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Abstract: Cellulose, hemicellulose and lignin are the main components of biomass. This 

work presents research into the pyrolysis/gasification of all three main components of 

biomass, in order to evaluate and compare their hydrogen production and also understand 

their gasification processes. A fixed bed, two-stage reaction system has been used employing 

various nickel-based catalysts. Gas concentration (CO, H2, CO, CO2 and CH4) was analysed 

for the produced non-condensed gases. Oil byproducts were analysed by gas 

chromatography/mass spectrometry (GC/MS). Various techniques such as X-Ray Diffraction 

(XRD), scanning electron microscopy (SEM)  coupled to an energy dispersive X-ray 

spectroscopy (EDXS), temperature-programmed oxidation (TPO) were applied to 

characterize the fresh or reacted catalysts. The experimental results show that the lignin 

sample generates the highest residue fraction (52.0 wt.%) among the three biomass 

components. When Ni-Zn-Al (1:1) catalyst was used in the gasification process, gas yield 

was increased from 62.4 to 68.2 wt.% for cellulose, and from 25.2 to 50.0 wt.% for the 

pyrolysis/gasification of lignin. Hydrogen production was increased from 7.0 to 18.7 (mmol 

g
-1

 sample) when the Ni-Zn-Al (1:1) catalyst was introduced in the pyrolysis/gasification of 

cellulose. Among the investigated catalysts, Ni-Ca-Al (1:1) was found to be the most 

effective for hydrogen production from cellulose pyrolysis/gasification. 
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1. Introduction 

 

Hydrogen is regarded as one of the most promising energies of the future; it can be 

generated from various resources, it can be easily stored and the combustion of hydrogen is 

non-polluting. In addition, the use of renewable resources instead of fossil fuels, has been 

encouraged to reduce greenhouse gas emission which mainly contributes to global warming 

and climate change. For example, the EU has endorsed an integrated approach for energy 

sustainability, with a target for 2020 of producing 20% of energy consumption from 

renewable resources and a reduction in greenhouse gas emissions of at least 20% below 1990 

levels [1]. Recently, extensive interest has been drawn to biomass gasification for the 

production of hydrogen [2-5]. Since  biomass is largely available as a carbon-neutral resource 

[6] and a key renewable feedstocks to respond to the vital societal need for the sustainability 

of energy production [7]. 

Biomass materials can be quite different according to the composition of their main 

components (cellulose, hemicellulose and lignin). For example, wood bark contains a large 

amount of lignin (~43 wt.%) and little cellulose (~24 wt.%), while grass contains large 

quantities of cellulose (~58 wt.%) and very little lignin (~4 wt.%) [8].  The investigation of 

thermal stability has shown that lignin has the highest thermal resistance [9]. In addition, the 

chemical structures of these three main components are different. Fourier transform infrared 

(FTIR) spectroscopy of cellulose has shown the highest IR absorbance of OH and C-O 

chemical groups, hemicellulose has been shown to contain a higher amount of C=O 

compounds, while lignin was reported to be rich in meth-oxyl-O-CH3, C-O-C and C=C 

chemical groups [10].  

Numerous of studies have been carried out on the pyrolysis of cellulose, heicellulose 

and lignin using thermogravimetric analysis (TG) [11-13], pyroprobe reactor [14] and 

supercritical reactor [15]. It was concluded that pyrolysis of biomass was significantly 

dependent on the main components of cellulose, heicellulose and lignin. For example, 

hemicellulose and lignin started to decompose at lower temperatures compared with cellulose 

during TGA analysis; however, lignin was found to be decomposed over the whole 

investigated temperature (from ambient to 900 °C) and produced the highest residue after the 

TGA experiment [10, 11]. In addition, lignin was reported to be more strongly affected by 
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steam partial pressure than that of cellulose and hemicelluloses (xylan), when these three 

biomass components were investigated using TGA [16]. However, few studies have been 

carried out in relation to the gasification of cellulose, hemicellulose and lignin at high 

temperature in the presence of catalyst using a practical reaction system. An assessment of 

the processes that generate hydrogen from biomass, through studies on the catalytic 

pyrolysis/gasification of cellulose, hemicellulose and lignin will promote an understanding of 

biomass gasification and further enable the selection of suitable biomass resources for the 

generation of desired products.  

Nickel-based catalysts have been commonly used to increase hydrogen production 

and reduce tar production in the gasification process, due to their effective catalytic 

performance and the comparative low cost [17-19]. Ni-Al catalysts, prepared by co-

precipitation, have been widely used in the gasification of biomass and other hydrocarbon 

materials [20-23]. Additionally, metals such as Mg [24, 25], Cu [24, 26], Ca [4, 27, 28] and 

Zn [26] have been added to the Ni-Al catalyst system to improve the catalytic performance 

such as promotion of hydrogen production and prevention of coke deposition during the 

gasification process.  

The purpose of this work was to investigate the influence of the biomass components, 

cellulose, hemicellulose and lignin, on hydrogen and gas production from a 

pyrolysis/gasification process. Furthermore, the Ni-Al catalysts doped with Zn and/or Ca 

were applied in the pyrolysis/gasification, and their catalytic properties were evaluated in 

terms of hydrogen production from cellulose, hemicellulose and lignin. 

 

2. Experimental 

 

2.1. Materials 

 

Cellulose (Research Chemicals Ltd.), Xylan (commonly representative of 

hemicelluloses, from beech wood) (Sigma-Aldrich) and Lignin (Sigma-Aldrich) were used as 

raw samples. Results of the ultimate analysis (thermogravimetric analyser) and element 

analysis (CE Instruments CHNS-O analyser) of the biomass samples were shown in Table 1. 

Lignin shows the highest C content (61.33 wt.%), highest content of fixed carbon (32.66 



4 

 

wt.%) and lowest volatiles content (60. 37 wt.%). In addition, cellulose shows the lowest ash 

content (0.07 wt.%). A significant amount of sulphur (0.69 wt.%) was found in the lignin 

sample (Table 1). The low ash content in the cellulose and high sulphur content of lignin 

have been reported by other researchers [8, 16]. 

The catalysts were prepared by a co-precipitation method with an initial Ni-loading 

mole ratio of 20 mol.%. Ni(NO3)3∙6H2O (≥97.0%), Ca(NO3)2∙4H2O (≥99%), Zn(NO3)2∙6H2O 

(≥99%), Al(NO3)3∙9H2O (≥99%), and NH4OH (≥98%) were purchased from Sigma–Aldrich. 

Precursors with the desired Ni-Ca-Al (1:1) (Ca/Al molar ratio 1:1), Ni-Zn-Al (1:1) (Zn/Al 

molar ratio 1:1), Ni-Ca-Al (Ca/Al molar ratio 1:9) or Ni-Ca-Zn-Al (Ca/Zn/Al molar ratio 

1:1:2) were prepared by dissolving a certain amount of metal salts in deionized water. The 

precursor mixture was precipitated with a basic solution of (NH4)2CO3 drop by drop in order 

to adjust the pH of the suspension between 6 and 9. After precipitation, the suspension was 

aged under agitation for an hour and then filtered under vacuum. The filter cake obtained was 

rinsed with deionized water several times followed by drying at 80 °C overnight. The solid 

products were calcined at 800 °C for 4h with a heating rate of 1 °C min
-1

 in static air.  

 

2.2. Pyrolysis/gasification process 

 

Pyrolysis/gasification of cellulose, xylan and lignin were carried out with a fixed-bed, 

two-stage reaction system (Fig. 1). The reaction system was composed of a pyrolysis reactor, 

gasification reactor, water injection (if steam was required in the reaction), liquid collection 

system and gas collection stages. 

During the experiment, N2 (80 ml min
-1

) was used as carrier gas. 0.5 g of biomass 

sample was placed inside a crucible and held in the first pyrolysis reactor. 0.25 g of 

sand/catalyst was placed in the second reactor. The temperature of the second reactor was 

initially heated to the set point (800 °C). Then the first reactor was heated to the pyrolysis 

temperature (500 °C) at a heating rate of 40 °C min
-1 

and kept at that temperature for 30 min. 

Water for steam reaction was injected between the two reactors with an injection rate of 0.05 

g min
-1

 when the temperature of the pyrolysis reactor reached 150 °C.  

The products from the pyrolysis/gasification were cooled using air and dry ice to 

collect the condensed liquid. The non-condensed gases were collected using a Tedlar™ gas 
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bag, and further analyzed off-line using packed column gas chromatography (GC). Around 

20 min more time was allowed to collect the non-condensed gases to ensure complete 

reaction. The amounts of injected water and the condensed liquid were calculated by 

weighing the syringe and condensers before and after the experiment, respectively. 

Experiments were repeated to ensure the reliability of the results. 

 

2.3. Products analysis and characterization 

 

Non-condensed gases collected in the Tedlar™ bag were analysed off-line by GC. H2, 

CO and N2 were analysed with a Varian 3380 GC on a 60-80 mesh molecular sieve column 

with argon carrier gas, whilst CO2 was analysed by another Varian 3380 GC on a Hysep 80-

100 mesh column with argon carrier gas. C1 to C4 hydrocarbons were analysed using a Varian 

3380 gas chromatograph with a flame ionisation detector, with a 80-100 mesh Hysep column 

and nitrogen carrier gas.  

The selected liquid products from the condensers were collected using 

dichloromethane (DCM). The water content in the liquid mixture was eliminated by filtering 

with a bed of anhydrous sodium sulphate, and the oil was further diluted with DCM to a 

detectable level. The oil samples in DCM were analysed using gas chromatography/mass 

spectrometry (GC/MS, Hewlett Packard 5280 gas chromatograph coupled to a HP5271 ion 

trap mass selective detector).   

BET surface area of the fresh catalyst was analyzed by N2 adsorption and desorption 

isotherms on a Quantachrome Autosorb-1. The BET surface area of the Ni-Zn-Al (1:1), Ni-

Ca-Al (1:1), Ni-Ca-Al (1:9) and Ni-Ca-Zn-Al (1:1:2) was 38.6, 84.7, 136.0 and 21.4 m
2
 g

-1
, 

respectively. 

X-Ray Diffraction (XRD) analysis was carried out on the fresh catalysts by using a 

SIEMENS D5000 in the range of 1.5-70° with a scanning step of 0.02° using Cu Kα radiation 

(0.1542 nm wavelength).  

A high resolution scanning electron microscope (SEM) (LEO 1530) coupled to an 

energy dispersive X-ray spectroscope (EDXS) system was used to investigate the surface 

morphology and the element distributions of the reacted catalysts.  
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Temperature-programmed oxidation (TPO) of the reacted catalysts was carried out 

using a Stanton-Redcroft thermogravimetric analyser (TGA and DTG) to determine the 

properties of the coked carbons deposited on the reacted catalysts. About 10 mg of the 

reacted catalyst was heated in an atmosphere of air at 15 °C min
-1

 to a final temperature of 

800 °C, with a dwell time of 10 minutes. 

 

3. Results and discussion 

 

3.1. Mass balance and hydrogen production 

 

3.1.1. Products yields from the pyrolysis/gasification of biomass components 

Experimental results from the pyrolysis/gasification of cellulose, xylan 

(hemicelluolose) and lignin are shown in Table 2 and Table 3. The mass balance was 

calculated as the weight of outputs (liquid, gas and residue) divided by the weight of inputs 

(injected water and biomass sample). Gas yield was obtained by the mass of non-condensed 

gases (calculated from the GC analysis) divided by the mass of biomass sample (0.5 g). The 

residue fraction was calculated by the weight of residue after pyrolysis in the first reactor 

divided by the weight of biomass sample. Oil yield for the pyrolysis of cellulose, xylan and 

lignin in the presence of sand was calculated as the weight of the collected liquid from the 

condensers divided by the weight of the biomass.  

As shown in Table 2, lignin shows the highest residue fraction (52.0 wt.%) from the 

non-catalytic pyrolysis/gasification, indicating the lowest conversion of feedstock to volatile 

products, and resulted in the lowest oil yield (20 wt.%). The data is in agreement with the 

ultimate analysis of the biomass samples (Table 1), where lignin exhibited the lowest content 

of volatiles among the three main biomass components. Additionally, pyrolysis/gasification 

of cellulose in the absence of catalyst showed the highest yield of gas (55.3 wt.%), whereas 

the gas yield for the xylan and lignin were 44.2 and 21.5 wt.%, respectively. A low residue 

yield (34 wt.%) has been reported by Rutkowski  et al. [29] for the pyrolysis of cellulose, 

compared with the pyrolysis of xylan (42 wt.%) and the pyrolysis of lignin (51 wt.%). The 

high content of volatiles from the decomposition of cellulose and lowest volatiles from the 

decomposition of lignin were also reported using TGA [10, 16]. The low production of 
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volatiles from lignin may be ascribed to the chemical structure of lignin which is full of 

aromatic rings with various branches. Furthermore, exothermic reactions were observed from 

the TGA-DSC (differential scanning calorimetry) analysis, when hemicellulose and lignin 

were used [10]. These exothermic reactions favor the charring process [30] and therefore, 

result in a high yield of solid residue for the decomposition of hemicellulose or lignin. For the 

decomposition of cellulose, only endothermic reactions were observed [10], and therefore 

produced the highest amount of volatiles among the three biomass components.  

With the introduction of steam into the pyrolysis/gasification, gas yield was slightly 

increased compared with the non-catalytic pyrolysis/gasification of biomass (Table 2). For 

example, gas yield was increased from 55.3 to 62.4 wt.% when water was injected with 0.05 

g min
-1

 for the pyrolysis/gasification of cellulose. 

When the nickel-based catalysts were introduced to the process of 

pyrolysis/gasification in the presence of steam, the gas yield was significantly increased. For 

example, gas yield was increased from 62.4 to 68.2 wt.% for the pyrolysis/gasification of 

cellulose, when the Ni-Zn-Al (1:1) catalyst was used (Table 2). Using this catalyst also 

increased gas yield from 25.2 to 50.0 wt.% for the pyrolysis/gasification of lignin (Table 2). 

It can be seen that significantly increased gas yield (around two fold) has been obtained for 

the lignin sample with the addition of the Ni-Zn-Al (1:1) catalyst; this might be due to the 

effective reforming of oil compounds derived from lignin pyrolysis, thus resulting in a large 

production of gases. For the catalytic steam pyrolysis/gasification process, a similar trend was 

obtained when comparing the different biomass components; as cellulose gave the highest 

gas production and lignin produced the lowest gas fraction.  

When the catalyst was changed from the Ni-Zn-Al (1:1) catalyst to the Ni-Ca-Al (1:1) 

catalyst for cellulose pyrolysis/gasification, the gas yield showed a similar amount (68.8 

wt.%); however, as shown in Table 3, relatively lower gas yield was obtained for the Ni-Ca-

Al (1:9) (53.4 wt.%) and the Ni-Ca-Zn-Al (1:1:2) (62.9 wt.%) catalysts.  

 

3.1.2. Hydrogen production from pyrolysis/gasification of biomass components 

The production of hydrogen in mmol per gram of biomass sample is shown in Table 2 

and Table 3. 5.8 (mmol g
-1

 sample) was obtained for the pyrolysis/gasification of cellulose 

without catalyst and steam, whilst 4.6 and 1.8 (mmol g
-1

 sample) were obtained for the xylan 
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and lignin, respectively. The hydrogen production was slightly increased when steam was 

presented in the non-catalytic process of biomass components. For all the investigated three 

biomass components, hydrogen production was dramatically increased from around 7 to more 

than 15 (mmol g
-1

 sample), when a catalyst was introduced to the experiment. Hydrogen 

production was also reported to be increased when ZSM-5 and MCM-41 based catalysts were 

mixed with lignin for pyrolysis at 600 °C [31]. The production of hydrogen was also reported 

to be increased with the addition of a Ni-based catalyst to biomass pyrolysis/gasification [32-

34]. 

The influence of the type of catalyst on hydrogen production from the 

pyrolysis/gasification of the cellulose was also investigated in this work. As shown in Table 3, 

Ni-Ca-Al (1:9) gave the lowest hydrogen production (10.7 (mmol g
-1

 sample)). With the 

increase of Ca content in the catalyst (Ni-Ca-Al (1:1)), the hydrogen production was 

increased to 22.2 (mmol g
-1

 sample) for cellulose pyrolysis/gasification.  

 For the pyrolysis/gasification of lignin with the Ni-Zn-Al (1:1) catalyst, carbon 

conversion to oils containing aromatic compounds is suggested to be dominant; therefore, 

lower concentrations of CO and CO2 (Fig. 2) were obtained compared with cellulose and 

xylan, resulting in the lowest gas yield for lignin. However, the highest hydrogen production 

was obtained for lignin gasification with the Ni-Zn-Al (1:1) catalyst (Table 2); this might be 

due to the effective steam reforming with the Ni-Zn-Al (1:1) catalyst for the derived 

compounds such as aromatics from the lignin pyrolysis. 

It seems that the increase of Ca or Zn content (reduction of Al content) in the catalyst 

system, changing from the Ni-Ca-Al (1:9) to Ni-Ca-Al (1:1) or Ni-Ca-Zn-Al (1:1:2), 

increased the production of gas and hydrogen. The lowest hydrogen production with the Ni-

Ca-Al (1:9) catalyst was suggested to due to the lower availability of effective NiO particles 

for catalysis for hydrogen production. XRD analysis (Fig. 3) showed that NiO of the Ni-Ca-

Al (1:9) has a smaller particle size (larger peak width indicates small particle size according 

to the Scherrer Equation) compared with other catalysts; thus suitable crystal size of NiO is 

suggested to be important for the catalytic gasification of biomass Additionally, ZnO crystals 

observed in the Ni-Zn-Al (1:1) catalyst from the XRD  might improve the hydrogen 

production, compared with the Ni-Ca-Al (1:9) catalyst; since Zn metal has been reported as 

an effective catalytic site during the gasification of biomass [35].  
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Additionally, the production of hydrogen from the catalytic pyrolysis/gasification of 

the biomass samples seems to have little relation to the BET surface area of the introduced 

catalysts. As the Ni-Ca-Al (1:9) catalyst has the highest BET surface (136.0 m
2
 g

-1
), but the 

lowest production of hydrogen was obtained. Therefore, the catalytic pyrolysis/gasification of 

the biomass components is suggested to be dominated by the catalytic metal sites of the 

catalyst instead of the surface area of the catalyst used in this work. 

 

3.1.3. Gas concentrations from pyrolysis/gasification of biomass components 

Gas concentrations in the non-condensed gas product from the pyrolysis/gasification 

of the cellulose, xylan and lignin are shown in Fig. 2. CO, H2, CO2 and CH4 were found to be 

the main gases from the non-catalytic pyrolysis/gasification process (30.4 - 44.4 Vol.% of CO, 

15.0 - 27.3 Vol.% CO2, 19.7 - 23.9 Vol.% H2 and 10.7 - 19.9 Vol.% of CH4). High 

concentrations of CO, CO2 and CH4 have been reported from pyrolysis/gasification of 

biomass samples in the absence of catalyst [36-38].  

As shown in Fig.2, the highest CO concentration (44.4 Vol%) was found for the 

cellulose pyrolysis/gasification without Ni catalyst, and the lowest CO concentration (30.4 

Vol.%) was obtained for the xylan; furthermore, the lowest CO2 concentration (15.0 Vol.%) 

was obtained for the cellulose sample whist the highest CO2 (27.3 Vol.%) concentration was 

observed for xylan. Similar results were reported when biomass components have been 

investigated for their pyrolysis behaviour in a fixed-bed reactor at a temperature of 540 °C 

[38]. Additionally, the highest CO2 concentration was also obtained for xylan pyrolysis at 

950 °C, compared with cellulose and lignin pyrolysis [8]. Yang et al [10] observed the 

highest IR absorbance of C-O was obtained for the cellulose, and the highest IR absorbance 

of C=O was found for the hemicellulose sample, when the biomass components were 

analysed by FTIR [10]. The presence of large amounts of C-O chemical groups in the 

cellulose might promote the production of carbon monoxide during the pyrolysis process. 

Additionally, the abundant presence of C=O chemical groups in the hemicellulose is 

suggested to favor the production of carbon dioxide.  It is interesting to point out that Yang et 

al [10] obtained the highest CO production from the pyrolysis of cellulose in a fixed-bed 

reactor (consistent with the observation from our work); however, they found lowest CO 

release during the TGA experiment with cellulose [10]. The authors suggested that long 

residence time in the fixed-bed reactor promoted secondary cracking of the pyrolysis volatiles 
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and thus increased the CO production. Fig. 2. shows that when the Ni-Zn-Al (1:1) catalyst 

was introduced in the catalytic experiment, the highest CO concentration was still found for 

the cellulose sample, and highest CO2 concentration was observed for the xylan sample. 

From Fig. 2, the highest CH4 concentration was obtained for the pyrolysis/gasification 

of lignin in the absence of the catalyst, among the investigated biomass components. Lignin 

showed highest CH4 production from the pyrolysis process with TGA [10]; this was 

suggested to be due to the larger amount of O-CH3 chemical groups present in the lignin. 

Concentration of CH4 was reduced to around 3 Vol.% from nearly 20 Vol.%, when the Ni-

based catalyst was introduced in the pyrolysis/gasification process (Fig. 2).  

H2 concentration was significantly increased, CO concentration was reduced and CO2 

concentration was increased with the introduction of the catalyst (Fig. 2). It is suggested that 

the water gas shift reaction (Equation 1), methane steam reforming (Equation 2) and tar 

steam reforming (Equation 3) reactions were possibly promoted in the presence of the Ni-

based catalyst [18, 25, 39]. Furthermore, concentrations of CH4 and C2-C4 hydrocarbon gases 

were reduced significantly with the introduction of Ni catalysts.  

 

CO + H2O ↔ CO2 + H2                                                                                                           (1) 

CH4 + H2O ↔ CO + 3H2                                                                                                         (2) 

CnHm + nH2O ↔ nCO + (n + m/2) H2                                                                                     (3) 

 

The increase of H2 concentration for the catalytic pyrolysis/gasification of lignin with 

the Ni-Zn-Al (1:1) catalyst was found to be the most significant, compared with cellulose and 

xylan (Fig. 2). The introduction of the Ni-Zn-Al (1:1) catalyst might promote steam 

reforming reactions of hydrocarbon oils such as aromatics (Equation 3) and also reforming of 

oxygenated compounds such as alcohol (Equation 4). Lignin has been found to be rich in 

methoxyl-O-CH3 containing compounds, while cellulose and hemicellulose are rich in C-O 

and C=O compounds which contribute to the production of CO and CO2 gases.[10] Therefore, 

we suggest that oxygenated compounds are more dominant in the derived hydrocarbons from 

the lignin pyrolysis at the first reaction stage, compared with the cellulose and xylan samples; 

this is further observed by the GC-MS analysis (Table 34). Furthermore, the large amounts of 

oxygenated compounds were reformed to produce hydrogen when the Ni-Zn-Al (1:1) catalyst 

was added into the lignin pyrolysis/gasification. Thus the hydrogen concentration and 
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production was significantly increased for the pyrolysis/gasification of lignin with the Ni-Zn-

Al (1:1) catalyst, compared with the non-catalytic experiment where most of the oxygenated 

compounds were condensed into liquid. 

 

CnHmOk ↔ CO + H2                                                                                                                (4) 

 

High hydrogen concentration was also obtained for the catalytic steam 

pyrolysis/gasification of cellulose in the presence of other catalysts except the Ni-Ca-Al (1:9) 

catalyst which gave a H2 concentration of around 41 Vol.%. The low concentration of H2 in 

the presence of Ni-Ca-Al (1:9) catalyst was ascribed to the poor ability of steam reforming of 

hydrocarbons; since the largest production of hydrocarbon gases (C2-C4) was found for the 

Ni-Ca-Al (1:9) catalyst (Fig.2).  

 

3.2. Characterization of reacted catalysts 

 

Reacted catalysts after the catalytic steam pyrolysis/gasification of cellulose, xylan 

and lignin were analysed by temperature programmed oxidation (TPO). The results of the 

TGA-TPO are shown in Fig. 4. From Fig. 4, mass-gaining curves were observed. This is due 

to the oxidation of Ni of the reacted catalyst; which was reduced from NiO to Ni in the 

reducing environment during the pyrolysis/gasification process [17, 19, 24]. The highest 

increase of the weight of the reacted catalyst (~4 wt.%) was found for the Ni-Zn-Al (1:1) 

used during the lignin pyrolysis/gasification. As shown in Fig.2, the highest H2 concentration 

was produced from the pyrolysis/gasification of lignin in the presence of the Ni-Zn-Al (1:1) 

catalyst. Therefore, we suggest that the largest weight increase of the reacted Ni-Zn-Al (1:1) 

catalyst during TPO experiments was because most of NiO particles in the fresh Ni-Zn-Al 

(1:1) catalyst were reduced by the H2 which produced the highest concentration of H2 among 

the investigated catalysts.  

As shown in Fig. 4, it is interesting to note that there is almost no carbon oxidation 

(weight loss between 400 and 700 °C) occurring for the reacted catalyst, indicating that the 

coke deposition on the reacted catalyst was negligible. In addition, the results of the EDXS 

analysis of the reacted catalysts are shown in Fig. 5. Carbon peaks from the EDXS analysis 
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were very small for the reacted catalysts. This further demonstrates the low coke deposition 

on the reacted catalyst from the catalytic steam pyrolysis/gasification of cellulose, xylan and 

lignin. Large amounts of coke deposition was reported for Ni/SiO2, Ni/ZSM-5 and 

Ni/mordenite catalysts when cellulose was catalytically gasified at 600 °C [40]. Significant 

coke deactivation has also been extensively reported for nickel-based catalysts in relation to 

biomass gasification [21, 41, 42]. Therefore, in this paper, Ni-Zn-Al and Ni-Ca-Al catalysts 

prepared by co-precipitation has the potential to significantly reduce the coke deposition for 

hydrogen production from the process of biomass gasification. 

From the EDXS analysis (Fig. 5), the composition of the catalyst was identified and 

aligned with the original design of the catalyst preparation. For example, all the Ni, Ca, Al 

and Zn metals were found for the reacted Ni-Ca-Zn-Al (1:1:2) catalyst. Additionally, the 

intensity for the Ca metal was increased for the Ni-Ca-Al (1:1) catalyst, compared with the 

Ni-Ca-Al (1:9) catalyst. From Fig.4, it is also interesting to point out that sulphur was 

observed for the reacted Ni-Zn-Al (1:1) catalyst from the pyrolysis/gasification of lignin, 

whilst sulphur was hardly identified for the catalyst used for the cellulose and xylan samples. 

The presence of sulphur in the reacted catalyst is likely to be due to the relatively high 

sulphur content in the lignin sample (Table 1).  

Morphologies of the reacted catalyst were investigated by SEM analysis. It is difficult 

to observe carbon deposition from the SEM analysis. Selected results of the reacted Ni-Zn-Al 

and Ni-Ca-Al catalysts are shown in Fig. 6, a difference between the two types of catalysts 

was observed from the SEM results. Filamentous carbons were easily found on the surface of 

the reacted Ni-Ca-Al catalyst, compared with the reacted Ni-Zn-Al catalyst. However, the 

oxidation of the filamentous carbons is not observed with the TPO experiment, probably due 

to the low amount of coke. 

 

3.3. Oil analysis using GC-MS 

 

Selected oil samples were analysed using GC-MS. Possible identified chemical 

compounds are shown in Table 34, where the higher concentration was assigned to a higher 

number of stars. For example, the highest concentration of naphthalene was obtained for the 

pyrolysis/gasification of lignin without catalyst. The comparative concentration of chemicals 
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was obtained according to the peak area shown in the total ion chromatogram (TIC) (e.g. Fig. 

7). From Table 34, the most abundant compounds identified were toluene, styrene, indene, 

and naphthalene etc. These chemical compounds have also been identified by others from the 

pyrolysis of cellulose, lignin and biomass samples [43, 44]. 

As shown in Table 34, pyrolysis/gasification of lignin without the catalyst shows the 

highest total concentrations of the identified chemical compounds; in addition, more peaks 

could be found from Fig. 7 for the lignin sample. In addition, the oil sample obtained from 

the pyrolysis/gasification of lignin in the presence of sand was observed to be darker in 

colour compared with the oil from cellulose and xylan. The higher concentration of 

oxygenated compounds such as phenol in the oil derived from lignin pyrolysis/gasification is 

suggested to be reformed for increased hydrogen production when the Ni-Zn-Al (1:1) catalyst 

was added in the experiment; therefore, the hydrogen production was significantly increased 

for the lignin sample compared with cellulose and xylan with the Ni-Zn-Al (1:1) catalyst.   

With the addition of the Ni-Ca-Al (1:1) catalyst, the concentrations of identified 

chemical compounds were lower than in the oil from the pyrolysis/gasification of cellulose 

without catalyst (Table 34). Additionally, the dominant compound (naphthalene) from the 

pyrolysis/gasification of cellulose without catalyst becomes minor in the oil with the Ni-Ca-

Al (1:1) catalyst (Fig. 7). Therefore, it seems that the presence of Ni-Ca-Al (1:1) catalyst was 

effective for reforming/cracking of aromatic compounds.   

 

4. Conclusions 

 

In this work, the main components of biomass, cellulose, hemicellulose (xylan) and 

lignin, were investigated for their hydrogen production potential in the gasification process, 

by using a two-stage fixed bed pyrolysis/gasification reaction system. The main conclusions 

were: 

(1) Cellulose produces the highest amount of hydrogen (5.8 mmol H2 g
-1

 sample) in the 

absence of steam and catalyst, where only 1.8 mmol H2 g
-1

 sample was obtained for the lignin.  

(2) Highest CO concentration (44.4 Vol%) was found for the cellulose pyrolysis/gasification. 

This is suggested to be due to the abundance of C-O chemical compounds in the cellulose 

sample. Furthermore, the highest CO2 concentration (27.3 Vol.%) was observed for the xylan 
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sample; this is attributed to the highest content of C=O chemical compounds in the xylan 

sample. 

(3) The introduction of Ni-based catalyst significantly increased the hydrogen production, 

which was increased from 7.0 to 18.7 (mmol H2 g
-1

 sample) in the presence of the Ni-Zn-Al 

(1:1) catalyst. Additionally, Ni-Ca-Al (1:9) catalyst showed the lowest hydrogen production 

among the catalysts investigated. 

(4) Coke deposition on the reacted catalyst after the gasification process was found to be 

negligible from the TPO analysis. In addition, sulphur was observed in the reacted Ni-Zn-Al 

(1:1) catalyst after the pyrolysis/gasification of lignin; this is suggested to be due to the large 

presence of sulphur in the lignin sample. 
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Table 1  

Element and proximate analysis of the cellulose, xylan and lignin samples (wt.%) 

    Ultimate analysis     Proximate analysis   

 
C H O N S Moisture Volatiles  Fixed carbon Ash 

Cellulose 41.66 5.71 52.20 0.41 0.02 4.67 93.37 1.89 0.07 

Xylan 40.26 5.49 51.55 2.70 0.00 5.83 77.79 12.78 3.61 

Lignin 61.33 5.14 31.71 1.13 0.69 3.41 60.37 32.60 3.62 
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Table 2 Experimental parameters and mass balance for the pyrolysis-gasification of various samples
a
 

Sample Cellulose Xylan Lignin Cellulose Xylan Lignin Cellulose Xylan Lignin 

Catalyst Sand Sand Sand Sand Sand Sand Ni-Zn-Al 

(1:1) 

Ni-Zn-Al  

(1:1) 

Ni-Zn-Al  

(1:1) 

Water injection  

(g min
-1

) 

0 0 0 0.05 0.05 0.05 0.05 0.05 0.05 

Gas yield (wt.%) 55.3 44.2 21.5 62.4 45.4 25.2 68.2 67.1 50.0 

Oil yield (wt.%)
b
 32.0 24.0 20.0 - - - - - - 

Residue (wt.%) 18.0 28.0 52.0 16.0 26.0 50.0 18.0 28.0 52.0 

Mass balance* 

(wt.%) 

105.3 96.2 93.5 101.1 99.4 101.0 92.0 96.8 92.3 

H2 yield  

(mmol g
-1

 sample) 

5.8 4.6 1.8 7.0 7.4 6.2 18.7 17.5 19.4 

a
Mass balance was calculated as the weight of outputs (liquid + gas + residue) divided by the weight of inputs (injected water +  biomass sample); 

b
: oil yield 

for the catalytic pyrolysis/gasification was not identified due to the mixture of the tar and non-reacted water. 
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Table 3 Experimental parameters and mass balance for the pyrolysis-gasification of cellulose with various catalysts 

Sample Cellulose Cellulose Cellulose 

Catalyst Ni-Ca-Al 

(1:9) 

Ni-Ca-Zn-Al 

(1:1:2) 

Ni-Ca-Al 

(1:1) 

Water injection  

(g min
-1

) 

0.05 0.05 0.05 

Gas yield (wt.%) 53.4 62.9 68.8 

Oil yield (wt.%)
b
 - - - 

Residue (wt.%) 18.0 18.0 20.0 

Mass balance* (wt.%) 94.9 96.8 95.0 

H2 yield  

(mmol g
-1

 sample) 

10.7 18.0 22.2 
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Table 3 4  

GC-MS results of the selected oil samples from pyrolysis/gasification of biomass
a
 

RT 

(min) 
Name CAS No. 

Cellulose,  

Sand 

Xylan,  

Sand 

Lignin,  

Sand 

Cellulose,  

Ni-Ca-Al (1:1) 

5.742 Toluene 108-88-3 *** *** *** - 

8.715 p-Xylene 106-42-3 - - ** - 

9.41 Styrene 100-42-5 ** * ** - 

8.715 Phenol 108-95-2 - - *** - 

12.92 Benzofuran 271-89-6 - - ** - 

14.56 Indene 95-13-6 * * *** - 

16.55 Benzofuran, 2-methyl- 4265-25-2 - - ** - 

19.17 Naphthalene 91-20-3 ** ** **** * 

22.55 Naphthalene, 2-methyl- 91-57-6 - * ** - 

22.99 Naphthalene, 1-methyl- 90-12-0 - * ** - 

24.9 Biphenyl 92-52-4 - - ** - 

26.85 Acenaphthylene 208-96-8 ** * *** * 

28.1 Butylated hydroxytoluene 128-37-0 * * ** * 

30.31 Fluorene 86-73-7 - - ** - 

35.03 Phenanthrene 85-01-8 - - ** - 

40.92 Pyrene 129-00-0 - - ** - 

41.99 Fluoranthene 206-44-0 - - **  - 
a
: * indicates the scale of chemical amounts identified from the GC-MS analysis
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FIGURE CAPTIONS 

 

Fig. 1. Schematic diagram of the pyrolysis/gasification of biomass 

 

Fig. 2. Gas concentrations from pyrolysis-gasification of various samples (Vol.%, N2 free) 

 

Fig. 3. XRD analysis of the fresh catalysts: ♦ NiO; ○ Ca12O14Al33; ■ NiAl2O4; ● CaO; □ ZnO;     

∆ ZnAl2O4 

 

Fig. 4 TPO of the reacted catalysts  

 

Fig. 5. EDX results for the reacted catalysts 

 

Fig. 6. SEM results of the reacted catalysts 

 

Fig. 7. GC-MS graphic results from pyrolysis of cellulose, xylan and lignin 
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Fig. 1. Schematic diagram of the pyrolysis/gasification of biomass 
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Fig. 2. Gas concentrations from pyrolysis-gasification of various samples (Vol.%, N2 free) 
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Fig. 3. XRD analysis of the fresh catalysts: ♦ NiO; ○ Ca12O14Al33; ■ NiAl2O4; ● CaO; □ ZnO;     

∆ ZnAl2O4 
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Fig. 4 TPO of the reacted catalysts  
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