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Modelling discrete soil reinforcement in numerical
limit analysis

Samuel D. Clarke', Colin C. Smith', and Matthew Gilbert!

Soil reinforcement is widely used in geotechnical engineering. While there are various means of accounting for
the presence of soil reinforcement in limit analysis and limit equilibrium type calculations, these are often highly
problem specific. In this paper a general means of incorporating soil reinforcement within numerical limit analysis
calculations is presented. A key feature of this implementation is that the reinforcement is modelled ‘in parallel’
with the soil model such that allows the soil to flow past the nails as might occur for soil nailing. To illustrate
this the Discontinuity Layout Optimization (DLO) numerical analysis procedure is used, and the efficacy of
the approach is evaluated via application to reinforced slope problems involving rigid soil nails under plane-
strain conditions. The analyses are calibrated against a two-part wedge analysis method such as presented in
British Standard BS8006:1995 or AASHTO LRFD Bridge design specifications. It is shown that the DLO-based
procedure produces identical results only when the two-part wedge collapse mechanism is prescribed in advance
(achieved by artificially strengthening the soil except along predefined failure planes). A more critical mechanism
is otherwise predicted, with the soil strength at collapse required to be approximately 10% higher than predicted
by the two-part wedge method (or alternatively soil nail lengths required to be approximately 20% greater).

KEYWORDS: Discontinuity layout optimization, limit analysis, soil nails, soil reinforcement, reinforced slope,
verification.

1 INTRODUCTION
Soil reinforcement is a widely used technique in geotechnical engineering. To model the effect of soil reinforcement,
various means by which traditional limit analysis or limit equilibrium analysis formulations can be modified have
been presented in the literature. For example, a reinforcement element is often idealised using a pre-computed
pull-out force acting to stabilise the construction (Duncan 1996), and ‘method of slices’ type calculations are
often used to assess stability (Bishop 1955; Spencer 1967; Janbu 1973). In this case forces which approximate
the available tensile and shear resistance provided by the reinforcement are applied to each slice, with the tensile
resistance being computed from the length of reinforcement which lies beyond the failure mechanism. These
forms of analysis can be carried out by hand, or can be automated in a spreadsheet or simple computer program.
For soil nail type reinforcement, Juran et al. (1990) developed this methodology further to model combined
tensile and shear forces in the nail by incorporating nail deflections on both sides of the slip surface. In the
analysis the maximum shear and tensile forces are calculated by means of a kinematic limit analysis approach,
but the modified Bishop method (Bishop 1955) is still used to identify the failure mechanism. Zhu et al. (2005)
also developed a method for distributing the normal stresses acting on nails crossing a slip surface, following
the method proposed by Morgenstern and Price (1965). This allowed a continuous stress distribution to be
modelled, leading to a more accurate approximation of the required strength and pull-out resistance of the soil
nail. Sheahan and Ho (2003) presented a simplified approach designed to approximate the failure mechanisms
observed experimentally in full-scale soil nailed wall tests, such as in Clouterre test wall no. 1 (Plumelle et al.
1990) and in the Amherst test wall (Sheahan 2000). This approach was similar to the two-wedge mechanism used
to assess the stability of slopes, with various trial wedge angles considered to establish the critical mechanism.
In BS8006:1995 a two-part wedge method (Stocker et al. 1979) is recommended for reinforced soil slopes.
The method is essentially the same as the simplified AASHTO (2002) tie back wedge analysis for geosynthetic
reinforced soil walls (Allen et al. 2003; Bathurst et al. 2005). The factor of safety is defined by comparing the
restoring and disturbing forces for a prescribed failure mechanism. Soil nails act to increase the restoring force
and thus are able to increase the factor of safety of the slope. Two main categories of failure are analysed for
a given problem, external and internal stability. External stability is concerned with the overall stability of the
reinforced area of the slope against bearing and tilt failure, forward sliding, and slip failure around the reinforced
area. Internal stability relates to the reinforcement itself, and its ability to resist tensile failure and slip failure
relative to the surrounding soil. In reality problems will seldom fall purely into one of these categories, and a
combined or ‘compound’ failure will often occur. Thus the two-part wedge analysis is concerned entirely with
analysing the compound stability of a slope. (Although both two-part wedge and log spiral methods are described
in BS8006:1995, for sake of brevity only the former will be considered in this paper.)
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Rather than modifying existing hand-type analysis methods to account for the presence of soil reinforcement,
in this paper a means of modelling soil reinforcement within numerical limit analysis procedures is described,
with the Discontinuity Layout Optimization (DLO) numerical analysis procedure proposed by Smith and Gilbert
(2007) here used to provide illustrative solutions for a soil nail reinforced slope, and with results compared with
those obtained using the two-part wedge method.

The specific aims of the paper are to:

1. Propose a general approach for modelling soil reinforcement using numerical limit analysis, ensuring this is
consistent with current theoretical representations.

2. Describe a plane strain DLO formulation based on this general approach.

3. Verify the DLO formulation against a soil nail reinforced slope problem also analysed using British Standard
BS8006:1995.

4. Undertake an outline parametric study using the DLO formulation, highlighting areas where current simple
models may fail to capture certain aspects of behaviour.

The paper is concerned only with analysis at the ultimate limit state (ULS) and thus issues relating to
reinforcement flexibility and strain compatibility will not be covered.

2 MODELLING REINFORCEMENT IN NUMERICAL LIMIT ANALYSIS PROCEDURES
2.1 Background
Considering traditional limit analysis or limit equilibrium methods, a number of observations can be made:

1. Typically analyses only consider a few specific collapse mechanisms.

2. Reinforcement is assumed to possess a finite pull-out strength (i.e. resistance to movement along its length
relative to the soil).

3. Reinforcement is assumed to have the effect of applying a stabilising force in the direction of its line (or
plane) of placement relative to a predefined sliding wedge or slip circle computed from the pull-out strength
and the length of reinforcement beyond the slip mechanism.

4. The resistance to movement of the reinforcement normal to its plane of placement can potentially be
modelled, but this is normally neglected in the simpler models (e.g. the two-part wedge method).

5. External and internal stability are considered separately.

In contrast, in a general approach it should be possible to:
1. Determine the critical failure mechanism, without relying on predefined mechanism geometries.
2. Model longitudinal (pull-out) and lateral resistance.

3. Model the effect of reinforcement on soil failure, regardless of where the reinforcement is located within the
soil body.

4. Eliminate the distinction between external and internal stability (i.e. the critical stability state should be
identified, whether this involves internal failure, external failure, or some combination of both).

The above can potentially be achieved when using a numerical limit analysis procedure.

2.2 Numerical limit analysis procedures
At the present time, there appear to be two main general purpose means of performing numerical limit analysis
calculations, Finite Element Limit Analysis (FELA) (e.g. Lysmer 1970, Sloan 1988, Makrodimopoulos and Martin
2006) and Discontinuity Layout Optimization (DLO) (e.g. Smith and Gilbert 2007, Gilbert et al. 2010). The ULS
can also be determined using conventional elasto-plastic FE analysis, by iterating to a collapse state. However
this paper is concerned only with direct limit analysis approaches, such as FELA and DLO, in which the collapse
state can be analysed directly using optimization techniques, often with relatively minimal computational effort.
Numerical limit analysis methods can be formulated from either a kinematic or static equilibrium viewpoint.
In this paper a kinematic approach will be adopted. This involves prescribing a velocity field which covers the
entire problem domain. Mathematical optimization (e.g. linear programming) can then be used to select the set
of field variables which correspond to the minimum energy velocity field, and also the critical collapse mechanism.



In this context reinforced soil can be considered as a homogeneous medium with anisotropic properties, as for
example proposed by de Buhan et al. (1989), and later implemented into a finite element limit analysis model by
Yu and Sloan (1997). Alternatively, and as will be assumed here, individual reinforcing elements can be modelled
explicitly.

2.8 Soil-reinforcement: pull-out resistance

Almost all methods of limit analysis or limit equilibrium described in the current literature treat reinforcement
as possessing a fixed pull-out strength T (force/unit length/unit width) defined by the physical properties of the
reinforcement and the surrounding soil. For soil reinforcement the pull-out strength, 7' can be estimated from
the skin friction on the reinforcement, per unit length and width, as follows:

T = a(c + o, tan g ) (1)
where:
«a = interaction coefficient
¢ = drained cohesion intercept
ol = vertical effective stress
"o = mobilised angle of friction between the soil reinforcement and soil mass

and where a is equal to 2 for sheet reinforcement to account for the upper and lower surfaces of the sheet. For
essentially one-dimensional (1D) reinforcement such as soil nails, « = 7#Dn where D is the effective diameter of
the soil nail, and 7 is the number of soil nails per unit width. Equation (1) may also be written in the following
generic form:

T="T.+T,o, (2)

In most methods, the vertical effective stress o), is for simplicity taken as a ‘simple static’ stress i.e. the effective
weight per unit area of material immediately above a given point. In reality this stress will alter as the system
approaches failure. Additionally the use of the vertical stress component in the calculations is questionable for
inclined reinforcement, or when the reinforcement is beneath an inclined soil surface. However it is a pragmatic
assumption and for sake of simplicity will be adopted in this paper.

2.4 Soil-reinforcement: lateral resistance

In this context lateral resistance is defined as the resistance to lateral displacement of the reinforcement through
the soil. In many analyses this is ignored, and for sheet reinforcement it is normally assumed to be infinite
(though see discussion in Section 2.5). For essentially one-dimensional reinforcement elements such as soil nails,
lateral resistance can be considered in a similar way as for piles, giving the following general equation for lateral
resistance N (force/per unit length/unit width):

N =nD(c'N. + Nyo.) (3)

where N, and N, are analogous to the well known Terzaghi bearing capacity parameters. Equation (3) may also
be written in the following general form:

N = N, + Nyo,, (4)

2.5 Modelling of reinforcement using a numerical limit analysis procedure

When using a general numerical analysis procedure it is not usually possible to model the effects of reinforcement
based on a priori knowledge of the collapse mechanism. This is because reinforcement can modify the form of
the critical mechanism. This implies that the reinforcement must be an inherent part of the model. In a plane
strain analysis, two possible approaches present themselves:

1. Model reinforcement as a sheet material directly within the soil model. This may be represented as a thin
two-dimensional sheet of a specific material type, or may be represented using a special one-dimensional
sheet element.

2. Model reinforcement as a one-dimensional element in parallel with the soil model, where the reinforcement
velocities are represented independently of the soil velocities but are linked to them through an appropriate
energy dissipation equation.



In this paper it is suggested that the second approach is adopted, for the following reasons:

1. Considering for example a soil nail, it is not possible to realistically model this as as a ‘sheet’ material.
This is because in reality a collapsing soil mass could flow around the soil nail. Thus a soil nail and a solid
metallic sheet placed in the ground cannot be treated in the same way, since the latter will not allow soil to
flow through it, requiring that soil deformation is either parallel to it, or that any perpendicular component
of movement can only be accommodated by bending.

2. Paradoxically, flexible sheet reinforcement is often considered as a hypothetically ‘rigid’ reinforcement
material, with no lateral resistance (N = 0), e.g. in the two-part wedge method. Thus specific modelling
of bending is not required and only tensile pull-out is taken into account. This is justified because a
flexible sheet has no resistance to bending, so will deform with the soil, and will dissipate negligible energy
when perpendicular components of movement are involved. Parallel movements will however mobilise shear
resistance and lead to dissipation of energy.

For sake of brevity, only rigid reinforcement elements (e.g. soil nails that are not expected to bend) will
be considered in this paper; however incorporation of bending strength is relatively straightforward. Each
reinforcement element can be considered free to displace independently of the deformation of the main soil
mass, by assigning 3 independent velocity variables to the element: u, v, and w, which are the z, and y direction
velocities (of its centre) and rotational velocity respectively. These can be linked to the main analysis via an
energy dissipation equation. Knowing the velocity of the reinforcement and of the surrounding soil in terms of
the problem variables, it is possible to determine the relative velocities between soil and reinforcement at any
point. Let these velocities be s, parallel to the reinforcement and n, perpendicular to the reinforcement. The
rate of work (dW) done at any point over a short length di is thus

dW = (T|s,| + N|n,|).dl (5)

This can be integrated along the reinforcement length and included in the main limit analysis energy equa-
tion. Since the overall energy must be minimised, the optimization procedure will find the optimal combin-
ation of reinforcement and soil mass movements that minimise energy dissipation, taking numerous potential
soil/reinforcement interaction modes into account. To facilitate the integration, it is most straightforward to
model the reinforcement along the boundary of elements in FELA or a special discontinuity in DLO as will be
discussed below.

3 DISCONTINUITY LAYOUT OPTIMIZATION
3.1 Introduction
The Discontinuity Layout Optimization (DLO) numerical analysis procedure (Smith and Gilbert 2007) can be
used to identify the critical translational failure mechanism and associated upper bound collapse load factor for
any geotechnical stability problem, to a user specified numerical resolution. In the procedure the problem is
discretised using nodes distributed across the problem domain, with each node then connected to every other
node by a potential slip-line. Each potential slip-line ¢ is assigned problem variables defining the relative normal
(n;) and slip (s;) velocities across that line. Compatibility is maintained by constraining the vector sum of the
relative velocities of potential slip-lines meeting at each node to zero in the z and y directions, using equations
(6) and (7) respectively:

m

1=1

m
Z (siffi + nic;) =0 (7)
i=1

where a; and f3; are direction cosines of slip-line ¢ and where m is the number of potential slip-lines meeting
at the given node.

Rate of energy dissipation can also be determined from these relative velocities. (However note that when
using optimisation to find a solution it is necessary to introduce ‘plastic multiplier’ variables which are constrained
to be non-negative. This is to avoid the rate of energy dissipation from becoming negative, as might be the case
if the relative slip value s; was used directly; refer to Smith and Gilbert (2007) for more details). By minimising
the energy dissipation, while ensuring compatibility is enforced, the set of variables corresponding to the critical
collapse mechanism can be determined. In general s; and n; will be found to be zero for most potential slip-lines
in the problem, with the remaining potential slip-lines defining the geometry of the critical collapse mechanism.



3.2 Implementation of soil reinforcement in DLO

In order to incorporate soil reinforcement in a DLO limit analysis formulation, it is necessary to be able to
calculate the relative movements between reinforcement and soil, along the entire length of the reinforcement.
An efficient means of achieving this is to terminate all potential slip-lines within the soil mass at nodes positioned
along the length of the reinforcement, i.e. preventing slip-lines from crossing the reinforcement without passing
through a node. With this approach a relatively high nodal density should be employed to maintain good
accuracy.
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Figure 1: Modelling movement of section of reinforcement relative to surrounding soil using DLO.

Figure 1 shows potential displacement modes of a section of reinforcement moving relative to the surrounding
soil and relative movements between soil and reinforcement in general terms. Movements at potential discon-
tinuities lying above and below the reinforcement are shown. The relative movement of the reinforcement is
calculated against a theoretical slice which represents the contact between the solids. Considering translational
movement of the reinforcement (e.g. absolute reinforcement velocities w, and v, aligned in local x and y dir-
ections respectively), appropriate new variables can be introduced to define the relative movement between the
reinforcement and the theoretical soil slice:

Spp = Uy — Ut (8)
Ny = Uy — Vg 9)

where s, and n,, represent relative slip and normal velocities of the reinforcement relative to the theoretical
soil slice, which itself is moving with absolute velocity u; and v; in the local  and y directions respectively. (Note
that although in DLO the slip-line velocities are usually relative, at the boundaries absolute values can readily
be derived, making the calculations in (8) and (9) straightforward.)

Since the reinforcement is modelled in ‘parallel’ to the soil, compatibility of the soil is unaffected by the
presence of the reinforcement. The additional work done within the system, due to the presence of a short
segment of reinforcement, may be calculated using equation (5), now rewritten in terms of the new variables
below:

dW = (T|syr| + N|ny,|) .di (10)

Note that rather than directly using the absolute value terms of equation (10) when seeking a solution, these
can be replaced with non-negative values to allow a standard linear programming solver to be used (e.g. providing
that the total work is to be minimised then |s,.| = s}. + s.., where s,.. = s} — 5., and where s}, 5. > 0).
The relative movement between the reinforcement and the theoretical soil slice can also be calculated to

incorporate other behaviour which can occur on the boundaries such as dilation:

SpA = Up — UA (11)
NpA = Vg — VA (12)

where s, 4 and n,. 4 represent relative slip and normal velocities of the theoretical soil slice to the edge of Solid
A. Variables s,.p and n,.p can be defined in a similar way for Solid B.
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Figure 2: Two-part wedge analysis (including cohesion)

Also note that setting the pullout and lateral resistance of the reinforcement to zero will simply cause the
reinforcement to be ignored, and will not insert a frictionless bound into the soil at the location of the reinforce-
ment. Finally, although not considered here, it should be noted that modelling of rotation and/or yielding of the
reinforcement can be be included simply by adding appropriate additional terms to equation (10).

3.8  Model validation
A simple reinforced vertical cut model was used to verify the model developed; full details are presented in
Appendix A.

4 ANALYSIS OF A REINFORCED SLOPE

4.1 Introduction

Consider the analysis of a simple reinforced slope, as shown in Figure 2. This will initially be analysed using the
two-part wedge method described in BS8006:1995, with calculations undertaken using a spreadsheet. Two DLO
models will then be developed, the first with the mechanism artificially restricted to comprise two soil wedges,
the second with no such restriction. The analyses will be carried out in the context of soil nail reinforcement,
though much of the theory is equally applicable to flexible reinforcement (e.g. geosynthetic sheets).

The analysis parameters are given in Table 1, and the geometry of the problem is shown in Figure 2. To
facilitate objective comparison between the various models, partial factors were initially not applied. Also, soil
nails with a length of 5 m were used in the initial analyses. The pullout force, P, was calculated based on the
‘simple static’ vertical effective stress experienced by each nail at its midpoint. The spacing of the nails has been
increased beyond the guidelines given in the British Standard to allow a clearer picture of the failure mechanism
to be obtained when using DLO. To account for this increased spacing, the diameter of the soil nails (taken to
include the grout annulus) was also increased.

While a two-part wedge analysis permits modelling of a reinforced slope with ¢ = 0, this implicitly neglects
possibility of localised failure between the reinforcement at the slope face. However a general unrestricted
numerical analysis will identify such a collapse mode unless a suitable facing system is modelled. Consideration
of this is however beyond the scope of this paper. Therefore to facilitate simple comparison between the two-part
wedge model and an unrestricted DLO analysis, problems with small values of ¢’ will additionally be considered,
though use of a non-zero ¢’ value in design is not generally a standard procedure.



Parameter | Value |

Unit weight, ~ 18 kN/m?
Nail diameter, D 0.25 m
Interaction coefficient, a 1.0

Height, H 7.5 m

Slope batter, B 4 m

Nail spacing, S 1.5 m

Nail inclination, w 0°
Horizontal nail spacing, n | 1 m

T./c 0.785 kN/m
T,/ tan ¢’ 0.785 m

Table 1: Reinforced slope analysis parameters

4.2 Two-part wedge model

In the two-part wedge analysis horizontal equilibrium of each wedge is considered, giving an inter-wedge force,
Q, for each wedge which acts on the discontinuity between the wedges (equations (13) and (14)). Conventionally
the two-part wedge model is used to calculate the required pull-out force in the soil nails, but, by equating
equations (13) and (14), the balance of the inter-slice forces for any given set of soil conditions can be found. To
calculate a factor of safety, the problem must be analysed at its point of failure. This can be achieved by varying
either the strength or the unit weight of soil until the inter-wedge @) values are equal and at a minima, allowing
the point of failure of the slope to be established. In this paper the angle of shearing resistance has been modified
to bring about failure, allowing the ¢’ value required for stability to be established. This can be related to the
actual value of ¢’ present in the soil to give a factor of safety on strength.

The British Standard presents equations for the case of ¢/ = 0 only as follows:

(W1 + Psinw) tan(¢’ — 1) + Pcosw

wedge = 1 Y
Quedse 1) cosn — sintan(@ — ) "
W tan(f2 — ¢')
o 14
@ {wedge 2} cosn + sinn tan(fy — ¢') ()
where the various parameters are as indicated in Figure 2.
Inclusion of a cohesion intercept term, ¢/, furnishes the following more general equations:
Q _ (Wi + Psinw — ¢l sin by + 'l sin ;) tan(¢” — 61) + P cosw + Iy cos 0y — 'l cos 3, (15)
{wedge 1} cosn — sinn tan(¢’ — 601)
(W — lysin B, — Iy sin 62) tan(fy — ¢') — ¢'ly cos Bs — ¢'l3 cos b2
Q{wedge 2} = "

cosn + sinn tan(fy — ¢')

Equations (15) and (16) were programmed into a spreadsheet to allow a variety of different wedge angles to be
analysed. For each pair of wedge angles the required ¢’ value was calculated. The pair of wedge angles associated
with the highest value of ¢’ in which the system is stable corresponds to the critical mechanism. Apart from the
need to solve for both wedge angle and soil strength, the main difficulty with this analysis is that the pull-out
resistance of each soil nail varies with the chosen wedge angle, due to the changed pull-out length. For a soil
nail which intersects a slip line, the pull-out resistance of each end of the nail needs to be calculated based on
the overburden lying above the mid-point of each individual section of nail either side of the intersection. This
defines which end of the soil nail remains anchored (as the mobilised pull-out resistance is equal to the lower
capacity of the two sections of the nail).

Figure 3 shows a contour plot of the required ¢’ for all combinations of 61 and 65 for a soil nail length of 5m.
It can be seen that the solution space contains two local maxima. (Caution must be used with some solvers to
ensure that the global maximum is found, in this case giving rise to the highest ¢’ required for stability.)

4.8 Simplified (restricted) DLO model

In order to permit direct comparison with the two-part wedge method a simplified DLO model was set up.
This was achieved by defining the geometry of the wedges and then applying the properties of the soil to the
interfaces between the wedges. The wedges themselves, as well as the surrounding soil, were modelled using a



rigid material possessing the unit weight of the real soil. This ensured that slip-lines could only form along the
wedge boundaries. Figure 4 shows an example of a forced two-part wedge mechanism implemented in the DLO
procedure.

Figure 5 shows a comparison between the two-part wedge spreadsheet model prediction of required ¢’ for 64
angles of 25°, 30° and 35° and for all possible 6 angles and for ¢ = 0 kPa and ¢’ = 2.5 kPa (note that in the
case of the ¢ = 2.5 kPa simulations a corresponding increase in the value of T, utilised for the soil nails was
implemented). Selected DLO results are also plotted for comparison. It can be seen in the figures that the DLO
results exactly match those generated by the two-part wedge method, except for the case where 67 > 05 where
the difference between the two-part wedge method and the DLO analysis is 0.5% when ¢’ = 0 kPa and 0.8%
when ¢’ = 2.5 kPa.

The increased difference is due to a reversal in the shear component of the inter-wedge force ) arising from
the change in the kinematics of the mechanism in this case. This reversal is identified when using limit analysis
but not in the standard two-part wedge limit equilibrium analysis. Modification of the two-part wedge limit
equilibrium analysis to account for the reversal led, for example, to a required ¢’ of 25.24° when 61 was 35° and
05 of 30° with ¢’ = 0 kPa. When ¢’ was increased to 2.5 kPa the required ¢’ reduced to 21.65°. Both these angles
are identical to the DLO results plotted in Figure 5.

As would be expected, the inclusion of a small degree of cohesion in the analysis leads to a decrease in the
value of ¢ required to ensure stability, in this example by 14% (6; = 35°, 602 = 40°).

4.4 Standard (unrestricted) DLO analysis

A range of standard (i.e. unrestricted) DLO simulations were conducted with the goal of finding the ¢ value
required for stability, for a range of soil nail lengths, reinforcement properties and backfill weights. For each soil
nail length the critical set of wedge angles was identified and the required ¢’ value recorded. The DLO models
were set up and analysed using the LimitState:GEO 2.0 software (LimitState 2009) with a target number of 1000
nodes. The boundary nodal spacing was set to be half that within the solids, which is the default setting.

As stated earlier, to avoid a localised surface failure of the soil between reinforcement elements, a small
¢ value was used in all analyses. The smallest value of ¢’ capable of inhibiting surface failure can be found
by analysing a geometrically similar slope problem which extends between adjacent soil nails. In the current
example the relevant problem comprises an un-reinforced slope of height 1.5m; in this case ¢/ must be approx.
2.5 kPa to ensure stability. Figure 6(a) shows how this magnitude of cohesion affects the required ¢’ in a two-part
wedge analysis. Hereafter the ¢ = 2.5 kPa results will be used to permit direct comparison against the DLO
results. Please note that the authors are not proposing that cohesion be used in lieu of a more realistic facing,
the inclusion of cohesion here is meant purely for validation purposes.

Figure 6(b) shows a plot of required ¢’ versus nail length for two-part wedge and unrestricted DLO analyses,
now with ¢ = 2.5 kPa in both cases. In these analyses the lateral capacity of the nails was set to zero (N = 0).
The two-part wedge method is shown to be unconservative when compared to the unrestricted DLO analysis,
which indicates that a longer nail length (approx. 1.0-1.5 m) is required to ensure stability for the same problem
parameters. Note that the unrestricted DLO analysis curve flattens out as ¢’ drops below 25° as local failure of
the soil between the nails then occurs.

The failure mechanism for a standard (unrestricted) DLO analysis is shown in Figure 7(a), indicating that some
soil is ‘extruded’ between adjacent reinforcement elements at lower levels. Nevertheless, the major slip surfaces
extend through the nailed zone and then up to the surface behind the nailed zone, leading to a mechanism quite
similar in form to a simple two-part wedge mechanism. However, one major advantage of using DLO is that it is
easy to assess which assumptions and parameters have the greatest impact on the stability of the slope; this will
be considered further in the next section.

4.5 Factors affecting the stability of the slope

4.5.1 Study 1: influence of lateral capacity

Results corresponding to the zero lateral capacity (N = 0) and infinite lateral capacity (N = oo) analyses are
plotted in Figure 6(b) and Figure 6(c) respectively. It is evident that a modest reduction in required length is
predicted when an infinite lateral capacity is used, indicating that lateral capacity has relatively little influence
on this type of analysis (assuming rigid nails).

4.5.2 Study 2: influence of assumed stress distribution

In the current DLO implementation the vertical stress used in the pull-out resistance calculation (Eq.( 1)) is
taken as an averaged value computed at the mid point of each nail. However the nail can be subdivided into
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Figure 4: Forced twin wedge slip mechanism implemented in the DLO procedure
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Figure 5: Comparison of required ¢’ for the two-part wedge method and the DLO method for varying wedge
angles

smaller lengths separated by vertices. Thus adding extra vertices along the nail length potentially gives a more
representative pull-out resistance profile. To demonstrate this, analyses in which vertices were placed every 0.25
m along the nail lengths were undertaken, for both the lateral resistance cases considered previously (i.e. N =0
and N = c0). By adding extra vertices, the pull-out resistance close to the face of the slope is reduced, and when
the lateral resistance is zero, this allows a localised full face failure as illustrated in Figure 7(b). This is reflected
in Figure 6(b) where the plot for ‘extra vertices’ when N = 0 levels off at 32° as the stability of the face becomes
the critical mechanism. For the corresponding N = oo case the full slope face is still locally stable and a larger
global mechanism is mobilised (Figure 7(c)). This is reflected in Figure 6(c) by a much smaller increase in the
required value of ¢'. It should be noted that the majority of slip lines between the soil nails in Figure 7(c) are
due to ‘extrusion’ of the material between the nails, which effectively act as rigid plates when the lateral capacity
is infinite.

4.5.3 Study 3: influence of presence of soil nail at base of slope

In the two-part wedge method the lowest soil nail is not incorporated directly into the analysis. Its contribution
to stability was thus investigated using the standard (unconstrained) DLO analysis by simply removing the
lowermost nail. By comparing Figure 7(a) and Figure 7(d) it is evident that the lowest nail acts to inhibit a
partial ‘bearing’ failure, which otherwise extends the failure mechanism beyond the toe of the slope, and which
leads to a slightly higher value of ¢’ being required to ensure stability. In this example ¢’ = 25.85° is required if
the nail is not present, and ¢’ = 24.95° if it is included.

4.5.4 Study 4: influence of partial factors on adequacy

Partial factors of 1.5 on weight and 1.3 on soil nail pull-out force (P) were applied to the problem to assess the
new required soil strength for a given soil nail length (in line with the British Standard). The factor on weight
was applied to the soil weight acting as a disturbing action. It was not applied to the vertical stress used to
compute the nail pullout resistance, in accordance with BS8006. Figure 8 shows the required soil strength for
differing soil nail lengths, for a value of ¢/ = 3.5 kPa (an increased value was utilised here to avoid face failure
when using the factored quantities).
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Figure 6: Required strength for given soil nail lengths for problem parameters given in Table 1
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(a) Benchmark DLO analysis, ¢’ = 24.95° (b) Study 2: Extra vertices added along reinforcement, N = 0,
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/ —
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(c) Study 2: Extra vertices added along reinforcement, N = oo, (d) Study 3: Reinforcement omitted at base of slope, ¢
@’ 4= 24.95° 25.85°

require

Figure 7: Factors affecting slope stability (unrestricted DLO analyses, 5 m nail, ¢/ = 2.5 kPa, other parameters
as defined in Table 1)

Both the factored two wedge and unrestricted DLO (N = 0) analysis results suggest a margin of safety over
that indicated by the unfactored two wedge analysis results. For example for ¢/=3.5kPa, ¢’ = 30°, the unfactored
two wedge and DLO nail lengths are ~2.2m and ~3.3m, while the factored two wedge and DLO lengths are ~3.8m
and ~4.3m respectively.

4.6 Discussion

The studies of constrained mechanisms in this paper indicate that the proposed soil reinforcement limit analysis
approach gives very similar results to the two-part wedge limit equilibrium approach, providing confidence in
the new formulation. However, the more sophisticated unconstrained DLO analysis has highlighted additional
factors that need to be considered that are either currently neglected or which are implicitly included in simpler
analyses. While one of the advantages of DLO is that internal and external stability do not need to be checked
separately, this does mean that a local face instability failure may be identified when ¢’ is small (this is obviously
not the case when using the two-wedge analysis method).

The need for explicit modelling of facing was avoided in this study by examining problems which possess
a small ¢’ throughout the soil body. For problems where ¢ is taken as zero, explicit facing would need to be
modelled. Investigation of a suitable framework for modelling facing is is a significant study in itself and is
beyond the scope of this paper, however one possible option is to model a thin surface layer of soil with non-zero
c.

For the example problem considered, the two-part wedge method was shown to provide non-conservative
results. When BS8006 partial factors were introduced the two-wedge method was found to give a margin of
safety comparable to that obtained using the unconstrained DLO model without partial factors. Nevertheless,
an additional margin of safety can be expected to arise from ignoring both the contribution of facing and the
lateral capacity of the soil nails.

Finally, in the current study tensile and bending failure of the nails has not been considered.

12
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Figure 8: Study 4: Required strength for given soil nail lengths with factored parameters for two-part wedge
analysis, for ¢/ = 3.5 kPa. Note that the curve for the factored DLO analysis with N = 0 (*) flattens out beyond
a length of 5m due to local face failure.

5

CONCLUSIONS

(a) A general means of incorporating soil reinforcement within numerical limit analysis calculations has been

presented, and illustrated by implementing soil nail reinforcement within the Discontinuity Layout Optimisa-
tion (DLO) limit analysis procedure. This has been validated via application to simple benchmark element
tests.

(b) A constrained DLO analysis has been shown to give identical results to those from a two-part wedge analysis

of a soil nail reinforced slope, further validating the proposed approach. The two-part wedge analysis method
was also extended to model soils possessing cohesion intercept ¢’.

(c) It has been found that the required nail lengths calculated using the two-part wedge method are significantly

lower (by approx. 20%) than those calculated using a standard (unconstrained) DLO analysis. This indicates
that the two-part wedge method produces nonconservative results. In practice this nonconservativism may
be counteracted by a number of factors, such as:

strengthening of the reinforced slope due to face reinforcement

cohesion of the soil

lateral capacity of the soil nails

location of the lowest soil nail

partial factors employed (which may be specific to this analysis approach)
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A APPENDIX A - VERIFICATION OF MODEL

A.1  General approach

The reinforcement element was verified by modelling a simple constrained collapse mechanism using DLO. In
this case the failure mechanism was forced to follow a predetermined form to enable comparison with a simple

hand analysis. In the following sections hand analysis of a simple collapse mechanism is followed by comparison
with the DLO model.
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Figure 9: Soil nail reinforced vertical cut (undrained case)

A.2  Undrained case

Referring to Figure 9, suppose the wedge displaces to the left by a distance §. Take the unit weight of the soil as

~ and the undrained shear strength of the soil as ¢,,. Let T be the pull-out resistance per unit length in the soil,

and Ny the lateral resistance per unit length in the soil. Assume that the failure mechanism consists of a simple

45° sliding wedge as depicted i.e. that the values of Ty and Ny are small enough not to influence the failure mode.
The work equation must be determined in two cases:

1. The nail remains in the wedge:

%'yh% = cuV2hV26 + T8 + N6 (17)

2. The nail remains in the main soil body and the wedge moves past it:

1
§7h25 = ¢y V2hV/26 4+ 1T6 4 IN,6 (18)

Clearly the mode changes at the stage when x = [. Hence the unit weight v, of the soil required for failure
is given by:

cu | 2min(l,z)
h h?

A selection of sample solutions are presented in Table 2, for ¢, = 1.0 and h = 1.0, comparing the theoretical
value of vy to the DLO value vypro, indicating that the model is working correctly for the undrained case.

V=4 (Ts 4+ Ns) (19)

[T [N T e [ [woro/ys]
0.0 [ 0.0 | 0.50 | 0.25 | 4000 | 1.0
0.1 | 0.0 | 0.50 | 0.5 || 4.050 | 1.0
0.1 | 1.0 | 0.50 | 0.25 || 4550 | 1.0
1.0 | 1.0 | 050 | 025 [ 5.000 | 1.0
0.1 [ 0.0 | 0.50 | 0.75 [ 4100 | 1.0
0.1 | 1.0 | 0.50 | 0.75 || 5.100 | 1.0
10| 1.0 | 050 | 0.75 || 6.000 | 1.0

Table 2: Solutions to equation (19)

A.8  Drained case
For cohesionless soil in drained conditions, it is necessary to add a facing to the soil block to prevent local collapse.
This is straightforwardly achieved using a rigid block as shown in Figure 10.

As before let Ts be the pull-out resistance per unit length in the soil, and N, the lateral resistance per unit
length in the soil. Let the rigid block be weightless and have smooth interfaces with the soil and base. Assume
that the failure mechanism consists of a simple sliding wedge oriented at 45° — ¢/2 to the vertical as depicted
i.e. that the values of Ts and Ny are small enough not to influence the failure mode. Let the wedge displace to
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Figure 10: Soil nail reinforced vertical cut (drained case)
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the left by a distance §. Take the unit weight of the soil as v and the drained shear angle of shearing resistance
of the soil as ¢. The work equation (assuming associative flow) must be determined in two cases:

1. The nail remains in the wedge:

%7h2§tan2(45 — ¢/2) = 2T50 + x N0 tan(45 — ¢/2) (20)

2. The nail remains in the main soil body and the wedge moves past it:

1
§7h25tan2(45 — ¢/2) = ITs6 + IN S tan(45 — ¢/2) (21)
Clearly the mode changes at the stage when x = [. Hence the unit weight v, of the soil required for failure
is given by:
B 2min(l, z)
~ h2tan?(45 — ¢/2)

A selection of sample solutions are presented in Table 3, for ¢ = 30° and h = 1.0, indicating that the model
is working correctly for the drained case.

V¥ (Ts + Nstan(45 — ¢/2)) (22)

| T [N, [ 1 = [ v [wDLO/v |
0.0 ]0.0|+3/60.25]| 0.000 1.0
0.1 0.0 +3/6]0.25] 0.150 1.0
0.101]+3/6]0.25] 0237 1.0
1.0 | 1.0 | v/3/6 | 0.25 || 2.366 1.0
0.1 0.0 |+3/6|0.50 | 0.173 1.0
0.1]01]+3/6]0.50] 0273 1.0
1.0 | 1.0 | v/3/6 | 0.50 || 2.732 1.0

Table 3: Solutions to equation (22)
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