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The analytical modelling and dynamic behaviour

of tray-type binary distillation columns

J. B. Edwards

Summary

From the ordinary differential equations describing the
individual trays of a multitray binary columm a partial differential
equation (p.d.e.) representation is derived together with the
necessary boundary conditions. Large-signal steady-state
solutions are derived to provide parametric data for a small-
signal p.d.e. model obtained by linearisation. The small-signal
p.d.e.'s are solved analytically for sinusoidal inputs to produce
a parametric transfer-function matrix (T.F.M.) model for the system.

The plant parameters and operating conditions are chosen to
produce a physically symmetrical system which, as a result, yields
a completely diagonal T.F.M. choosing identical input and output
vectors to those used in the author's earlier analysis of symmetrical
spatially~continuous columns, (packed-columns). It is demonstrated
that, even for identical operating conditions, important
differences occur in the dynamics of the two types of column.

These differences occur as a result of vapour capacitance and inter-—
phase resistance causing nonminimum-phase effects in packed-columns
which do not occur in the tray-type. The two types of column can
also call for opposite signs of controller gain.

It is argued that, whereas restrictions apply to the approximation
of packed-columns by multivariable first—order lag models, such

representations are much more widely applicable to the tray—type.



Introduction

Earlier research by the author into tray-type distillation

colums ?

has produced models which predict analytically and by
simulation, dynamic behaviour of more-or-less first-order lag
nature. Some approximation was involved in the final stages of
the analytical approach however because of complexity resulting
largely from small degrees of asymmetry in the physical system
studied. This complexity also precluded any analytical search
for significant travelling-wave effects on system transfer—-functions
noted in other simple counterflow processes such as liquid heat-
exchangersz, also of interest to the author. As a result of
this latter difficulty attention was transferred to packed-columns,
these being rather more analogous to the heat—-exchanger, and a
successful and non-approximate analysis was completedB. This
demonstrated not only travelling-waves but, more important from
the distillation point of view, important differences in the dynamic
behaviour of packed-columns, accurately predicted, and tray-columns,
hitherto only approximately predicted.

In particular, packed-columns were shown to have high-frequency
gains of sign opposite to those of the tray-type, and, under
certain circumstances,reversed low-frequency behaviour as well,
with serious implications for controller design. It is therefore
important to investigate the source of these differences,
particularly as real columms are likely to fall somewhere between
the ideal conceptions of tray—- and packed-type.

In this report therefore a highly symmetrical column, identical

to the packed-column solved previously, (apart from its spatial



segmentation), is analysed through to the production of accurate
parametric transfer-function matrices, the only approximation
now involved being that associated with the representation of the
discrete spatial functions by their continuous equivalents.

The broad predictions of the original approximate analyses are
upheld by this rigorous analysis, confirming the predicted

differences between packed- and tray-columms.

2. Large-signal model

The column as a whole and an individual rectifier cell are

illustrated diagramatically in Figs. 1 and 2 respectively.

2.1 Equilibrium considerations

The vapour above and liquid on each tray are assumed to be in
equilibrium with one another at all times so that, if Y(n) and X(n)
denote the vapour and liquid mol-fractions of the more-volatile

component on tray n of the rectifier then, for an ideal mixture,

¥(n) {1-X(n) }/ [X(n) {1-Y(n) }] = B v sl

where B is the constant relative volatility of the mixture.

Similarly, at the nth tray in the stripper:
Y () {1-X" (@) M/ [X (@) {1-Y" () }] = 8 el (2)

the primes distinguishing variables in the stripping section.
Linearising this relationship whilst retaining symmetry about the
line ¥ = 1-X (Y' = 1-X') we get:
Y(n) = X(n)/a + (a=1)/a
s (3)
and Y'(n) = aX'(n)

where o is a constant and o = l+e, £>0 Lol (4



2.2 General tray equations

The assumption of continuous equilibrium effectively implies
zero vapour capacitance (or infinite mass transfer rates between
liquid and vapour phases) so that the material balance for tray n

of the rectifier may be written:

HRGh'dX(n)/dt = Lr{X(n+1)—X(n)}+Vr{Y(n—1)—Y(n)]

where Hg = rectifier liquid capacitance per unit length of column,

Sh' = total length of cell n, while Lr and Vr denote molar liquid
%*

and vapour flow rates within the rectifier. Eliminating Y(n) in

terms of X(n) using equation (3) therefore

Hgéh‘dX(n)dt = Lr{X(n+1)-X(n)}+(Vr/u){X(n—1)—X(n)} ... (5)

Now, if X were a continuous function of height h', by Taylor's

theorem:

2
X(n+1)-X(n) =.§§Q;l §h' + l_EﬂKEEl (Gh')2+higher powers of &h'
3h 2 2 _
(ah") 2
——y
2
> ]
and X(n-1)-X(n) = - Eﬁﬁgl Sh' + i«éuiiﬁl (6h')2+higher power of &h'
ah 2 (ahr)Z

and if n is sufficiently large therefore the truly discrete function
X(n) may from (5) and (6) be closely approximated by a continuous

function X(h',t) described by

2
+ %(Lr+v/a}§¥§——§(6h')2+higher powers

(3h')

ax X g

1 = — i
ngh ot (Lr Vr/a)ah'

of &h' e (7)

* 3 3 3 .
Liquid and vapour flow rates will be spatially independent if
operating conditions are adiabatic and the two components have
equal latent heats per mol.



If the column is operated under the particular working
condition

V = Lag ... (8

then the odd powers of §h' disappear, and if h'>>8h' such that
all powers of 6h' above the second may be ignored then in steady
state
2a’x/Gh % = o c e (9)

so yielding a constant composition gradient through the rectifier
(i.e. all trays perform the same duty: a good design criterion).

Similarly for the stripper, if HR" LS and VS denote liquid
capacitance p.u..length, liquid and molar flow rates (see Fig. 1)

then mass balance considerations together with equation (4) give:

dX' (n)

H 1 T
L ¢h dt

= LS{X'(n+1)"X'(n)}+VSa{X'(n+l)-X'(n)}

so that again using a continuous approximation X'(h',t) to X'(n,t)

we obtain

2
1] ] 1 2
gt BE = v 3Bt ¢ S w8 (en)
[ ot s s dh 2 (8h')2
+ higher powers of &h' ... (10)

and if for even "loading" the column is operated such that

L = Va ass CLLD
S 8

then 2?x' /(b))% = 0 . (12)
in steady state.

To solve general p.d.e.'s 7 and 10 or their special cases (9)
and (12) it is necessary to consider the four boundaries of the

system, i.e. the terminating vessels and the feed trays.



2.3 TFeed boundary conditions

Fig. 3 illustrates the feed section of the column in more
detail. F denotes the feed rate of vapour and also of liquid,
their compositions being z and Z respectively. Considering

first the tray above the feed point, the mass balance is

dx(0)
dtr

Hgﬁh' = Fz+VSY'(O)—VrY(O)+Lr{X(1)—X(O)} ... (13)
If, for symmetry, the column is operated such that

v = L and 1 = V R i)
T s T s

then, using these relationships together with (3), (8) and (11)
and replacing finite difference X(1)-X(0) by {3X(0)/oh'}sh' we

obtain

Hzﬁh'BX(O)/Bt Fz+Vr{X'(O)—Y(O)}+VI{BY(O)/ah'}6h'

Now F = VvV =YV ...(15)
E S

and in our special case therefore

F=V-L =V (I-1/a) =V e/a ...(16)
r or i r

Furthermore, if the feed mixture is in equilibrium so that
z = aZ sss L1
and the compositions such that the point z, Z lies on the minus 45°
line of the vapour /liquid diagram (for symmetry)
i.8. 7z o= 1=B ... (18)
then it follows that

z = of(l+a) and Z = 1/(1l+a) ... (19)



Substituting for F and z in our special case boundary equation

and eliminating X(0) in favour of Y(0) therefore yields

oH S6h'
9 9Y(0) _ 2 . ~
N, ot N atl T X (0)+{1-¥(0) } +

9Y (0)
oh'

Sh' s & (20)

This equation may be more simply expressed in terms of normalised

time T and distance h, where

£ tVr/(aHESh')

se:(21)

]

and h h'/8h'

thus:

MO L L, g0y + (1-1(0)) + o

— = o . s s L22)

Turning attention now to the tray immediately below the feed

point, taking a mass balance we obtain

H,"oh" §§é£91-= FZHV_IY' (~1)-Y' (0) HL_X(0)-L X' (0) .. (23)

and, again under symmetrical operation, this reduces to

T )
B oM axico) _ 2 ax'(0)
Vr ot a+l 3n'

Sh' = {1-Y(0) }-X'(0) s 5 (A5)

If therefore the tray capacitances are such that

HR = uHR ... (25)

then, in terms of normalised time and distance

X' (0) _ 2 3X'(0)
9T a+l oh

= {1-Y(0) } - X'(0) woeralGalin )

Equations 22 and 26 clearly share a marked degree of symmetry.



2.4 Terminal boundary conditions

Fig. 4 shows the variables associated with the accumulator
and reboiler ends of the process, the top tray being the Nth and
integer N+1 denoting accumulator quantities., If Ha is the molar
capacitance of the accumulator, then on taking a mass balance on

this vessel we obtain:
HaBX(N+l)/Bt = VE{Y(N) - X(N+1) }

so that again regarding Y as a spatially continuous variable we
may eliminate Y(N) in terms of Y(N+1) using a truncated Taylor
expansion to give

X (N+1)
a ot

Y (N+1)

i dh'

= Vr{Y(N+l) - Sh' - X(N+1)}

so that, in terms of Y(N+1) only, we have

Y (N+1)

BY(N+L) o
o T S 6h'] . (27)

= VrEY(N+1){1—u}+ a~f ~ S ]

and if Y(N+1) is now replaced by Y(Ll) where L1 is the normalised

length of the rectifier, then in terms of t and h we finally obtain

the general result:
c = Sl 4 - oY ‘s
TaaY(Ll)/wT e{l 1(L1)} ) (Ll)/Bh (28)

where Ta is the normalised time-constant of the accumulator and
given by

T = H /H 6h' sow29)
a a 2
A similar treatment of the reboiler mass balance equation, viz.
¥ g — 5 R, LT
H, 8X'(-L,) a8t LS{X (-L,*éh') - ¥ ( Lz)}

where Hb is the molar capacitance of the reboiler and L2 the normalised



length of the stripping-section, produces the general result

B P N L
TbBX { Lz)/ar eX'( L2) + 8X'( LZ)/Bh i 4».030)
where Tb is the normalised reboiler time constant, given by
= H 'Sh'
T, ,/H,"sh (31)

2.5 GSteady-state solution

General p.d.e.'s (7) and (10), under the particular operating
conditions (8) and (11), yield the steady-state d.e.'s (9) and (12)
and under the further operating conditions (14) and (19) these
must be soived subject to special feed boundary conditions (22)
and (26) together with the general terminal conditions (28) and (30).

In our symmetrical steady-state situation therefore, the system

for solution is as follows, if L2 = L1 =T s L 32
dZY/dh2 = dZX,/th = 0 worwk33)
X'(0) + 1-Y(0) + d¥(0)/dh = 2/(o+l) «aw(34)
X'(0) + 1-Y(0) + dX'(0)/dh = 2/(a+l) w w35
dy(L)/dh = e{l1-Y(L)} s (36
and dX'(-L)/dh = €X'(-L) ... (37)

As shown in Appendix 1 this system has the solution
X'(-h) = 1 - Y(h) s/ (38)
and Y(h) = Y(0) + Gh .+:(39)
where profile gradient G is constant and given by
G = 2e/(o+l) (2eL+a+l) soea (A0
and initial values X'(0) and Y'(0) are given by

X'(0) = 1-Y(0) = 2(eL+l)/(a+l) (2eL+a+l) s ALY
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From (38) to (41) it is also readily shown that the terminal
values X'(-L) and Y(L) are given by

X'(-L) = 1-Y(L) = 2/(a+l) (2eL+o+1) <« (42)

2.6 Comparison of large signal behaviour of tray and packed

columms in steady-state

It is interesting to note that the formula (40) for normalised
composition gradient G is identical with that derived for packed
columns in the earlier report3. It must be noted however that
normalised distance, h, is here expressed thus

h = h'/sh' ... (43)

whereas for packed columms h was given by

h = h'/(V_/k) o (84)
where k was the evaporation rate per unit length. Packed and tray
colums in which &h' = Vr/k will therefore perform identical
steady-state duties. Under these circumstances we should also

note that the formulae for X'(0), Y(0) X'(-L) and Y(L) above are
identical to those for the equilibrium values Xe'(O), Ye(O),
Xe'(—L) and Ye(L) in the equivalent packed column. This is to
be expected since the tray column model assumes continuous
vapour/liquid equilibrium,.

Despite the similarity in steady large-signal behaviour we
shall however find important differences in the small signal

behaviour of the two systems about the steady state.
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3 Small perturbation model

3.1 Partial differential equations

If lower-case symbols denote small changes in the variables
previously denoted by upper case symbols, then implicitly
differentiating the system's general-p.d.e.'s (7) and (10) we
obtain, on substituting steady state solutions for the upper-case
symbols,

Hooh' £ = (1 -Hac + Viwazx (sn")?
g o o 2

ot (3h")

which, in terms of normalised time and distance and y, rather

than x, becomes

ay/ot = (La-v)e/V_ + 32y /302 ... (45)
and
ax' Bzx' ]
ngﬁh' g = (2=va)G + L — (éh')
(3h")

which, since Vr = I, 1in our special symmetrical case, reduces to
s

the normalised form

ox' /o1 = (2-va)G/V_ + 52 1517 .. (46)

If, as in the packed column analysis, we now introduce the

vecctor

y—X
g = s 33 (A7)
y+x'
then the small signal p.d.e.'s (45) and (46) may be grouped to

form the simple matrix equation
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2 o -(a~1), O
(37 /9h"-3/31)q = u .(48)
0] s o+l
where input vector u is given by
vl
G
u = — . (49)
= v
r i

Laplace transforming (48) in s with respect to h and in p with

respect to T yields

2 ~ ~ _1 -(O:"].) 3 0
(8"-p)g - sG(0) - g(0) = s u ... (50)
0 , a+l
where superscript "*" denotes transforms w.r.t. h and 7, """ w.r.t.T

only and ".", the spatial derivative.

3.2 Terminal boundary conditions

Differentiating (27) implicitly to obtain the small-perturbation
boundary equation for the reboiler we obtain:

SV(Ll) BY(LI)
H o —7— = V[Y(LI)E ¥FE = '—-"-5'1'{';"-

a ot Sh{J

By(Ll)

[ -
¥ VrL Ey(Ll) ah'

Now from (27) it is clear the coefficient of v above is zero
in steady state so that the above equation reduces to the normalised
form:

TaBY(Ll)/BT = —{ey(L1)+By(Ll)/8h} w6 (51)

A similar treatment applied to the reboiler yields the similar
result:

Tbax‘(—LZ)/aT = —ex'(-L2)+ax'(—L2)/ah A )
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3.3 Inverted U-tube model

Now in the analysis of the packed column it was found that,
in the symmetrical case L1 = L2 = L, solution of the small-signal
equations was considerably simplified by redefining h and h' from
an origin at the ends of the column rather than the central feed
point by first bending the column conceptually into an inverted
U-tube so that coordinate h is replaced by L-h in the rectifier !
and h by L+h in the stripper. Odd-powered spatial-derivatives
in the rectifier are consequently reversed in sign whilst even-
powered derivatives in the rectifier and all derivatives in the

stripping-section are unaffected in sign.

The terminal boundary conditions (51) and (52) thus become

Taay(O)/BT = =egy(0) + 3y(0)/dh

and T,0x'(0) /3t = -ex'(0) + 3x'(0)/3h

or, if T = T, = T ... (53)
Tp (0 = - eq(0) + (o) o (54)

Now the p.d.e. (48) is unaffected by change of distance base since
this involves only even powered spatial derivatives so that its
transformed version (50) is also unaffected provided q(0) and i(o)
are now interpreted as terminal conditions rather than feed-point
conditions as previously.
The unknown éﬁO) may therefore be eliminated from (50) using
boundary condition (54) to give
5 ¥ 1 -(a=1) , O
(s"-p)4 - (s+e+Tp)g(0) = s i ...(55)
0 s atl
now involving only the one unkown vector ¢(0) which may be eliminated

after inversion by substitution of the feed conditions not yet

invoked in this small signal analysis.
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3.4 Feed boundary conditions

For the small signal feed boundary conditions it is necessary
to differentiate implicitly the general large signal equations
(13) and (23) then substituting the special-case steady-state
solutions for the upper case symbols. Retaining the original

distance base for the moment we thus obtain, for the rectifier
Hlﬁh'ax(o)/at = V{Y'(0)-Y(0)}+Vr{y'(0)/a—y(0)}
+ 48h'3X(0) /8h'+(Vr/0t) Sh'9x(0) /oh'
or, in terms of y(0) rather than x(0) and normalising:
3y (0) /8t = (v/V ) {¥'(0)~¥(0) }+2aG/V_+3y(0)/3h+x' (0)-y(0)
cwu' (36

Now Y'(0)-¥Y(0) may be eliminated using the large signal steady-

state solution (Section 2.5) thus

Y'(0)-Y(0) = oX(0)'+1-Y(0)-1 = (a+1)X'(0)-1

2(eL+1) /(2eL+a+l)=1 = =e/(2elL+a+1)

= Gla*+1) /2

so that (56) reduces to
2y(0) /87 = (G/V ) {~(a+1)v/2+ag}+dy(0) /ah+x' (0)-y(0) ... (57)

An identical treatment applied to the first tray of the

stripping section produces the similar result
ax'(0) /aT = (G/Vr){—uv+(u+1)£/2}—8x'(O)/Bh+y(0)—x'(0) ...(58)

Transforming (57) and (58) to the new distance base for the inverted

U-tube therefore yields
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dy (L) /3t = (G/Vr){'(u+1)V/2+u£}—3Y(L)/3h+X'(L)“Y(L)
and ...(59)

ax' (L) /3t = (G/Vr){—av+(u+l)2/2}8x'(L)/3h+y(L)—x'(L)

Adding and subtracting these final equations and grouping the

results in matrix form therefore yields

5/9t+3/dh+2 0 0.5¢ , O
q(L) = a
0 5 3/0t+d/o8h 0 , =0.5(3a+l)

or, in terms of Laplace transforms

p+3/8h+2 , O 0.5¢ , O
g(L) = i ... (60)
o , p+3/3h 0 , =0.5(30+1)

3.6 Solution

From transformed p.d.e. (55) we get

. _(0:'-'1) 3 0
s E%EﬁIB §(0) + __EE___ u
s -p s(s"-p) 0 , o+l

[0 2

so that, inverting from the s,p domain to the h,p domain gives

g(h) = {Vp cosh/ph + (€+Tp)sinh/ph}i(0)//p

"(c"'_l) s O
-{(1 - coshvph) /p}

e

i i3 (6L
[ T (a+l)

Now to substitute boundary condition (60) we first require 34 (L) /ah

which may be obtained by differentiating (61) w.r.t. h and setting

h =L, giving



= Th =
8§(L) _ {p sinh/pL + Vp(e+Tp) coshVpL} . o
oh B ;% 9(0)
. -(a—-1) 0
sinhvpL ? x
a AR i ... (62)
P o , (a+1) | —
The element of
a,(0)
q(0) = R w)
,(0)

are now calculated individually from (60), (61) and (62).

For ql(O) we have

fp + 2 % a/ah)ql(L) = O.5€ﬁ1

and on substituting for ql(L) and Bdl(L)/Bh we get

(p+2) {/pcoshypL+(e+Tp) sinhvpL} {psinhvpL+/p (e+Tp) coshvpL}

Vo ql(o) ® 7 ﬁl(o)
+ SE%EL (1~costhL)sﬁl - £EEE%%££1 eﬁl = O.SEﬁl
vielding the final solution
q1(0) _ e{(p+2) (coshvplL-1) /p+(sinhvpL) /Vp+0.5} 64)
i { (1+T) p+2+e }coshV/pL+{ (p+2) (e+Tp) +p } (sinhvVpL) /Vp )
i

For qz(o), from the feed boundary condition, we have

(p+a/ah)q2(L) = —0.5(3u+1)ﬁ2

so that on substituting for qz(L) and qu(L)/ah we get
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{p cosh/bL+/p(e+Tp)sinh/bL+/psinh/pL+(E+Tp)cosh#bL}qz(O)

+(a+1) (cosh/pL—l)f12+(a+1) (Sinh/pL)ﬁz/\/p = -0.5(3u+1) 1,

yielding the final solution:

qZ(O) - (u+1)(cosh/pL—l)+(a+l)(sinh/pL)ﬁb+O.5(3a+l)
- {p (1+T) +e } coshV/pL+Vp (1+e+Tp) sinhvpL

u

2

...(65)

Setting p = jw therefore, equations (64) and (65) may be used
to compute the two Nyquist or inverse Nyquist loci for this diagonal
system. Despite the complexity of the hyperbolic functions
involved, the general form of the loci may be deduced with some
precision analytically by considering the high- and low-frequency

behaviour of these functions.

4, General form of inverse Nyquist Loci

The system may be described in transfer-function form

G(h,p) = G(h,p) G(p) ...(66)

where transfer-function matrix (T.F.M.) E(h,p) takes the diagonal

form

E(h,P) = l ...(67)
0, g (h,p)
or alternatively
alp) = _G_*(h,p) G (h,p) s wie (58)

* K3
where inverse T.F.M. G (h,p) is also diagonal, taking the form
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*
8, (h;p) & O

%
G (h,p) = & s+ (69)
o , g, (h,p)
* -1
where, of course, g. (h,p) = g, (h,p)
1 1
2 , ... (70)
and g, (h,p) = g, (h,p)

Attention will here be confined to the system outputs and therefore

%*
to G (0,p), the elements of which may be calculated directly from

(64) and (65).

4.1 Zero—frequency behaviour

By considering the limits, as p*0, of the right-hand sides of

(64) and (65) it is quickly deduced that

%
g, (0,0) = 2Lkt et ] ... (7D)

eLz + gL + 0.5

E
(a+1)L + 0.5(3a+1)

*
and B, (0,0) i sk A2
(These solutions may be obtained by alternatively solving the
small signal p.d.e.'s (48), subject to the boundary conditions,
with operator 3/9t set to zero).
It is interesting here to compare these results with the

; : 3 i
equivalent expressions for packed-colummns , viz:

*
g, (0,0) = el e rl e (73)

a{ELZ - (a+1)L - 0.5¢}

=

T of{(a+1)L + 0.5er sl 8)

%*
and By 0,0)

the expressions approaching agreement as L becomes >>1 for which

the tray-column model is only valid anyway since L = actual length



_]_9_

of rectifier (or stripper)/dh' = number of trays per section
which, of course, must >>1 for the continuous spatial
approximation to hold good. An important feature to note is
that the static gain gl(0,0) for the long tray column can only
be positive, unlike its packed column counterpart whose sign is

parameter -dependent.

4.2 High-frequency behaviour

As w is increased from zero it becomes necessary to consider
the functions of p in expressions (64) and (65). Considering
frequencies in the band

l 0.5
p |

1.0 >> >> 1/L I )

which is a wide band, recalling that

L>>1.0 sl 10

it is clear that the hyperbolic functions cosh/pL and sinhvpL

may be replaced by 0.5exp(¥pL) since
Vp = (O.Sw)o'5(1+j) e (77)

and therefore has a positive real part allowing the terms in
exp(~-vYpL) to be neglected. Because of the upper bound on p set
by (75) only the lowest powers of p outside the hyperbolic functioms

need be considered so that, from (64) we obtain

ql(O,p) 5 e{2/p + 1//p}exp(/pL)/2

{2+ & + 2e/V/plexp(¥pL) /2 ... (78)

qZ(O,p) Lol o+ 1/Vp) exp(¥pL)/2

{p(1+T) +e+Vp (1+e+Tp) texp (VPL) /2 +4:(79)

and
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the exponential terms clearly cancelling. It is insufficient
merely to now ignore all but the lowest powers of p however since

e << 1.0 ...(80)
if (76) is to be satisfied as inspection of the static performance
curves of Fig. 5 reveals., Terms having € as coefficient are

therefore non-dominant and (78) and (79) consequently reduce to

q,0,p) /G, (p) = 2e/(l+o)p .
1 1 g’ L g 8] e
qz(O,p)/ﬁz(p) = = (1+a)/op
... (81)
"0, = (L+)p/2
or g s P = +a)p £
1* % Lt << IpO'SI << 1.0 ... (82)
g, (0,p) = -ap/(l+a) )

The system thus approaches a purely integrating process above

L_l. Above w = 1.0 the dynamic response changes, but

®
of course all real processes exhibit highly complex behaviour if
the frequency of excitation is raised sufficiently. The band

1 . . . . !
L << @ << 1.0 is however a wide band since the inverse gain

moduli are of order

s

g, (0,50 = w/e

12

% L << @ T << 1.0 w5 i (B3)

|8, (0,5w)] = w/2

compared to their approximate zero—frequency values from (71) to

(72) =

1

2, (0,0

12

271
... (84)
e/2L

b3
g, (0,0)|

In approximating the high-frequency behaviour of the tray-columm
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no wave phenomena have become apparent** which is not surprising
since this model is confined to long columns which would be
expected to drastically attenuate any reflected waves well before
their arrival at the top and bottom of the column. Furthermore
we note that the signs of the high-and low-frequency gains are
identical in both cases so suggesting minimum-phase behaviour
unlike packed-columns3. This would also seem to validate the i
use of a multivariable first-order lag approximation to tray
colum dynamics. Such a2 model is readily derived from the system
p.d.e.'s without the necessity of tedious dynamic solution as is

now demonstrated.

4.3 Multivariable first-order lag approximation

%
Owensl;’5 has proposed that a system of inverse T.F.M. G (p)

whose high-and low-frequency behaviour is constrained as follows:

%
Lim G (p) = él ...(85)
p0
-1 %
and Lim p ¥§ (p) = éo ...(86)
|p [

and A_ are constant matrices, may under certain conditions,

, where él A,

be closely approximated for controller design purposes by the
multivariable first-order lag system

#
G, (@ = A, v+ AP

One restriction precluding the application of the approximation

*
is nonminimum—phase behaviour of G (p) such as can be encountered

in packedwcolumns3 when the associated elements of éo and él take

k% ;
No wave phenomena at the ends of the column have been revealed 1n

this analysis. A consideration of h # O might however produce
such effects.
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opposite signs. No such phenomena have been revealed in the
foregoing study of tray.-columns however and, furthermore, the
model reduction technique and associated control system design

" has been successfully applied to a simulated tray column in an
earlier investigation2 by Owens and the present author. The
present investigation would suggest,on purely analytical grounds:
that the techmique is applicable to long tray-type columns in
general.

The matrices A, and éo are, furthermore, easily obtained

1

without solving the system p.d.e.'s. él is, of course, given by

gl*(o,O) , 0 ]

*
A =G (0,0) =

1 S .. 7

0 . 50,0

the elements of which may be found by solution of merely the
steady-state version of the system p.d.e. first putting 3/31 to
zero. {The ease of this is demonstrated in Appendix 2 and the
solutions will be seen to agree with equations (71) and (72)L

éo may be obtained by ignoring all but the p-dependent
coefficients of the dependent variables in the system p.d.e. (48)
transformed w.r.t. 1, giving

= P i = a ...(88)
0 , o+l

from which we deduce that

= mn D)
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which compares closely with

-1 % (1+a)€—1/2 . 0
p G (0,p) = -1 ...(90)
0 , =-oa(a+l)

obtained from equation (82) in the high-frequency analysis of

Section 4.2, since 0<e<<1.0 and therefore o = 1.0 for long tray-

columns. Inverse Nyquist loci for the tray-column should therefore

|
¥

take the approximate form shown in Fig. 6.

5. Discussion and Conclusions

A parametric transfer—-function matrix model has been derived
completely analytically for long, symmetrically-operated, tray-type
distillation columms separating binary mixtures. As with the
earlier packed-column analysisB, the system has been shown to
enjoy a completely diagonal structure provided the selected outputs
are y(h,0)-x"(h,0) and y(h,0)+x'(h,0) and the selected inputs are
v+ and v-£, where y denotes the change in top vapour composition,
x' that in bottom liquid composition and v and & are perturbations
in the flow rates of vapour and reflux respectively.

Unlike the case of the packed-columm, the gain of both elements
of the T.F.M. are shown to have the same sign at high-and low-
frequency so that nonminimum-phase effects are not anticipated in
tray-colum behaviour thus permitting confidence in the general
application of a multivariable first-order lag approximation to
long tray-type columms. The difference in the high-frequency

behaviour of the two systems occurs in their responses to total

flow change v+{ which, when suddenly increased in a packed.-column,

causes weaker vapour and richer liquid to be initially transported

towards the top and bottom ends of the column respectively so



producing a transient reduction in the overall separation y-x',
even though the final response in y-x' may be positive. No

such initial effect can occur in tray-columns because of the

continuous equilibrium between vapour and liquid on each tray.
The nonminimum-phase behaviour of packed-columns is therefore the
result of there being distinct capacitances in the vapour and
liquid streams separated by an interphase ''resistance'. The
mere inclusion of vapour capacitance in the tray model would not
produce similar effects while ever the continuous equilibrium-
(i.e. zero resistance-) assumption is retained.

The analysis has indicated the absence of significant
effects from the reflection of travelling waves in the tray-type
column on the composition changes at the ends of the column.

Such effects might nevertheless occur closer to the feed tray
however and this possibility should be investigated since control
measurements are frequently taken from points well away from the
ends of distillation columns.

Since it has relied on the approximation of discretely-
changing spatial functions by approximate continuous functionms,
the analysis here reported is, of course, restricted to columms
of many trays separating mixtures of low relative-volatility.

An analysis of short columns of both the tray-and packed-type

would therefore complete the picture of general column behaviour.
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List of Symbols

~ initial slope of equilibrium curve approximation

- relative volatility of mixture

- molar distillate rate

- a1

- molar feed rates of liquid and wvapour

= normalised spatial composition gradient in steady -
state

-~ transfer function matrix (T.F.M.)
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inverse T.F.M,

inverse T.F.M. of multivariable first-order lag
approximation

diagonal elements of g%

diagonal elements of EA
liquid capacitances p.u. length of rectifier and
stripper

capacitances of accumulator and reboiler

distance along column

length of column per tray

normalised distance (h'/6h")

unit diagonal 2x2 matrix

normalised lengths of entire rectifier and stripper
(= L where identical)

molar flows of liquid in rectifier and stripper

and small changes therein

tray number

number of top (bottom) tray in rectifier (stripper)
Laplace variable for transforms w.r.t. T

vector of difference and total of vapour and liquid
composition changes

Laplace variable for tramsforms w.r.t. h

time

normalised time (= tVr/uHRGh')

normalised time-constants of accumulator and reboiler
(= T where identical)

vector of total and difference in vapour and reflux

rate changes
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molar flows of vapour in rectifier and stripper
and small changes therein

molar flow rate of bottom product

liquid compositions (mol fractions) in rectifier
and stripper

small changes in X and X'

vapour compositions in rectifier and stripper
small changes in Y and Y'

feed liquid composition

feed vapour composition

superscript denoting Laplace transforms w.r.t. h
and T

superscript denoting Laplace transforms w.r.t. T
only

transfer-function matrix

partial differential equation

ordinary differential equation



Appendix 1

Calculation of steady—state composition profiles

The large-signal steady-state system is described by the
differential equations

2 2

dZY/dh = d X'/dh2 0 ... (AL.1)

which are subject to the boundary conditions

X'(0)+1-Y(0)+d¥Y(0) /dh = 2/(a+l) ... (A1.2)
X'(0)+1-Y(0)+dX' (0) /dh = 2/(a+li o we CAL.3)
d¥(L)/dh = e{1-Y(L)} oo (AL D)
and dX' (L) /dh = eX'(-L) ... (A1.5)

From the system symmetry it is clear that
X'(-h) = 1-Y(h) el OAL s 6)

and from (Al.1) that

dY/dh = G = constant
et CAL 1)
and dX'/dh = G' = constant
and from (Al.6) it is obvious that
G = G (AL 8)
Hence Y(h) = Y(0) + Gh
. (A1.9)
and X'(h) = X'(0) + Gh
Now from (Al.2) or (Al.3) and (Al.6) we get
2X'(0) + G = 2/(a+l) s en(Al10)

and from (Al.4) or (Al.5) and (Al.9)
G = eX'(-L) = e{X'(0)-aGL}

X'(0) = G(eL+l)/e ...(Alill)
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Hence, eliminating X'(0) between (Al.10) and (Al.1l), we get
2G(el+1) /e + G = 2/(a+l)

giving G = 2e/(o+l) (2eL+a+1) ...(AL.12)

stated as equation (40) in the main text.

Hence from (Al.11) we get, eliminating G,

X'(0) = 2(eL+l)/(a+l) (2eL+a+1)

1-Y (0) ... (A1.13)

stated as equation (41) in the main text.

X'(-L) and Y(L) may now be calculated from general equations

(A1.9) to give

X'(-L) = 1-Y(L) = 2/(o+l)(2eL+oa+l) ses (ALG14)

stated as equation (42) in the main text.



AEBendix 2

Calculation of static gains

From equation (55) the Laplace transformed p.d.e. of the

system may be expressed:

—'(Ot.—].) s 0
s etTp =
5 ¥ =g q(o) +

s P 8 -p s(s -p) 0 , a+l

[ =2

.. (A2.1),

lan
il

so that, if u is a vector of step functions in time, and p set to

zero for steady-state solutions, then we have:

= 0
] -2 . E
g = (s l+s:s )q(0) + s 3 u ... (A2.2)
0 , atl
where * here denotes Laplace transforms w.r.t. h only. Inverting
back to the h-domain therefore we get
“Eh2/2 . 0
q = (1l+eh)q(0) + u v (B8 5Y

0 , (atl)h’/2

To find q(0) we now substitute the steady-state feedpoint boundary

condition, (at h = L), viz:

d/dn+2 , 0O 0.5¢ , O
q(L) = e vhd
0 , d/dn 0 , =0.5(3a+1)
Now ql(h) = (l+€h)ql(0) - Ehzul/z ... (A2.5)
and hence dql(h)/dh = g ql(O) - Ehul sl 2 56

2
so that (d/dh+2)q1(L) = (2+2€L+e)q1(0)-(eL +eL)u1 = O.Seul

2
(el + €L + 0.5¢)
R |
2 + 2el.+ & Y1 ( )

giving  q,(0) =



= A2.2 =

or since q; and u, are generally functions of T and therefore

1

their transforms w.r.t. 1t functions of p, i.e. ql = ql(h,p) and
ﬁl = ﬁl(p) we may write

" (EL2 + L + 0:58) =

§,(0,0) = ST o T 0 w0 (8248

Now for q2(0) we note from (A2.4) that |

qu(L)/dh = ~0.5(3a+l)u2 o5 (A2 .9)
and from general static solution A2.3 that

q,(m) = (L+en)q,(0) + (a+Dh’u,/2 ... (A2.10)
and therefore dqz(h)/dh =g qz(O) + (c1+1)hu2 ... (A2.1D)

gso that setting h = L in (A2.11) and substituting in (A2.9) we

obtain
-1
4,0 = ~e "{(a+DL + 0.5(3a+1) }u,
or in terms of Laplace transforms qZ(O,p) and ﬁz(p) in p w.r.t. T,
with p set to zero for static solutions we have

QZ(O,O) = -e_l{(m+1)L + O.5(3u+1)}ﬁ2(0)
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Fig. 6.

Showing the approximate first-—order nature of

the

system inverse Nyquist loci




