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We develop a Bayesian model for the alignment of two point configu-

rations under the full similarity transformations of rotation, translation and

scaling. Other work in this area has concentrated on rigid body transforma-

tions, where scale information is preserved, motivated by problems involving

molecular data; this is known as form analysis. We concentrate on a Bayesian

formulation for statistical shape analysis. We generalize the model introduced

by Green and Mardia [Biometrika 93 (2006) 235–254] for the pairwise align-

ment of two unlabeled configurations to full similarity transformations by

introducing a scaling factor to the model. The generalization is not straight-

forward, since the model needs to be reformulated to give good performance

when scaling is included. We illustrate our method on the alignment of rat

growth profiles and a novel application to the alignment of protein domains.

Here, scaling is applied to secondary structure elements when comparing pro-

tein folds; additionally, we find that one global scaling factor is not in gen-

eral sufficient to model these data and, hence, we develop a model in which

multiple scale factors can be included to handle different scalings of shape

components.

1. Introduction. The shape of an object is the information about the object

which is invariant under the full similarity transformations of rotation, translation

and rescaling. In order to compare the shapes of objects, we first seek to align them

in some optimal registration. In statistical shape analysis, objects often are reduced

to a set of points, known as landmarks, in d dimensions and thus can be represented

as m×d point configurations, where m is the number of landmarks. Let X be such

a configuration of points; the points on X are xj , j = 1, . . . ,m, where xj ∈ R
d are

the rows of X, with each row therefore giving the coordinates of point xj . We

shall consider the problem of pairwise alignment, where the objective is to align

one configuration, such as X above, with another configuration, Y , say, where the

rows of Y are yj , j = 1, . . . ,m, the locations of the points of Y .

Labeled shape analysis assumes a known, one-to-one correspondence between

the points on X and Y , labeled such that xj matches yj , j = 1, . . . ,m. Since the
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configurations may be presented in arbitrary registrations, it is necessary first to fil-

ter out the similarity transformations so that only the shape information of interest

remains. Mathematically, the problem is to find c, A and τ such that

XT = cAY T + τ1T
m,

where c > 0 is a scaling parameter, A is a d × d rotation matrix and τ ∈ R
d is

a translation vector. Of course, in practical situations, the point locations will be

observed with error, so the statistical problem is to find an optimal solution to an

equation of the form

XT = cAY T + τ1T
m + �,

where � is a d × m matrix of errors. The least squares solution to this problem is

the Procrustes solution [Dryden and Mardia (1998)].

A much more challenging problem, which has been the subject of recent re-

search interest, is that of unlabeled shape analysis, where the correspondence be-

tween landmarks is not known and often the configurations have different numbers

of landmarks. Specifically, we have an m × d configuration X which we wish to

align with an n × d configuration Y , with m �= n in general. To keep track of the

correspondence between landmarks, an m × n matching matrix M = (mjk) is in-

troduced, where mjk = 1 if xj is matched to yk and 0 otherwise. Thus, the problem

is to simultaneously estimate the matching matrix M as well as to solve the align-

ment problem described above for the labeled case. It is usually assumed that any

point on a configuration can match at most one point on the other, so that any row

or column of M contains at most one nonzero entry. Then the number of matched

points, 0 ≤ L ≤ min(m,n), say, is
∑m

j=1

∑n
k=1 mjk and is not known. Thus, even

for relatively small m and n, the number of possible matchings given by M is large,

which makes the problem very challenging. Therefore, searching over all possible

M and optimizing over transformation parameters to find a global solution is not

computationally feasible. Green and Mardia (2006) developed a Bayesian solution

to this problem, where the transformation, error and matching parameters were all

treated as unknown parameters and samples from the joint posterior were drawn

using MCMC. Although their model conceptually could handle similarity trans-

formations, their applications focused on rigid-body alignment (i.e., no scaling pa-

rameter c)—inclusion of the scaling parameter c requires considerable attention,

and it is the purpose of the present paper to address this problem. In particular,

we reformulate the likelihood, which we find is necessary for good performance,

and derive the full conditional distribution for the scaling parameter together with

methods to sample from it.

Other solutions to the unlabeled alignment problem have been proposed. One

such method is to maximize a likelihood over the transformation parameters con-

ditional on a given matching, and then to propose a different matching given

the transformation parameters, and alternate between these two steps; such meth-

ods have been used by Rodriguez and Schmidler (2013) and Dryden, Hirst and
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Melville (2007). Kent, Mardia and Taylor (2010) proposed a method based on the

EM algorithm, with the missing data being the labels representing the matching

between points. One problem with the methods which alternate between matching

and optimizing is that they can depend on the initialization of the matching and

can become trapped in local modes [Dryden, Hirst and Melville (2007), Kenobi

and Dryden (2012)]. Schmidler (2007) developed a fast matching method based

on an approximation using geometric hashing, and Srivastava and Jermyn (2009)

tackled the unlabeled problem by looking for objects of predefined shape classes

in cluttered point clouds, where the points are samples from the outline of a shape.

An issue with methods in which the transformation parameters are maximized

out of the likelihood is that the alignment is considered “correct,” and uncertainty

in this alignment is not fully propagated [Wilkinson (2007)]. Therefore, it is de-

sirable to consider a fully Bayesian formulation, in which uncertainty in all the

parameters is correctly handled. Such a formulation for the case of unlabeled sim-

ilarity shape is the subject of this paper. Theobald and Wuttke (2006) considered

a Bayesian model but concentrated on the labeled case and rigid-body transfor-

mations. For more discussion on these points, and a deeper comparison of the

different methods, see, for example, the reviews by Green et al. (2010) and Mardia

and Nyirongo (2012).

The paper is structured as follows: in Section 2 we briefly review the model

of Green and Mardia (2006) and introduce our generalization of the model to full

similarity transformations, with details of the resulting conditional distribution for

the scale factor c. We also develop a model which can handle two scaling factors,

which we find is necessary to model the protein data in our applications. Section 3

gives two illustrative examples: in the first we consider the alignment of rat skulls,

a data set which has been analyzed previously in the shape analysis literature.

In the second example we introduce a novel application to the alignment of pro-

tein domains based on a representation using their secondary structure elements

(beta strands and alpha helices). With this representation, some scaling may al-

low for improved alignments between proteins which have the same overall fold,

but whose corresponding secondary structure elements may be of different lengths;

examples include homologous proteins which have evolved from a common ances-

tor. We conclude the paper with a discussion in Section 4. Additional results and

material are provided in the Appendix and in the supplementary material [Mardia

et al. (2013)].

2. The model. Consider a pair of configurations of points in d dimensions,

X and Y , where X consists of m points and Y of n points. The configurations X

and Y can be represented by m × d and n × d matrices, respectively, where the

rows of X are xj ∈ R
d , j = 1, . . . ,m, and the rows of Y are yk ∈ R

d , k = 1, . . . , n.

In the model developed by Green and Mardia (2006) for unlabeled landmarks,

xj ∼ Nd

(

µψj
, σ 2Id

)

, Ayk + τ ∼ Nd

(

µηk
, σ 2Id

)

,
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where µ represents the (hidden) true point locations in some space V of volume v,

of which the observed configurations are noisy realisations; the variance of the

noise terms is σ 2Id . The ψ and η are labels indexing the mapping between the

observed locations and µ. In particular, if ψj = ηk , then xj and yk are both gener-

ated by the same point of µ and are therefore regarded as matched. The mapping

can be represented by a m × n matrix M with elements mjk = I (ψj = ηk), where

I (·) is the indicator function; M is one of the parameters of interest about which

to draw inference. Each point on X may be matched to at most one point on Y

and vice versa. Therefore, each row and column of M may contain at most one

nonzero entry. Note that the case of labeled landmarks is the special case where M

is known.

2.1. Likelihood. For our full similarity transformation model, we consider a

different formulation to that of Green and Mardia (2006). Rather than consider-

ing one configuration being transformed into the space of the other, we initially

consider a more “symmetrical” formulation where both configurations are trans-

formed into µ-space, which can be thought of as an “average space.” Specifically,

we have

1√
c
BT xj + τ 1 ∼ Nd

(

µψj
, σ 2Id

)

,
√

cByk + τ 2 ∼ Nd

(

µηk
, σ 2Id

)

,(1)

where c > 0 is a scale parameter, B is a d × d rotation matrix and τ 1,τ 2 ∈ R
d are

translation vectors; BT denotes the transpose of B . We have

1√
c
BT xj + τ 1 = µξj

+ ε1j , j = 1, . . . ,m,

and
√

cByk + τ 2 = µηk
+ ε2k, k = 1, . . . , n,

where the ε represent errors in the observed point locations. Assuming Gaussian

errors, so ε1j ,ε2k ∼ N(0, σ 2Id), results in model (1). (We note that other error

structures, such as heavy-tailed distributions, could be used, and this is compu-

tationally feasible. This would allow for the possibility of outliers. However, this

would have the undesirable effect of including matches which are far apart after

transformation, so the standard notion of robustness is not meaningful for align-

ment.) We denote the density of the error terms by f (ε) = φ(ε/σ)/σ d , where φ(·)
is the standard normal distribution in d dimensions. We now derive the full likeli-

hood of the observed data. The points on µ are regarded as uniformly distributed

over the region V . Assuming boundary effects can be ignored, then the likelihood

contribution of the unmatched X points is therefore

∏

j :mjk=0 ∀k

c−d/2 1

v

∫

V
f

(

1√
c
BT xj + τ 1 − µ

)

dµ = v−(m−L)c−d(m−L)/2.
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Similarly, the contribution of the unmatched Y points is

∏

k:mjk=0 ∀j

cd/2 1

v

∫

V
f (

√
cByk + τ 2 − µ) dµ = v−(n−L)cd(n−L)/2,

and the contribution of the matched points between X and Y is

∏

j,k:mjk=1

c−d/2cd/2 1

v

∫

V
f

(

1√
c
BT xj + τ 1 − µ

)

f (
√

cByk + τ 2 − µ) dµ.

We have
∫

V
f (z + u)f (u)du = g(z),

the density of ε1j − ε2k . Here, z = 1√
c
BT xj + τ 1 − √

cByk − τ 2 and g(z) =
φ(z/

√
2σ)/(

√
2σ)d . The complete likelihood, p(x, y;M,B,τ 1,τ 2, σ, c), is then

v−(m+n)+Lcd(n−m)/2 ×
∏

j,k:mjk=1

φ{(BT xj/
√

c + τ 1 − √
cByk − τ 2)/(

√
2σ)}

(
√

2σ)d
.

Also, p(M) ∝ (κ
v
)L, which results from a model in which the unobserved µ points

are realizations of a homogeneous Poisson process over the region V [Green and

Mardia (2006)]. This process is thinned so that each µ point generates an observed

point of exactly one of the following forms: on X only, on Y only, on both X

and Y , or not observed. The µ points generating an observation on X and Y are

the matched points. The probabilities of the thinned process are parameterized

by κ , which can be regarded as the propensity of points to be matched a priori. In

particular, larger values of κ give a stronger prior preference to larger numbers of

matched points.

Combining these terms, the joint model p(M,B,τ 1,τ 2, σ, c, x, y) is propor-

tional to

p(B)p(τ1)p(τ2)p(c)p(σ )cd(n−m)/2(

σ 2)−Ld/2
κL

× exp

{

− 1

4σ 2

∑

j,k:mjk=1

∥

∥

∥

∥

1√
c
BT xj + τ1 −

√
cByk − τ2

∥

∥

∥

∥

2}

.

This can be written as

p(M,A,τ , σc, c, x, y) ∝ p(A)p(τ )p(c)p(σc)c
d(n−m+L)/2(

σ 2
c

)−Ld/2
κL

(2)

× exp

{

− 1

4σ 2
c

∑

j,k:mjk=1

‖xj − cAyk − τ‖2

}

,

where A = B2, τ = √
cB(τ 2 − τ 1) and σ 2

c = cσ 2. The parameter σ 2
c can be re-

garded as the variance of the errors in X-space, and the term in the exponent above
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is of the same form as the transformation of the Y points into X-space as in Green

and Mardia (2006), with the scaling parameter c now included. Note that the ex-

ponent of c is now d(n−m+L)
2

as opposed to nd , as would result from strictly fol-

lowing the original formulation in Green and Mardia (2006); we find our novel

formulation provides much better performance when dealing with full similarity

shape. [Note that, although Green and Mardia (2006) provided a general formula-

tion which could deal with similarity transformations, they focused on rigid body

transformations only in their practical applications; the implementation was not

considered.] Intuitively, it is plausible to expect that the exponent of c should de-

pend on the number of matched points L, rather than the fixed quantity nd , and

that is the case with our formulation; this is a possible explanation for the improved

performance.

2.2. Prior distributions and MCMC updates. Priors for the parameters A, τ ,

σc and M are of the same form as in Green and Mardia (2006). The rotation ma-

trix A has a matrix-Fisher prior distribution, where p(A) ∝ exp{tr(F T
0 A)} and

the parameter F0 is a d × d matrix. A is parameterized by one angle θ when

d = 2, and by Eulerian angles, θ12, θ13, θ23, say, in the case d = 3. In our exam-

ples of Sections 3.1 and 3.2, we use a uniform prior on A, which is the special

case where F0 is the d × d matrix of zeroes. A then has a uniform prior with re-

spect to the invariant measure on SO(3), the Haar measure, where SO(3) is the

special orthogonal group of all d × d rotation matrices. With our parameteriza-

tion, this measure is cos(θ13) dθ12 dθ13 dθ23. For the translation vector τ , we have

τ ∼ Nd(µτ , σ
2
τ Id), where µτ is a mean vector and σ 2

τ Id a covariance matrix, with

Id the d × d identity matrix. For the noise parameter σc, we have σ−2
c ∼ Ŵ(α,β),

where p(σ−2
c ) ∝ σ

−2(α−1)
c exp(− β

σ 2
c
). The matching matrix M is parameterized by

κ > 0, with p(M) ∝ (κ
v
)L as described above.

We perform inference by generating samples from the posterior distribution (2)

using MCMC. Updates for the parameters A, τ , σ and M take the same form as

in Green and Mardia (2006), with the necessary adjustments being made to the

various terms to include the scale factor c where appropriate. We now concentrate

on the scale parameter c.

From (2), the conditional distribution of c is proportional to

p(c)c(n−m+L)d/2 exp

(

− 1

4σ 2
c

∑

j,k:mjk=1

‖xj − cAyk − τ‖2

)

,(3)

where L = ∑m
j=1

∑n
k=1 mjk is the number of matched points. Adopting a gamma

prior on c with parameters αc and λc, so that p(c) ∝ cαc−1 exp(−λcc), we have

the conditional distribution

p(c|A,τ , σc,M,X,Y ) ∝ cr−1 exp
(

−1
2
νc2 + δc

)

,(4)
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where r = (n−m+L)d
2

+ αc and

ν =
∑

j,k:mjk=1

yT
k yk/2σ 2

c , δ =
∑

j,k:mjk=1

(xj − τ )T Ayk/2σ 2
c − λc.

This distribution is a member of the generalized exponential family of distribu-

tions introduced by Lye and Martin (1993). In particular, it is in the form of the

generalized gamma distribution of Creedy and Martin (1994), who used these dis-

tributions for modeling the stationary distribution of prices in economic models.

This generalized gamma distribution has the form

p(c) = exp
(

ζ1 log c + ζ2c + ζ3c
2 + ζ4c

3 − η
)

(5)

for c > 0, where ζi, i = 1, . . . ,4 are parameters and η is a constant. Here we have

the special case ζ4 = 0 in (5), which we shall denote as the halfnormal-gamma

distribution. We are not aware of other work which considers this particular distri-

bution or methods to simulate from it. We use a Metropolis step, and also devise an

acceptance-rejection algorithm, details of which are in the supplementary material

[Mardia et al. (2013)]. Note that the choice of a gamma prior led to conjugacy,

since both the likelihood term in (3) and the conditional posterior for c are of

halfnormal-gamma form; therefore, our acceptance-rejection method can be used

to generate exact samples from this full conditional distribution. In our applica-

tions, we have used the Metropolis method to perform updates for c, which we

give details of here. A proposal value c′ is generated, given the current value c,

from the distribution

c′|c ∼ N
(

c,w2)

,

where

w =
{

ν + (r − 1)/s2
m

}−1/2

and sm = {δ+
√

δ2 + 4(r − 1)ν}/2ν is the mode of the conditional distribution (4).

The acceptance probability for the Metropolis step is

αp = min
[

1,
(

c′/c
)(n−m+L)d/2+αc−1

exp
{

−1
2
ν
(

c′2 − c2)

+ δ
(

c′ − c
)}]

.

The choice of proposal distribution is motivated by a general principle of normal

approximations to members of the exponential family of distributions. Details are

given in the Appendix, where, in particular, we show w2 to be an approximate

variance for the halfnormal-gamma conditional distribution of c under such a nor-

mal approximation. The success of the Metropolis method will depend on how

well the proposal distribution approximates the target distribution. Hence, in situ-

ations where this normal approximation is less adequate, the acceptance-rejection

method may be more efficient. However, we find the Metropolis method is per-

fectly adequate for our examples (where the configurations have relatively small

numbers of points) and as such is used throughout.
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2.3. The two-scale model. We now develop a model which allows for more

than one scaling parameter, motivated by our protein folding applications in Sec-

tion 3.2. Suppose there are two sets of points, groups 0 and 1, say, with the points

in each group subject to different transformations. We assume that matched points,

where mjk = 1, are from the same group. Introduce class labels zx
j ∈ {0,1}, j =

1, . . . ,m, to denote the group of point xj , and likewise for the Y points. For group

0 we have

1
√

c0
BT

0 xj + τ 0
1 = µξj

+ ε1j , j = 1, . . . ,m,

and

√
c0B0yk + τ 0

2 = µηk
+ ε1k, k = 1, . . . , n,

and similarly for the group 1 points. Let m0 and n0 denote the number of X and Y

points, respectively, in group 0, and similarly for m1 and n1. Also let L0 and L1 be

the number of matched points in group 0 and 1, respectively. Using similar argu-

ments to those in Section 2.1, the joint model p(M,A,τ 0,τ 1, σc0
, σc1

, c0, c1,x,y)

is proportional to

p(A)p
(

τ 0)

p
(

τ 1)

p(c0)p(c1)p(σc0
)p(σc1

)κL

×
(

σ 2
c0

)−L0d/2
c
d(n0−m0+L0)/2
0

× exp

{

− 1

4σ 2
c0

∑

j,k:mjk=1,zx
j =0

∥

∥xj − c0Ayk − τ 0
∥

∥

2
}

×
(

σ 2
c1

)−L1d/2
c
d(n1−m1+L1)/2
1

× exp

{

− 1

4σ 2
c1

∑

j,k:mjk=1,zx
j =1

∥

∥xj − c1Ayk − τ 1
∥

∥

2
}

,

where τ 0 = √
c0B0(τ

0
2 −τ 0

1) and σ 2
c0

= c0σ
2, and likewise for group 1 parameters.

We assume that both groups have the same rotation A = B2
0 = B2

1 ; if there is no

translation (as in our protein applications in Section 3.2), this assumption corre-

sponds to a model where the entire configurations are first rotated by A, before the

appropriate scaling is applied to each individual element. This is exactly the be-

havior we require in the protein alignment applications of Section 3.2 when using

our representation of protein secondary structure. Assuming that the priors for the

scale and noise parameters are independent and have the same form as previously,

then the updates for the Markov chain have the same form, with the relevant up-

dates for the transformation parameters for each group naturally depending on only
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the points in that group. Additionally, we also propose a switch of the class labels

at each iteration of the chain. For identifiability of the groups, we set c1 > c0.

3. Applications.

3.1. Rat growth (labeled landmarks). In growth data, the interest is to assess

changes in shape over time. Here, size is a key concept, since growth leads to an

increase in the object’s overall size, while its shape may remain the same. Hence,

scaling information is highly relevant and must be taken into account during the

alignment process.

We illustrate our method on data relating to the growth of a rat’s skull. The

data are described in Bookstein [(1991), page 67] and the references therein, and

have been analyzed by many other authors including Kent et al. (2001), Kent and

Mardia (2002) and Kenobi, Dryden and Le (2010). The data consist of m = 8 land-

mark locations in d = 2 dimensions on the skulls of 21 laboratory rats measured

at 8 timepoints between the ages of 7 and 150 days. The correspondence between

landmarks is known, hence, this is an example of labeled shape analysis. Since the

measurements are on the same rat at different ages, we would expect clear differ-

ences in the size of the rat and, hence, there may be a change in scale, as well as

possible changes in shape. The real interest is in changes in shape over time, but

the configurations from each timepoint must first be registered by removing the

information not relating to shape. Since the rat will grow over time, it is necessary

to remove size information and, hence, the full similarity transformations must be

used in the registration.

To highlight the need to include scaling in the alignment, we first consider using

only a rigid-body transformation. In Figure 1 we see the initial configurations of

the rat at the first and last time point, and the registered configurations using only

rotation and translation as in the original method of Green and Mardia (2006).

Here, the need for scaling is evident when comparing the fit to that obtained by

using the full similarity transformation (Figure 2, bottom right).

FIG. 1. Pairwise alignment between the rat configurations at timepoints 1 and 8 using only rota-

tion and translation. The left panel shows the unregistered configurations, and the right panel the

registered configurations; the need for scaling is clearly apparent.
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FIG. 2. Pairwise alignments between the rat configurations at timepoints 2 to 8 and timepoint 1. In

panel 1, the posterior medians for the scale factor c are plotted against the age of the rat, together

with 95% posterior intervals. Panels 2 to 8 show the corresponding superpositions, ordered chrono-

logically, with panel 2 showing the alignment between timepoints 2 and 1 and so on; in each case

the dashed line represents the estimated superposition of the skull at the first timepoint onto the skull

at the later timepoint (solid line).
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We illustrate our method of full similarity shape alignment on one rat [labeled 1

in Bookstein (1991)] by comparing the shape at timepoints 2 to 8 with the shape

at the first timepoint. We set a diffuse prior on the translation τ , with µτ equal

to the difference in centroids and στ = 1000. We use an exponential prior for c

with mean 1, and set α = 1 and β = 8, but find that the results are robust to these

settings for α and β . In each case, we denote the younger rat configuration by Y

and the older one by X.

Panel 1 of Figure 2 shows the posterior median of the scale factor c from each

of the seven pairwise alignments of the youngest rat configuration with the older

ones, together with a 95% posterior interval. Here we clearly see an initially rapid

increase in the scale factor, slowing as the rat gets older. Panels 2 to 8 show the

corresponding superpositions of the younger rat configuration (Ŷ ) onto the older

one (X), with the transformation obtained using the posterior mean estimates of A,

τ and c. As well as an increase in size, there is also evidence of a change in shape,

as seen by the progressively looser fits as the rat gets older. In particular, the skull

becomes longer and thinner as the rat gets older.

3.2. Aligning protein domains.

3.2.1. Proteins and secondary structure. We now consider an application to

the alignment of protein domains. A protein is a chain of amino acid residues,

and there are 20 different amino acid types. An amino acid consists of a structure

common to all amino acid types, plus an additional side-chain structure which

determines which of the 20 types it is. In particular, every amino acid contains an

alpha-carbon (Cα) atom, and one possible representation of protein shape is the

configuration of Cα atoms. Indeed, the first statistical work involving 3-d protein

data in bioinformatics began with Wu et al. (1998), who used the alpha-carbon

(Cα) atom of each amino acid residue as a landmark location.

We use a representation based on the secondary structure elements of a protein.

At the secondary structure level, a protein can be represented in terms of β strands

and α helices (the two main secondary structure elements), which are themselves

sub-chains of amino acid residues. The spatial arrangement of these elements, to-

gether with their connectivity, determine the fold of the protein, which is crucial

to the biological activity of the protein. An example is shown in the left panel of

Figure 3, the domain 2VLWA00 which we use in our examples below. The arrows

represent beta strands, which are labeled 1–5 to indicate the sequence order in

which they appear in the chain, each made up of a number of amino acid residues.

For illustration, we have shown the positions of the Cα atoms of each residue on

the strand labeled 2, represented by the dark spheres (not to scale); this particular

strand has 4 residues and hence 4 Cα atoms. The beta strands are joined together

by further regions of the amino acid chain, known as loops, represented here by

the thin strings. For a thorough introduction to protein secondary structure, see, for

example, Branden and Tooze (1999), Chapter 2.
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FIG. 3. Left: the domain 2VLWA00. The domain consists of 5 beta stands, labeled 1–5 to denote

their sequence order in the chain. The locations of the Cα atoms (the dark spheres) from strand 2 are

shown for illustration; this strand has 4 residues and hence 4 Cα atoms. Right: the domain 1FASA00.

One possible approach is to represent an element by the centroid of the Cα

atoms from the residues of the element. The protein would then be reduced to a

configuration of points, with each point representing the centroid of one element.

However, applying scaling to this representation would also scale the distances

between secondary structure elements in the packing arrangement of the protein.

This is not satisfactory since these distances should be preserved. Where scaling

is really required is in the comparison of the lengths of the elements. Two proteins

sharing the same fold may have a very similar spatial arrangement of secondary

structure elements, but the lengths of the elements may be longer in one than the

other. Hence, we consider an approach using vectors to represent secondary struc-

ture elements, where each distinct element is represented by a vector from the

origin to a single point. Scaling a configuration then only alters the length of each

vector. The vector representation is found by taking the difference between the

start and end points of the principal axis through the element, found using the

method described in Taylor, Thornton and Turnell (1983) as follows. For any par-

ticular element (a beta strand say), the locations of the Cα atoms are taken to form

a data cloud in three dimensions, and the principal axis (essentially the first prin-

cipal component) is calculated. The start and end points of each element are then

found by orthogonally projecting the Cα atom of the first and last residues onto this

axis; the difference between these two points is then the point (vector) representing

the element. For example, relating to Figure 3, to find the point representing the

strand labeled 2, the principal axis through the 4 Cα atoms is first found. The start

point of the strand is then found by projecting the Cα atom from the first residue

of the element (labeled a) onto this axis; similarly, the end point of the strand is

found by projecting the Cα atom from the last residue of the element (labeled b)

onto the axis. The difference between the end and start points is then the vector

representing this strand. In this example, there are 5 strands and, hence, there will
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be 5 points in total representing the protein, each found using the procedure above.

Notationally, we represent the start point of the j th element of one protein by x1j

and the end point by x2j . The j th row of configuration X is then xj = x2j − x1j ,

with a similar definition for the kth row of the second protein, Y , say, yk .

To address the particular challenges faced in the protein examples, we make

two alterations to the methodology used in the paper thus far. First, the ordering

of the secondary structure elements is important, as proteins which evolve from

a common ancestor do so via the insertion/deletion of amino acid residues, and

ultimately possibly secondary structure elements. As such, the parts which are

conserved/common between two proteins will be placed in the same order relative

to each other. Hence, we only allow proposed updates to the matching matrix M

which preserve the sequence order of the elements. Second, in contrast to tradi-

tional applications in shape analysis, there is no reason why we should expect a

single global scaling factor to be appropriate, since different pairs of secondary

structure elements may require different scaling. Therefore, we propose a model

with two scaling factors, which are sufficient to provide a good fit to the data in

our examples, as each configuration has only a relatively small number of points

(a maximum of ten). This model could be readily extended to handle a general

number of scalings, which may be required for configurations with a larger num-

ber of points.

3.2.2. Illustrative examples. We illustrate this approach using 3 protein do-

mains each consisting of beta strands: 2VLWA00, 1FASA00 and 1M9ZA00, which

are classified in the same superfamily (CATH code 2.10.60.10) in the CATH

database [Orengo et al. (1997)]; the domain names refer to their respective CATH

identification labels. Since they are classified in the same CATH superfamily, they

have the same fold and, hence, the domains should possess a high degree of struc-

tural similarity. However, the individual strands will not necessarily have the same

length, so some scaling may be required to produce a good alignment of the indi-

vidual structural elements (points). We provide two examples, namely, the domain

2VLWA00 aligned with each of the domains 1FASA00 and 1M9ZA00.

Our first example is the pair of domains 2VLWA00 (configuration X) and

1FASA00 (configuration Y ), each of which consists of five beta strands; the struc-

tures are shown in Figure 3. We used the settings α = β = 1 throughout this sec-

tion for the prior of σ−2. For the scale factor c, we have an exponential prior with

the mean parameter taken as 1 (αc = 5, λc = 5) and we use κ = 100,000. We do

not allow for translation, since translation is removed when taking the difference

between start and end points of an element. The matches obtained and their respec-

tive probabilities are given in Table 1. We see that each pair of points matches with

high probability. The posterior median of c0 is 1.06, with 95% posterior interval

(0.75,1.56), and the posterior median of c1 is 1.64, with 95% posterior interval

(1.38,2.14). These results highlight the ability of the model to capture the different

scaling required for different elements, which we now explore further.
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TABLE 1

Matches from an alignment of the secondary structures of 2VLW (X) and 1FAS (Y )

Match x y prob ‖x‖/‖y‖ prob (no scale) prob (global scale) f̂0

1 1 1 0.989 2.41 0.869 0.983 0.17

2 2 2 0.945 2.70 0.701 0.958 0.15

3 3 3 0.968 1.62 0.347 0.965 0.08

4 4 4 0.980 1.59 0.414 0.970 0.10

5 5 5 0.924 1.02 0.672 0.512 0.98

Column 5 of Table 1 shows the length ratios of the matched points prior to any

scaling. This suggests that some scaling is certainly necessary, and further still

that varying amounts of scaling may be necessary for different pairs of points to

provide the best fit to the data. We now consider the improvement in fit offered

by first introducing one scaling factor, and the further improvement offered by

adding a second scaling factor. The matches obtained using no scaling and one

global scale factor are shown in columns 6 and 7 of Table 1, respectively. For the

case of one global scale factor, where the posterior median of c is 1.54, with 95%

posterior interval (1.25,1.85), the model is clearly not sufficient to capture all the

matches with high probability. In particular, the match between x5 and y5 has a

much lower posterior probability of 0.512; this can be explained due to the ratio

of lengths being 1.02, in comparison to the other ratios, which are 1.59 and above.

However, the inclusion of a scaling parameter offers a clear improvement over the

case where no scaling is applied whatsoever, as seen by the substantially lower

matching probabilities obtained when no scaling is used.

Looking purely at the length ratios of the matched points, one might consider

whether a model with three groups might be necessary. Column 8 of Table 1 shows

the empirical proportion of the iterations that each pair of matched points were in

group 0 (the group with the smaller scale factor), f̂0 say. These proportions sug-

gest that the points are separated into two clear groups, with the match between x5

and y5 being accounted for in its own group, and that group 1 can accommodate

the other matches; this evidence, together with the posterior probabilities, suggests

that two scaling factors are sufficient in this case. The model could readily accom-

modate more scaling factors, but given the small number of points in this example,

this appears excessive and risks overfitting.

To illustrate further the power of the unlabeled method, we now consider an

example with an unequal number of points (secondary structure elements). The

domains are 2VLWA00 from the previous example (configuration X) which has

five beta strands, and 1M9ZA00 (configuration Z) which has ten beta strands;

the structures are shown in Figure 4. Even with the full possible matching of five

points, the matching between individual strands is not obvious. (In the previous ex-

ample, there is only one possible matching matrix M consistent with five matches,
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FIG. 4. Left: the domain 2VLWA00, which has 5 beta strands, from the first example. Right: the

domain 1M9ZA00, which has 10 beta strands.

due to the ordering constraint.) The posterior matches in this example, for the cases

of two scaling factors and one global scaling factor, are shown in Table 2. For the

first case, five matches are found with high posterior probabilities. The empirical

proportion of the iterations each match spent in group 0 is again shown, in col-

umn 7 of Table 2. As in the first example, the model clearly separates the matches

into two groups, with the match requiring a smaller scaling factor being accom-

modated in group 0; the matching probabilities for the global scale model show

that this match is neglected when only one scaling factor is used. We note that the

beta strand represented by x5 is in group 0 in both cases; this strand is consistently

smaller in domain 2VLWA00 than in the other domains we have considered. This

evidence again suggests that one global scale factor is not sufficient to capture all

possible matches with high probability, but that a two-scale model is adequate.

3.3. Sensitivity to prior settings and computational issues. The role of and

sensitivity to the parameters κ and β were discussed in Green and Mardia (2006);

higher values of κ encourage more matches, and β is an inverse scale parameter

TABLE 2

Matches from an alignment of the secondary structures of 2VLW (X) and 1M9Z (Z), for the cases of

two scaling factors and one global scaling factor

Match x z prob (two scale) prob (global scale) ‖x‖/‖z‖ f̂0

1 1 1 0.990 0.975 1.29 0.07

2 2 4 0.988 0.980 1.11 0.04

3 3 5 0.997 0.985 1.47 0.04

4 4 6 0.990 0.981 1.19 0.06

5 5 9 0.957 0.179 0.81 0.99
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TABLE 3

Matches from an alignment of the secondary structures of 2VLW (X) and 1FAS (Y ) for three

different prior settings

Match x y prob (case 1: αc = 0.1) prob (case 2: αc = 5) prob (case 3: αc = 10)

1 1 1 0.989 0.989 0.981

2 2 2 0.954 0.945 0.935

3 3 3 0.933 0.968 0.955

4 4 4 0.950 0.980 0.967

5 5 5 0.783 0.924 0.947

for the noise variance, with larger values leading to generally fewer matches. Here,

we concentrate on the sensitivity of our results to the prior settings for the scaling

parameters. We consider three cases, namely, αc = 0.1,5.0,10.0; in each case, we

set λc = αc, giving a prior mean of 1, with larger values of αc corresponding to a

smaller prior variance. The matches obtained for our first protein example, the pair

2VLW-1FAS, are shown in Table 3. The effect on the parameters c0 and c1 can be

seen in Table 4.

For the second protein example, the pair 2VLW-1M9Z, the matches obtained

are shown in Table 5 and the effect on the parameters c0 and c1 can be seen in

Table 6. For both pairs, the matching probabilities are generally lower in case 1

(when the prior information on c is weak), although the overall alignment is still

good. Results are robust for larger values of αc, and further results (not shown)

show that the results remain robust for even larger values of αc = λc, with the

posterior values of c moving slightly closer to the prior mean of 1; this is to be

expected as the prior variance gets smaller, resulting in a more informative prior.

However, the results change by only a small amount, suggesting that the data carry

a lot of information.

The implementation of our method does not come with a particularly high com-

putational cost. The most computationally expensive aspect of our examples, the

unlabeled two-scale model, was implemented in C++ and ran in 10 seconds on a

desktop PC with a 3.10 GHz processor.

4. Discussion. In this paper we have presented a Bayesian model for the pair-

wise alignment of two point configurations under full similarity transformation.

TABLE 4

Posterior summaries of c0 and c1 for 2VLW (X) and 1FAS (Y ) for three different prior settings

Parameter Case 1 Case 2 Case 3

c0 1.14 (0.76,1.74) 1.06 (0.75,1.56) 1.06 (0.75,1.47)

c1 1.71 (1.45,3.30) 1.64 (1.38,2.14) 1.61 (1.34,1.91)
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TABLE 5

Matches from an alignment of the secondary structures of 2VLW (X) and 1M9Z (Z)

for three different prior settings

Match x y prob (case 1) prob (case 2) prob (case 3)

1 1 1 0.958 0.990 0.981

2 2 4 0.871 0.988 0.907

3 3 5 0.919 0.997 0.920

4 4 6 0.936 0.990 0.957

5 5 9 0.882 0.957 0.923

The fully Bayesian approach allows for uncertainty in the transformation parame-

ters to be correctly propagated, which is a key conceptual difference between our

method and others. We note that isotropic errors have been assumed throughout,

but this has been standard practice in shape analysis [Dryden and Mardia (1998)];

Theobald and Wuttke (2006) have considered nonisotropic errors in the case of

labeled landmarks. Our emphasis here has been on both the labeled and unlabeled

cases.

The work presented here has concentrated on the pairwise alignment of two

configurations. Ruffieux and Green (2009) generalized the method of Green and

Mardia (2006) to develop a fully Bayesian model for the alignment of multiple

configurations under rigid body transformations; a natural extension might there-

fore be to incorporate our methodology developed in this paper within their model.

Mardia et al. (2011) addressed the problem of multiple alignment under rigid body

transformations by embedding a pairwise alignment method within a multi-stage

algorithm, and their methodology could easily be adapted to incorporate the ex-

tension to the full similarity shape case introduced here.

Finally, an important part of our work is the novel application to the alignment

of proteins, using a representation based on secondary structure elements. This

application required the development of our model to handle more than one scal-

ing factor, since different elements may require different scaling. The use of one

global scaling factor has been standard practice in shape analysis [Dryden and

Mardia (1998)]. We find that two scaling factors is sufficient for our needs; our

TABLE 6

Posterior summaries of c0 and c1 for 2VLW (X) and 1M9Z (Z) for three different

prior settings

Parameter Case 1 Case 2 Case 3

c0 0.82 (0.68,1.21) 0.82 (0.70,1.15) 0.83 (0.70,1.15)

c1 1.18 (1.08,3.13) 1.17 (1.09,1.41) 1.17 (1.08,1.37)
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proteins have only a small number of points, and including more scaling parame-

ters would come at the cost of overfitting, which our results suggest is unnecessary.

However, our method could be readily extended to include more scaling factors as

needed. This would introduce issues such as model choice and comparison, and

such matters are left for future work.

APPENDIX: EXPONENTIAL FAMILY AND NORMAL APPROXIMATIONS

A.1. A normal approximation. Here we give a normal approximation for the

exponential family of distributions, motivated by our requirement for an efficient

proposal distribution for the Metropolis method described in Section 2.2. Consider

the curved exponential family for a continuous random variable X with density

f (x; θ) = exp
{

a1(θ)b1(x) + a0(θ) + b0(x)
}

.

The second log derivative with respect to x is

ℓ′′(x) = ∂2 logf (x, θ)/∂x2 = a1(θ)b′′
1(x) + b′′

0(x).

We assume that the family is convex so that there is a single mode at x = x̂ and

−ℓ′′(x̂) > 0 uniformly. Then for large a1(θ), we postulate that

X ≃ N
(

x̂,−
{

a1(θ)b′′
1(x̂) + b′′

0(x̂)
}−1)

,(6)

where x̂ is the mode of the distribution. A heuristic explanation follows intuitively

using the exchangeability of x and θ . For the maximum likelihood estimate θ̂

of θ , it is well known that for a large sample size n we have θ̂ ≃ N(θ, I (θ)−1),

where I (θ) is the Fisher information, Eθ [−∂2l(θ;x)/∂θ2], and l(θ;x) is the log-

likelihood function. Consider now interchanging the roles of x and θ , treating θ as

a variable and x as a parameter. Since x and θ are exchangeable by conjugacy, we

may write

X ≃ N
(

x̂,−
{

∂2 logf (x, θ)/∂x2}−1
x=x̂

)

,

which is equivalent to (6) and hence gives a heuristic demonstration of the result.

The validity of this approximation is confirmed below in various cases where a

normal approximation is well known. [Note that in the case of the normal distri-

bution with mean μ and variance σ 2 the approximation is exact as required, with

X ∼ N(μ,σ 2).]

A.1.1. Gamma. Consider the gamma distribution with density p(x) = βα ×
xα−1 exp(−βx)/Ŵ(α). We have ℓ = (α − 1) logx − βx + α logβ − logŴ(α) and

the mode is x̂ = α−1
β

, giving the approximation X ≃ N(α−1
β

, α−1
β2 ). The stan-

dard approximation is X ≃ N(α
β
, α

β2 ), so the two are approximately the same for

large α.
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A.1.2. Von Mises. For the von Mises distribution, we have f (x,μ) = K ×
exp{κ cos(x − μ)},0 < x,μ < 2π . The mode is x̂ = μ; thus, (ℓ′′)x̂=μ = −κ , and

the approximation is X ≃ N(μ, 1
κ
), which is a well-known normal approximation

to the von Mises distribution [Mardia and Jupp (2000), page 38].

A.1.3. Halfnormal-gamma. For the halfnormal-gamma distribution, we have

ℓ = logf (x; r, ν, δ)

= logK + (r − 1) logx − 1

2
νx2 + δx,

ℓ′ = (r − 1)

x
− νx + δ

and

ℓ′′ = −(r − 1)

x2
− ν,

leading to an approximate variance given by {ν + (n−1)

x̂2 }−1. Recall that the

mode is x̂ = {δ +
√

δ2 + 4(r − 1)ν}/2ν. We therefore have the approximation

X ≃ N(x̂,Var(X)). We find the approximation to be better for larger r and δ; even

for small r , the approximation is good for positive values of δ, but less good for

relatively large negative values of δ. Further details are given in the supplementary

material.
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SUPPLEMENTARY MATERIAL

Simulation methods and a normal approximation for the halfnormal-

gamma distribution (DOI: 10.1214/12-AOAS615SUPP; .pdf). We describe an

acceptance-rejection method for simulating from the halfnormal-gamma distribu-

tion and investigate its efficiency over a range of parameter settings. We also in-

vestigate further the normal approximation to the halfnormal-gamma distribution,

which we use to obtain efficient proposals in our Metropolis updates. We show

that the approximation is best for parameter values where the acceptance-rejection

method is less efficient, and hence that the two simulation methods complement

each other well.

http://dx.doi.org/10.1214/12-AOAS615SUPP
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