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Abstract—In ultrasound harmonic imaging with linear fre-
quency modulated (LFM) excitation, the sidelobes level in the
compressed harmonic signal can be reduced by applying a
windowing function. Windowing on the transmitting signal causes
reduced penetration depth, whilst windowing on the receiving
side results in reduced signal-to-noise ratio (SNR) gain and
axial resolution. To optimize the transmitting signal energy and
the SNR gain with reduced sidelobes level in the compressed
harmonic signal, the use of nonlinear frequency modulated
(NLFM) signals are proposed. The NLFM signal and associated
second harmonic matched filter are designed using an analytical
approach to minimise correlation errors. In all simulations and
experiments, the NLFM signal performance is compared with
the reference LFM signal of similar sweeping bandwidth and
duration. The results indicate at least a 15 dB reduction in the
peak sidelobes level of the NFLM compressed second harmonic
signal with comparable axial mainlobe width when compared
with the LFM compressed harmonic signal.

Index Terms—ultrasound imaging, nonlinear frequency modu-
lation, linear frequency modulation, harmonic pulse compression.

I. INTRODUCTION

Ultrasound imaging with the nonlinear second harmonic
component (SHC) has become common in clinical practice.
Ultrasound harmonic imaging provides improved axial reso-
lution due to higher frequency and bandwidth, better lateral
resolution due to narrower beam width, and reduced reverber-
ation artifacts due to absence of the SHC at the transmitting
source [1], [2].

A key issue in ultrasound harmonic imaging is the low SNR
of the SHC [3]. A number of multi-pulse excitation schemes
(i.e. pulse inversion, power modulation, combination of pulse
inversion and power modulation, and contrast pulse sequence
[4], [5]) have been proposed in order to increase the SNR
of the SHC, however they are susceptible to motion artifacts
and may reduce the system frame-rate [6]. Coded excitation
with frequency modulated signals however offer the potential
to improve the SNR of the SHC without reducing the system
frame-rate and without increasing the peak acoustic pressure
[7].

In this paper, NLFM signals are proposed as an excitation
method to increase the SNR of the SHC and to reduce the peak
sidelobes level (PSL) after pulse compression of the SHC.

II. CODED EXCITATION

A. Nonlinear Frequency Modulated Signals

A complex time domain chirp signal, x(t), can be expressed
as [8],

x (t) = p (t) ej2π
{∫

fi(t)dt
}
, 0 ≤ t ≤ T (1)

where, p(t), is the amplitude modulation function and, fi, is
the instantaneous frequency function of the chirp signal.

The NLFM signal can be designed using a numerical
technique which requires a polynomial approximation for the
desired instantaneous frequency function [9]. However in this
paper, NLFM signal and the associated harmonic matched
filter are designed using an analytical technique in order to
minimize the correlation errors. The NLFM signal can also
be designed without using a time domain window function by
keeping the rectangular envelope of the signal which poten-
tially increases the transmission energy and hence the SNR
[10]. However, the NLFM signal is designed by modifying
both amplitude and phase modulation functions to improve
Doppler shift tolerance with an expense of reduced signal
energy [11]. The nonlinear instantaneous frequency function,
fi (t), of the NLFM signal is defined as [12],

fiNLF M
(t) = fc +

B

2

[
α tan

(
2γt
T

)
tan(γ)

+
2 (1− α) t

T

]
(2)

where B is the total sweep bandwidth, T is the duration, and
fc is the centre frequency of the chirp signal. The parameters
α and γ are used to control the nonlinear FM curve.

The amplitude modulation function, p(t), of the NLFM
signal can be expressed as,

p (t) ≈
√
|X(f)|2 d

dt
{fi (t)} (3)

where |X(f)|2 is the power spectrum of the chirp signal x(t).
In the design process of the NLFM signal, a Hann window is
selected as a desired shape of the power spectrum in order to
obtain reduced sidelobes level after pulse compression.

Finally, the NLFM signal can be get by substituting the p(t)
and fiNLF M

(t) from (3) and (2) into (1).



B. Linear Frequency Modulated Signals

In all simulations and experiments, the performance of the
NLFM signal is compared with the LFM signal. The instan-
taneous frequency function, fiLF M

(t), of the LFM signal can
be expressed as,

fiLF M
(t) =

B

T
t+ fc −

B

T
(4)

The LFM signal can be obtained by substituting the, fiLF M
(t),

into (1).
The NLFM and LFM excitation signals are designed with a

centre frequency (fc) of 2.25 MHz, duration (T ) of 20 µs, and
a -6 dB fractional bandwidth of 20%. A 10% tapered cosine
window is also applied to the LFM signal to reduce spectral
ripples. The NLFM signal parameters α = 0.4 and γ = 1.2
are chosen to get the desired shape of the power spectrum
that matches the transfer function of the ultrasound transducer
and also contain less spectral ripples. The instantaneous fre-
quencies of NLFM and LFM signals are shown in Fig. 1. The
designed excitation signals and the associated power spectra
are shown in Fig. 2.
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Fig. 1. The figure shows the instantaneous frequency curves of the NLFM
(solid line) and LFM (dashed line) signals.

The harmonic matched filter (HMF) is proposed to process
the nonlinear received signals and to perform second harmonic
pulse compression. The HMF is designed by doubling the
centre frequency and bandwidth parameters of the excitation
chirp signal [13]. Because the less tapering is applied to
the LFM signal, the harmonic mismatched filter (HMMF) is
proposed to perform pulse compression of the SHC and to
further reduce the sidelobes level in the LFM compressed
second harmonic signal. The HMMF is designed by the
application of a Chebyshev window of 80 dB attenuation to the
HMF. The power spectrum of the designed HMF and HMMF
are shown in Fig. 3.
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Fig. 2. Illustration of the NLFM signal (top, left), reference LFM signal
(top, right), the corresponding power spectra of the excitation signals and the
transfer function (TF) of the ultrasound transducer used in the experiments
(bottom).
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Fig. 3. The figure shows the power spectrum of the designed harmonic
matched filter (solid line) and harmonic mismatched filter (dashed line) for
second harmonic pulse compression.

III. MATERIALS AND METHODS

A. Simulations

The generation of higher order harmonic components due
to the nonlinear propagation of the ultrasound wave through
medium is simulated using the ‘B/A’ model [14].

ρ
∂2u

∂t2
= −∇p, p = −ρc2

(
∇ · u+

1
2
B

A
(∇ · u)2

)
(5)

where u is the particle displacement vector, p is the acoustic
pressure, ρ is the material density, c is the speed of sound, and
B/A is the nonlinear coefficient. The model is simulated in
Matlab where the simulation parameters are shown in Table I.



TABLE I
PARAMETERS USED IN SIMULATIONS

Parameters Symbol Value / Unit

Peak acoustic pressure p 1 MPa

Axial distance z 50 mm

Material density ρ 1000 kg/m3

Speed of sound c 1500 m/s

Nonlinear coefficient B/A 5.2

Frequency dependent attenuation α 0.5 dB/[cm×MHz]

B. Experiments

The experimental setup for measuring the harmonic com-
ponents due to nonlinear propagation of ultrasound waves
through water is shown in Fig. 4. The transducer and hy-
drophone are mounted coaxially in a pitch-catch configuration
and aligned at a depth of 50 mm using a custom built motion
control system. A programmable function generator (33250A
Agilent, 80 MHz, Santa Clara, CA, USA) is programmed to
generate the designed NLFM and LFM excitation signals. The
generated signals are amplified by a linear power amplifier
(A150 E&I, 55 dB, Rochester, NY, USA) and transmitted
by a 2.25 MHz single element transducer (56% fractional
bandwidth, V323-SM, Panametrics, Waltham, MA, USA). The
signals are received using a 0.2 mm needle-type (Polyvinyli-
dene Fluoride) PVDF hydrophone (calibrated from 1 to 20
MHz, Precision Acoustics Ltd., Dorchester, UK). The pressure
level of each waveform is calibrated and the mechanical index
(MI) of 0.2 (peak negative pressure of 300 kPa at 2.25 MHz)
is set at the receiver. The received signals are acquired at 1
GHz using a digital oscilloscope (44Xi LeCroy, 400 MHz,
Chestnut Ridge, NY, USA) with 32 times averaging. The
data is stored in a computer and processed offline using
MATLAB software (The MathWorks Inc., Natick, MA, USA).
The received signals are corrected using an inverse filter which
is designed according to the frequency response of the needle
hydrophone.
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Fig. 4. Schematic diagram of the experimental setup.

IV. RESULTS AND DISCUSSION

A. Simulations

The simulation results are shown in Fig. 5. The spectra of
the received signals show the existence of the SHC which is
20 dB below the fundamental component.
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Fig. 5. Illustration of the simulated NLFM (top), and LFM (middle) nonlinear
signals received at a depth of 50 mm, and the corresponding power spectra
of the received signals (bottom).

The pulse compression results of the simulated SHC signals
are shown in Fig. 6. The pulse compression parameters are
shown in Table II. The results indicate a 18 dB reduction of
the PSL in the compressed second harmonic NLFM signal
when compared with the compressed second harmonic signal
of the LFM. Also the -20 dB mainlobe width (MLW) of the
NLFM compressed SHC is reduced by 30% when compared
with the MLW of the LFM compressed signal.
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Fig. 6. The figure shows the pulse compression of the simulated NLFM
(solid line) and LFM (dashed line) second harmonic signals.



B. Experiments

The nonlinear signals received at a depth of 50 mm are
shown in Fig. 7. It is shown that the SNR of the received
NLFM signal is similar to the LFM signal even though the
energy of the transmitted NLFM signal was 54% of the LFM
signal. The -6 dB bandwidth of the SHC when excited with
LFM is higher than the NLFM because less tapering was used
in the design process of the LFM excitation signal. Also the
LFM SHC contains higher ripples than the NLFM SHC.
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Fig. 7. Illustration of the measured NLFM (top), and LFM (middle) nonlinear
signals received at a depth of 50 mm, and the corresponding power spectra
of the received signals (bottom).
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Fig. 8. The figure shows the pulse compression of the measured NLFM
(solid line) and LFM (dashed line) second harmonic signals.

The second harmonic pulse compression of the measured
nonlinear signals is shown in Fig. 8. The results indicate a 15
dB reduction of the PSL in the compressed SHC when using
an NLFM excitation signal compared to LFM. The MLW of
the NLFM compressed signal is slightly higher than the LFM

compressed signal, this is due to different bandwidth levels
between the LFM and NLFM.

TABLE II
PERFORMANCE EVALUATION PARAMETERS OF SECOND HARMONIC

PULSE COMPRESSION

Simulations Experiments
MLW [µs] PSL [dB] MLW [µs] PSL [dB]

NLFM 5.5 -42.6 5.4 -41.1
LFM 7.8 -24.4 4.6 -25.5

V. CONCLUSION

In this paper, NLFM signals are proposed as an excitation
method in order to increase the SNR and to reduce the PSL
after pulse compression of the SHC. The signal energy can
be efficiently transmitted using the NLFM signal by matching
the signal spectrum to the transfer function of the ultrasound
transducer. This results in an improved SNR and reduced
ripples in the SHC of the received signal. Moreover, no
additional windowing is required on the HMF to reduce the
PSL of the compressed SHC signal.
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