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Abstract:

Diameter and diametral clearance of the bearing surfaces of metal-on-metal hip

implants and structural supports have been recognized as key factors to reduce the dry

contact and hydrodynamic pressure and improve lubrication performance. On the

other hand, application of aspherical bearing surfaces can also significantly affect the

contact mechanics and lubrication performance by changing the radius of the

curvature of a bearing surface and consequently improving the conformity between

the head and the cup. In this study, a novel metal-on-metal hip implant employing a

specific aspherical bearing surface, Alpharabola, as the acetabular surface was

investigated for both contact mechanics and elastohydrodynamic lubrication under

steady state conditions. When compared with conventional spherical bearing surfaces,

a more uniform pressure distribution and a thicker lubricant film thickness within the

loaded conjunction were predicted for this novel Alpharabola hip implant. The effects

of the geometric parameters of this novel acetabular surface on the pressure

distribution and lubricant thickness were investigated. A significant increase in the

predicted lubricant film thickness and a significant decrease in the dry contact and

hydrodynamic pressures were found with appropriate combinations of these

geometric parameters, compared with the spherical bearing surface.

Keywords: Contact mechanics, Elastohydrodynamic lubrication, Metal-on-metal hip

implants, Aspherical bearing surfaces
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1. Introduction

One of the major recent developments of hip implants is the resurgence of the old

concept of metal-on-metal (MOM) material combinations, due to the modern

technology which can produce accurate bearing surfaces with controlled clearance

and surface finish. However, the metallic wear particles produced by MOM hip

implants are nanometers in size and high in number (Firkins et al., 2001; Catelas et al.,

2004; Brown et al., 2007), and their dissolution results in higher levels of cobalt and

chromium ions in the serum, urine, and red blood cells of patients with a MOM

bearing (Dobbs and Minski, 1980; Jacobs et al., 1996; Savarino et al., 2002; Skipor et

al., 2002). The concerns raised by higher ion levels in patients include delayed type

hypersensitivity, tissue toxicity, and carcinogenesis (Doorn et al., 1996; Urban et al.,

2000; Hallab et al., 2001; Tharani et al., 2001; Chassot et al., 2004). In spite of these

concerns, the full and long term biological response to metallic particles is currently

unknown. Therefore, it is necessary to minimize wear in MOM hip implants to avoid

the risk of these potential adverse reactions.

Current MOM hip implants typically consist of a cobalt chromium (CoCr) spherical

femoral head articulating against a hemispherical acetabular cup of a slightly larger

diameter usually with the same metallic material. Besides enhancing the wear-

resistance of bearing materials by choosing proper carbon content and using other

treatments, improving the lubrication in hip implants is an alternative to reduce wear

in terms of avoiding the direct contact between the bearing surfaces. Diameter and

diametral clearance of hip bearings have been theoretically and experimentally found

to be the key parameters of enhancing lubrication and minimizing wear (Medley et al.,

http://en.wikipedia.org/wiki/Ultra_high_molecular_weight_polyethylene
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2001; Smith et al., 2001; Dowson et al., 2004; Rieker et al., 2005; Jin, 2006; Liu et al.,

2006b). Other factors such as structural supports and the wall thickness of the cup can

also affect the contact pressure and lubrication performance in hip implants (Besong

et al., 2001; Jagatia and Jin, 2002; Liu et al., 2003; Liu et al., 2004; Liu et al., 2006b).

Reducing clearance is an important design consideration in wear reduction in MOM

hip implants. However such an approach is limited by a number of factors, such as the

requirement of higher manufacturing accuracy, the potential clamping and equatorial

contact, etc. Theoretically, it is only necessary to improve the conformity and reduce

the clearance within the main loaded area, while it is advantageous to increase the

clearance in the equatorial region. This is consistent with the modified geometries of

the worn bearing surfaces in MOM hip implants (Lee et al., 2008; Tuke et al., 2008).

Such a variable clearance can be achieved through using aspherical bearing surfaces.

Alpharabola acetabular cup surface (Fisher, 1995), is one specific example of

aspherical bearing geometries.

Deformation of the bearing surfaces of MOM hip implants under load within the

contact zone caused by representative contact pressure is typically of micron

proportions, while the calculated film thicknesses are only a few tens of nanometers.

The ratio of elastic deformation to film thickness is thus of the order of 103 (Dowson,

2006). Therefore, elastohydrodynamic lubrication (EHL) has to be considered to

obtain pressure distribution and fluid film thickness of MOM hip implants. Moreover,

under heavy load and slow speed conditions like those experienced by hip implants,

over most of the EHL conjunction, hydrodynamic pressure is determined by

unlubricated contact pressure. Therefore, the study of dry contact mechanics is also
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important. The purpose of this study was to investigate the dry contact mechanics and

EHL in a MOM total hip replacement (THR) employing an Alpharabola cup and a

spherical head. The effects of the geometric parameters of the Alpharabola surface on

dry contact pressure, hydrodynamic pressure and film thickness were investigated.

The advantages of Alpharabola cup over spherical cup were predicted.

2. Model

The Alpharabola surface (Fisher, 1995) defined in equation (1) was employed as the

internal bearing surface of an acetabular cup:
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where x, y and z are Cartesian coordinates defined in Figures 1 and 2; R2 is the desired

minimum radius of curvature; α is the parameter to control the variation rate of the

radius of the curvature. Since the resultant load experienced by hip implants is in the

direction of about 10° medially to the vertical axis (Bergmann et al., 2001), only the

vertical component was considered. If the cup was positioned anatomically with an

inclination angle of 45, the surface above the plane y  z = 0 was employed, as

shown in Figure 1a. However, in order to facilitate the numerical simulations of the

contact mechanics and EHL, for most of the cases studied, the portion of the same

Alpharabola surface defined by equation (1) above the plane y = 0 was employed to

obtain a horizontally positioned cup, as shown in Figure 1b. The radius of the

spherical head, R1, was always equal to R2 to produce a local zero clearance at the

contact point.
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Both femoral head and acetabular cup were made of CoCr alloy. The cup thickness of

9.5 mm for a typical 28 mm MOM THR was adopted. The bone and the fixation of

the cup were represented by an equivalent support layer 2 mm thick with appropriate

mechanical properties (Jagatia and Jin, 2001). All the materials in the models were

assumed to be homogeneous and linear elastic.

In the EHL model, since a quasi-static analysis can provide a reasonably accurate

estimation for lubricating film thickness (Chan et al., 1998), only steady state

conditions were considered. Since the major velocity component is in the

flexion/extension direction, only the angular velocity around the z axis was considered

with a value of 2 rad/s (Jin, 2006; Jagatia and Jin, 2001; Wang et al., 2004). The

vertical load was chosen as 3000 N to represent 4 times normal body weight. The

lubricant in artificial hip joints is periprosthetic synovial fluid, which behaves as a

powerful non-Newtonian fluid under relatively low shear rates. However, under

higher shear rates likely to be experienced in the hip joint (105/s), it is reasonable to

assume the periprosthetic synovial fluid as Newtonian, isoviscous and incompressible

(Cook et al., 1978; Yao et al., 2003; Jin, 2006; Wang et al., 2008). A realistic

viscosity of 0.002 Pa s was adopted (Yao et al., 2003). The important geometric and

mechanical parameters involved are listed in Table 1.

The governing equations of the EHL model were established in spherical coordinates,

which are defined in Figure 2. The Reynolds equation for the fluid flow between the

bearing surfaces was:
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with the following boundary conditions:

0)π,()0,()π,(),0(   pppp

0  pp (3)

The film thickness consisted of the undeformed gap and the elastic deformation of

bearing surfaces due to the hydrodynamic pressure:

  sinsincossin1c yx eeRRh (4)

where Rc is the varying radius of the aspherical cup, which was calculated by

substituting the following equations

x = Rc  sin  cos, y = Rc  sin  sin, and z = Rc  cos

into equation (1), then solving the resultant quadratic equation with Rc as unknowns.

In addition, the external load components were balanced by the integration of the

hydrodynamic pressure:
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3. Method

3.1. Dry Contact mechanics

Three-dimensional finite element (FE) models incorporating the acetabular cup, the

femoral head and the equivalent support were created in I-DEAS (version 11.0) and

solved using ABAQUS (version 6.7-1). Both models shown in Figures 1a and 1b

were simulated. A mesh convergence study was performed to determine the proper
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mesh density. Similar dry contact pressure distributions were predicted by 30  30

elements and 60  60 elements on the contact surface. Although the solutions

obtained by the mesh density of 30  30 elements could be considered as convergent,

the mesh density of 60  60 elements was employed to produce more accurate results,

resulting in a total of approximately 57, 000 8-noded linear brick and 6-noded linear

triangular prism elements. The element-based contact surfaces were defined as the

interface between the cup and head, with the contact surface of the cup being chosen

as the slave surface. The type of the contact pair was defined as “surface to surface”.

“Finite sliding” was used as the tracking approach. The option of ‘adjust = 0.0’ was

also adopted to avoid the initial overclosure. No friction was considered between the

bearing surfaces since its effect in a well lubricated MOM bearing on the contact

pressure prediction of hip implant is negligible (Liu et al., 2003).

3.2. Elastohydrodynamic lubrication

The Reynolds equation was solved by a multi-grid (MG) method, while the elastic

deformation was calculated using a multi-level multi-integration (MLMI) technique

(Gao et al., 2007; Venner, 1991). Three levels of grid were used in the multilevel

solver. On the finest level, 257 nodes were arranged in both the  and  directions

(Liu et al., 2006a; Wang and Jin, 2007). The convergence criteria for hydrodynamic

pressure and the loads in the y and x directions were kept to be 10-4, 10-4 and 10-5

respectively.

The elastic deformation coefficients of an Alpharabola cup were approximated by

those of a corresponding spherical cup with a radius given by the minimum radius of
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the Alpharabola cup. The deformation coefficients of the approximate spherical cup

were obtained using the method developed by Wang and Jin (2004). The errors in this

approximation were estimated by applying a parabolic pressure distribution (Wang

and Jin, 2004) to an Alpharabola cup, then calculating the deformation using both the

approximate deformation coefficients and the direct FE method.

4. Results

Figure 3 compares the dry contact pressure distributions obtained from the models

with anatomically and horizontally positioned cups. Results shown in Figures 412

were obtained from the horizontal cup model. Figure 4 shows the contour plots of dry

contact pressure distribution at the bearing surface for different  values with the

same R2. Figure 5 compares the effect of  on the dry contact pressure along the

central line through the contact centre. The effect of different bearing radii (R2) on dry

contact pressure is shown in Figure 6 with a fixed . The corresponding dry contact

pressure along the central line through the contact centre is illustrated in Figure 7.

Figure 8 compares the deformations of an Alpharabola cup (R2 = 14 mm) calculated

using the approximate deformation coefficients and the FE method. The contour plots

of hydrodynamic pressure for different values of  with the same R2 are shown in

Figure 9. Figure 10 shows the effect of  on the hydrodynamic pressure and film

thickness along the central line through the contact centre. In addition, the

hydrodynamic pressure and film thickness of a typical 14 mm radius spherical hip

implant with a clearance of 30 m are also plotted in Figure 10. Figure 11 plots the
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contours of hydrodynamic pressure for different R2 with a fixed . Figure 12 shows

the effects of R2 on the hydrodynamic pressure and film thickness along the central

line through the contact centre with a fixed .

5. Discussion

It is reasonable to use the horizontal cup model shown in Figure 1b to investigate the

dry contact mechanics and EHL of the MOM hip implants employing Alpharabola

cup. Within the contact area, the same portion of the Alpharabola surface defined in

equation (1) was employed by the horizontal cup and the anatomical cup models.

Therefore, as expected, the two models produced similar dry contact pressure

distributions, with the maximum values of 28.6 MPa and 28.4 MPa respectively,

except the contact location was different, as shown in Figure 3. Furthermore, it was

shown that a cup inclination angle of up to 45 deg had a negligible effect on the

lubricant film thickness and hydrodynamic pressure (Wang and Jin, 2005).

The deformation coefficients of the spherical cup can provide reasonably accurate

estimation for the Alpharabola cup. As shown in Figure 8, when  = 0.9 (R2 = 14

mm), which represented the largest deviation from a sphere in this study, the

maximum difference between deformations calculated using the deformation

coefficients of the approximation spherical cup and the FE method was only about

4.5%.
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It is interesting to note that the overall dry contact pressure distribution in this novel

MOM hip implant is markedly different from that in conventional spherical MOM hip

implants (Jagatia and Jin, 2001). Due to an enlarged contact area caused by the

reduced effective radial clearance near the contact centre, the maximum dry contact

pressure occurred towards the edge of the contact area, rather than at the contact

centre, as shown in Figures 47. Moreover, since hydrodynamic pressure is largely

determined by unlubricated contact pressure, for the same geometric and mechanical

parameters, the corresponding profiles and the magnitudes of the hydrodynamic

pressures shown in Figures 912 closely resembled those of the dry contact pressures

shown in Figures 47. For example, for the case of  = 0.99 and R2 = 14 mm, the

maximum and central dry contact pressures were 28.3 MPa and 18.4 MPa, while the

corresponding values for hydrodynamic pressure were 27.2 MPa and 18.6 MPa.

A similar pressure distribution was also predicted by Besong et al. (2001) and Jagatia

and Jin (2002) for the Ultima prosthesis and Liu et al. (2003; 2004) for the Metasul

prosthesis. In Ultima prosthesis, the lower contact pressure at the contact centre was

caused by the gap between the acetabular insert and the titanium shell, which allowed

the bearing surfaces to be more compliant under loading, leading to increased

conformity between femoral head and acetabular cup. In Metasul prosthesis, similar

pressure distribution was caused by the UHMWPE backing which also enlarged the

contact area. Therefore, it can be expected that the increase in the contact area

between bearing surfaces leads to a lower contact pressure at the contact centre.

Conformity may be enhanced by both introducing new structure designs, such as

Ultima and Metasul prostheses, and employing aspherical bearing surface, such as

Alpharabola.
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The main parameter governing the conformity between the two bearing surfaces is 

which controls the variation in the radius. For a fixed R2, a larger  produces a larger

conformal area. As shown in Figure 4, an increase in  from 0.9 to 0.99 resulted in a

twofold increase in contact area. Dry contact and hydrodynamic pressures are

generally determined by load and contact area. For the same load, the larger the

contact area, the lower the dry contact and hydrodynamic pressures. As shown in

Figures 4 and 9, an increase in  from 0.9 to 0.99 resulted in a decrease in the

maximum dry contact and hydrodynamic pressures from 68.9 MPa to 28.4 MPa and

from 66.4 MPa to 27.2 MPa, respectively. The desired minimum radius of the cup, R2,

is another important parameter of the Alpharabola surface which controls the bearing

size. An increase in R2 also results in an increase in contact area. As shown in Figure

6, an increase in R2 from 14 mm to 20 mm resulted in an increase in the contact area

from 74.6 mm2 to 109.50 mm2. Consequently, dry contact and hydrodynamic

pressures in the prosthesis with a larger radius were lower than those of that with a

smaller radius, as shown in Figures 6 and 11. The maximum dry contact and

hydrodynamic pressures for R2 = 14 mm were 51.9 MPa and 50.5 MPa while 34.21

MPa and 34.3 MPa for R2 = 20 mm.

Since the hydrodynamic pressure at the contact area is largely determined by the

unlubricated and frictionless contact pressure, the effect of Poiseuille flow can be

neglected and Couette flow dominates. Therefore, a constant film thickness is

necessary to keep the flow continuous. Due to the undeformed gap between the cup

and the head being more uniform, the film profile in this novel implant was flatter

within the contact area than that in the spherical implant, as shown in Figure 10b. It is
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also expected that the nearly parallel undeformed gap is helpful for the squeeze-film

lubrication action under real walking conditions. Moreover, an increase in either  or

R2 leads to an increase in film thickness due to the increase in the contact area and the

reduction in the pressure. As shown in Figures 10b and 12b, the minimum film

thickness increased from 0.003 m to 0.0677 m when  increased from 0.9 to 0.99,

and from 0.008 m to 0.017 m when R2 increased from 14 mm to 20 mm.

The radial clearance at the equatorial region was employed as a reference to compare

the pressure and film thickness of this novel hip implant with those of conventional

spherical hip implants. The corresponding  to produce an equatorial radial clearance

of 30 m as used in a 14 mm radius spherical bearing is 0.9957. As shown in Figure

10, the Alpharabola cup improved the minimum film thickness by approximately 70%,

compared with the spherical one. Such an improvement in film thickness may prevent

the bearing surfaces from direct contact and consequently avoid wear. However, it

should be recognised that the Alpharabola cup has a larger contact area, and this could

potentially increase wear if the lubricant film breaks down. Although the local

clearance at the pole of the Alpharabola hip implant is zero, a large equatorial

clearance of (2  )1/2R2  R2 can be formed for the horizontally positioned cup by the

continuous and monotonous variation in the radius of the Alpharabola surface. Such a

large equatorial clearance is advantageous to avoid the potential clamping and

equatorial contact under loading (Farrar and Schmidt, 1997) and when implanted

through press-fit (Jin et al., 2006; Yew et al., 2006).

However, the manufacturing of the Alpharabola cup can be potentially more

challenging due to the local nonspherical surface. Moreover, the reference zero
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clearance of the aspherical cup should be aligned in the direction of the resultant load

to obtain an ‘optimum’ contact position, however, the direction of the resultant load

varies during normal walking (Bergmann et al., 2001). Different activities of daily

living, such as sitting down and climbing stairs, also have different trajectories of

resultant load (Bergmann et al., 2001). Therefore, the ideal ‘optimum’ contact

position is not practical. However, the position of the zero clearance can be chosen

according to the direction of either the maximum or the average resultant load of a

normal walking gait. Furthermore, both the manufacturing errors and the angles of

inclination and anteversion produced during the implantation operation may affect the

contact position. Therefore, the sensitivity of the lubrication performance of the

Alpharabola cup to the manufacturing errors and inclination and anteversion angles of

the cup needs to be investigated in the future. Moreover, although it was predicted

that the nearly parallel gap between the cup and the head is helpful for the squeeze-

film lubrication action, detailed numerical analysis should also be performed to

investigate the effect of three-dimensional load and motion, especially under adverse

lubrication conditions such as a sudden increase in load or without entraining velocity,

associated with start-up and stopping.

6. Conclusion

Both three-dimensional FE dry contact and EHL models were developed for a novel

hip implant employing an Alpharabola cup and a spherical head. Typical dry contact

and hydrodynamic pressure distributions and film profiles were predicted. The effects

of the geometric parameters  and R2 on pressure distribution and fluid film thickness

were analyzed. The lubrication performance of this Alpharabola hip implant was
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compared to that of the spherical hip implant. The following conclusions can be

drawn for this novel implant:

(1) Both the maximum dry contact and hydrodynamic pressures occurred towards

the edge of the contact area and consequently an annular maximum pressure

distribution was found. Moreover, the film profile was flatter than that in the

hip implant with spherical bearing surfaces.

(2) The increase in either the variation rate of radius () or the size (R2) of the

Alpharabola surface may enlarge the contact area, reduce the dry contact and

the hydrodynamic pressures and consequently improve the film thickness.

(3) With the same equatorial radial clearance, the pressure of the Alpharabola hip

implant was much lower and the lubricant film thickness much thicker,

compared with the spherical hip implant.
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Nomenclature:

ex, ey, eccentricity components of the femoral head in x and y directions

fx, fy, fz calculated load components defined in equation (5)

h film thickness

p pressure

R1 femoral head radius

R2 desired minimum radius of curvature of the Alpharabola surface

Rc Variable radius of the Alpharabola cup

w applied load in y direction

x, y, z Cartesian coordinates

α the parameter to control variation rate of the radius of Alpharabola

 the inclination angle of the cup, 45 in this study

 elastic deformation the femoral head and acetabular cup

 viscosity of synovial fluid

,  angular coordinates in the entraining and side-leakage directions

respectively, defined in Figure 2.

 angular velocity
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Captions

Table 1 Typical input parameters for contact mechanics and EHL analysis

Figure 1
A simple configuration for the MOM hip implant with Alpharabola as the
cup bearing surface

Figure 2 Definition of spherical coordinates and spherical mesh grid

Figure 3
Contour of contact pressure (MPa) at the bearing surface of an aspherical

hip implant with an Alpharabola cup with different : (a) 0.9 , (b) 0.95,

(c) 0.97, (d) 0.99 (R1 = R2 = 14 mm)

Figure 4
Comparison of the contact pressure distribution along the central line

through the contact centre with different  (R1 = R2 = 14 mm)

Figure 5

Contour of contact pressure (MPa) at the bearing surface of an aspherical

hip implant with an Alpharabola cup with different R2: (a) 14 mm , (b) 16

mm, (c) 20 mm ( = 0.95 mm)

Figure 6
Comparison of the contact pressure distribution along the central line

through the contact centre with different R2 ( = 0.95)

Figure 7
Comparison of the deformation of the aspherical cups calculated by FE

model and that calculated by the approximate coefficients under the same

pressure distribution

Figure 8
Contour plots of hydrodynamic pressure (MPa) in the aspherical hip

implant with an Alpharabola cup for different : (a) 0.9 , (b) 0.95, (c)

0.97, (d) 0.99 (R2 = 14 mm)

Figure 9
Comparison of (a) pressure distribution and (b) film thickness on the

central line along the entraining direction for different  (R2 = 14 mm)

Figure 10
Contour plots of hydrodynamic pressure (MPa) in the aspherical hip

implant with an Alpharabola cup for different R2: (a) 14 mm, (b) 16 mm,

(c) 20 mm ( = 0.95)
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Figure 11
Comparison of (a) pressure distribution and (b) film thickness on the

central line along the entraining direction for different R2 ( = 0.95)
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Table 1

Thickness of equivalent support 2 mm

Radius of cup inside surface, R2 14 - 20 mm

Radius of head, R1 14 - 20 mm

Cup wall thickness 9.5 mm

Elastic modulus of the metal 210 GPa

Elastic modulus of equivalent support 2.27 GPa

Poisson’s ratio of metal 0.3

Poisson’s ratio of equivalent support 0.23

Load 3000 N

Viscosity of synovial fluid 0.002 Pas

Angular velocity 2 rad/s
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Figure 1

Figure 2
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Figure 3
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Figure 4
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Figure 5
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Figure 6

Figure 7
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Figure 8
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Figure 9
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