank i and the 3's are orifice resistances (head/flowrate))

the system is assumed to be described by the 2x2 linear state-variable

model
-40..5 0.17 0,0 0:33 0.0
®(t) =| 025 =1.75 1.0 [=m[t) + 0.0 0.5 | u(t)
0.0 2.0 ~3.0 0.0 i@
y(t) = 1 0 0 | x(t) (114)
0 o) 1
which clearly haslonly stable real poles and the single zero at s = -2.75.

The system is hence minimum phase and CB = diag{0.33,1} is nonsingular!
Following the ideas of section 3.2 we construct a first order approxi-

mate model of open-loop system dynamics of the form of (74) with (see (76))
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A = (ca)'l = (115)
Q

and, choosing A, to ensure that real and approximate plant have identical

1
steady state characteristics, with
r 3
1.47 -0.47
-1 - -1
Al =G (o) = - (CA lB) = (116) 1
-0.18 1.18

The real and approximate system open-loop step responses are compared in
Fig. 4.

The next step is the design of a control system for GA' Initially,
suppose that a proportional control system is to be designed of the form

of (82) with c_= c2 = o, From (84) the resultant transfer function matrix

of the approximate closed-loop system is
( b (
kl -1 -1
(0] 1, = kl 0.49 kl 0.16

(I + G K)"lGAK &
A i (117)
k2 i -1
(0] k ~0.18 1 - ~1.18
S+k2 L 2 o

and the predicted response in loop i is first order with time constant

kll. Suppose, for simplicity that we wish to have time constants of k;l = 0.6

in loop one and k2 = 0.3 in loop 2 corresponding to an increase in system

response speed of the order of five times. Equation (117) then predicts

that interaction effects and steady state errors in response to unit step

demand in loop one (resp. two) are 5% and 30% (resp. 10% and 35%)
respectively. We

will remove these steady state errors by introducing integral action into

the controller (82) by choosing cl = 0.4 and c2 = 0,8 to produce loop reset

times of approximately four times the loop time constant. The step responses
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of the resulting approximate feedback systems are shown in Fig. 5 and

take the form expected from the analysis.

Returning now to the design of the two-term controller for the real
plant, theorem 3 can be invoked to indicate that, as our chosen tuning
parameters satisfy (85), the use of the controller designed above will

guarantee the stability of the closed-loop system provided that our chosen

- gains are sufficiently high. Moreover, if this is the case, (90) then

indicates that the responses of the closed-loop system will be very close
to those predicted by the approximate model. At this stage of the design
process a model of the plant (if known) could be used to assess stability
by Nyquist methods (Owens 1978, MacFarlane 1980) or simple calculation of
the closed-loop system poles. We are primarily interested in this paper,
however, in the case when the plant model is unknown., In this situation,
theorem 3 simply implies the existence of 'gains' kl and k2 assuming stability
and states that, if a given choice of gains does not produce stability and
good response characteristics, the situation can always be improved (on-
line if necessary!) by increasing these gains. For the particular choice
of parameters given above, stability and adequate transient characteristics
are obtained as illustrated in Fig. 6. Note that yA(t) was an excellent
prediction of the overall form of y(t)!:
Conclusions

The paper has identified a large class of multivariable discrete and
continuous process plant for which a simple multivariable first order lag
model of plant dynamics (Owens 1978, 1979), obtained from a known plant
model or, when a plant model is not known, simply from graphical analyses

of open-loop step response data, is sufficient information to enable the
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desigﬁ of stable, high-performance, low-interaction feedback control
schemes based on widely-used proportional or proportional plus integral
control elements. One of the key points of the theory is that the con-
troller structure is easily obtained leaving the required performance to
be obtained by (possibly on-line!) tuning of a few loop parameters. A
guide to the required parameters is, however, easily obtained by analysis
of the first order approximate model and the main theorems of the paper
guarantee conditions under which suitable tuning parameters exist. There
are clear connections between the structure of these results and those of
Davison (1976), Astrom (1980) and Penttinen and Koivo (1980) in that con-
ditions for the stability and tracking properties of the closed-loop system
are obtained. In our paper however, we use different controller-structures

and obtain the added bonus that explicit information on the form of the
closed-loop transient performance is obtained in terms of the performance
of the approximating first order feedback system.

Finally, the theoretical basis of the techniques takes the form of
theorems 1 and 3 guaranteeing the existence of suitable-tuning parameters
and cannot provide computable estimates of these parameters in general. It
has been demonstrated in theorems 2 and 4, however, that a generalization

of the notion of monotonicity used by Astrom (1980) is an important property

of the modelling error that enables these results to be refined in this

direction,
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Figs 3.

Liquid Level Systems
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