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Captured streams and springs in combined sewers: a review 

of the evidence, consequences and opportunities 

A. Broadheada,1, R. Hornb and D. N. Lernera 

a
 Catchment Science Centre, Kroto Research Institute, University of Sheffield, Broad Lane, Sheffield, S3 7HQ, 

UK. 

b
 Civil and Structural Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK.  

Abstract 

Captured streams and springs may be flowing in combined sewers, increasing clean 

baseflow in pipes and wastewater treatment works (WwTWs), reducing pipe capacity and 

increasing treatment costs. The UK water industry is aware of this in principle, but there has 

been no explicit discussion of this in the published literature, nor have there been any 

known attempts to manage it. Instead, the current focus is on the similar intrusion of 

groundwater infiltration through pipe cracks and joints. We have conducted a thorough 

review of literature and international case studies to investigate stream and spring capture, 

finding several examples with convincing evidence that this occurs. We identify three modes 

of entry: capture by conversion, capture by interception, and direct spring capture. Methods 

to identify and quantify capture are limited, but the experience in Zurich suggests that it 

contributed 7-16% of the baseflow reaching WwTWs. There are negative impacts for the 

water industry in capital and operational expenditure, as well as environmental and social 

impacts of loss of urban streams. For a typical WwTW (Esholt, Bradford) with 16% of 

baseflow from captured streams and springs, we conservatively estimate annual costs of £2 

million to £7 million. A detailed case study from Zurich is considered that has successfully 

separated captured baseflow into daylighted streams through the urban area, with multiple 

economic, environmental and social benefits. We conclude that there is a strong case for 

the UK water industry to consider captured streams and springs, quantify them, and assess 

the merits of managing them.  
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1 Introduction 

Steady intrusion of extraneous waters to combined sewer systems is an increasingly 

important issue facing water infrastructure around the world (Ellis 2001). This intrusion is 

commonly considered in the literature to be the unintentional ingress of clean groundwater 

through pipe cracks and joints, where the sewer invert lies fully or partially below the water 

table (UKWIR 2012). This increases the dry weather baseflow, so reducing pipe capacity for 

stormwater flows and increasing the likelihood of surcharging and combined sewer 

overflow (CSO) spills, as well as increasing pumping and treatment costs at wastewater 

treatment works (WwTWs) (Butler and Davies 2011, Ellis 2001, Metcalf and Eddy Inc. et al. 

2004). It can also contribute sediment and debris to the system, giving rise to blockage 

(ALCOSAN 2012, Ellis 2001). There is awareness in the water industry that groundwater 

infiltration to combined sewers has serious implications for operational efficiency, 

environmental quality (especially with  increased sewer flooding risk) and sustainability 

drivers (including energy costs and a UK water industry carbon reduction commitment), and 

that there are techniques available to detect and tackle it (UKWIR 2012). It particularly 

affects ageing and degraded combined sewers. 

Another source of intruding extraneous water is the deliberate capture of streams and 

springs to combined sewer systems. This has a similar effect to general groundwater 

infiltration by increasing clean baseflow (Figure 1), but represents a different mode of entry 

with unique challenges in identifying and managing it. It is also distinct from the burial of 

streams conveying storm drainage in separate sewer networks; these do not get captured to 

WwTWs. The UK water industry recognises the principle that captured streams and springs 

are contributing flow to combined sewer systems. However, there has not been an explicit 

discussion of the issue in the published literature or any known attempts to manage it. 

Stream capture is also related to interests in the ecological status of watercourses heavily 

modified by culverting, under the European Water Framework Directive (2000/60/EC).  

A review for the UK water industry found many studies that have sought to map, quantify 

and model (physically and empirically) general groundwater infiltration to sewers (UKWIR 

2012), and water companies are investing to reduce this source of clean baseflow with 

sewer rehabilitation. It is therefore important that captured streams and springs are 
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understood and considered as a component of steady intrusion of extraneous water to 

combined sewer networks. The aim of this paper is to present a review of the evidence and 

case studies on captured streams and springs in combined sewers, to answer the following 

key questions for the water industry:  

 What is the evidence that streams and springs have been captured into combined 

sewer systems? 

 How does stream and spring capture occur, and why?  

 How can captured streams and springs be identified in combined sewers? 

 How much water do captured streams and springs contribute to combined sewers? 

 What are the consequences and costs of captured streams and springs? 

 What are the management options available, and has this been attempted 

elsewhere? 

2 Method 

A thorough search identified peer-reviewed academic papers and grey literature detailing 

any evidence or international case studies of captured streams and springs in combined 

sewers. Absence of consistent terminology reflects the lack of explicit published discussion 

of this issue, especially in the UK; Table 1 summarises this and defines the key terms used in 

this paper. Multiple search terms were therefore used for captured streams and springs, 

and with so few relevant results obtained, we also reviewed the wider literature on general 

groundwater infiltration, identifying further references that explicitly refer to stream and 

spring capture within their focus on groundwater infiltration through cracks and joints. 

Research (some peer-reviewed) on general groundwater infiltration acknowledges the 

principles of stream and spring water in combined sewers in general terms (e.g. Franz 2007, 

Uibrig et al. 2002, UKWIR 2012), but no peer-reviewed papers have specifically considered 

this issue. We have found references to literature from the 1980s acknowledging the 

capture of streams and springs, but we have been unable to access the original texts (Klass 

1985 and Pfeiff 1989, in S & P Consult 2008). Grey literature dominates the review. Case 

studies are summarised in Table 2, with the most detailed examples from Pittsburgh, San 

Francisco and Zurich. Very little information has been found on captured streams and 
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springs in UK combined sewers, although there are numerous publications on lost rivers in 

culverts (Barton 1992, Bolton 2011, Talling 2011). 

3 How and why stream and spring capture occurs 

From the reviewed case studies, we have identified three modes of entry of captured 

streams and springs to combined sewers. These are illustrated in Figure 2, and for 

comparison are shown with an idealised combined sewer, a CSO, and general groundwater 

infiltration. First we define these three types of stream and spring capture, and then we 

discuss the causes. 

3.1 Types of stream and spring capture 

The first mode of entry (type A) is the conversion of streams and springs to combined 

sewers. Urban streams were frequently culverted and buried, especially during the period of 

rapid urban expansion in the 19th century, and some were used directly as combined sewers 

(e.g. Barton 1992, Conradin and Buchli 2005). The literature is clear that “old sewers were 

frequently the covered channels of brooks” (Metcalf and Eddy 1914: 5). For example, many 

of London’s smaller spring fed streams may have been permanently lost from the landscape 

in this way (Barton 1992, Bolton 2011, Metcalf and Eddy 1914, Talling 2011). In some North 

American cities, watercourses lend their names to the combined sewers running along their 

course that replaced them, such as the Garrison Creek Sewer, Toronto, or the Minetta Brook 

Sewer, New York (City and County of San Francisco 2010, Cook 2011, Duncan 2011a, 2012, 

Duncan and Barry 2010, Duncan and Head 2010, Griffith 2006, Levine 2008). We must 

assume that, unless it is diverted elsewhere, the clean baseflow of these captured streams 

and springs is flowing in the combined sewers to WwTWs. 

The second mode of entry (type B) is capture by interception. Following the Great Stink in 

London in 1853 (Inwood 1998) where the rivers serving as open sewers frequently failed to 

fully discharge waste to the River Thames at high tides, Joseph Bazalgette designed a series 

of interceptor sewers to collect and divert sewage to the Thames Estuary, forming the basis 

for future combined sewerage development in much of the modern world (Burian et al. 

1999, Metcalf and Eddy 1914). The evidence from London and other UK cities indicates that 

many culverted watercourses, polluted by sewage, were diverted into interceptor sewers 



5 

 

and their remaining routes converted into combined sewers (rather than being converted 

into combined sewers at the source), and now flow to WwTWs (Barton 1992, Duncan 

2011b, Metcalf and Eddy 1914, Myers 2012). In Zurich, some alpine streams are intercepted 

in the urban area and no longer reach the main river or lake (Antener 2012, Conradin and 

Buchli 2005, ERZ 2000, 2007, Herrmann 1990). Interception of  culverted streams and 

springs is also explicitly described in many North American cities, where interceptor sewers 

to WwTWs were installed, often in the 20th century (ALCOSAN 2012, City and County of San 

Francisco 2010, Griffith 2006, Smith 2007a, Smith 2007b).    

The final mode of entry (type C) is the direct capture and drainage of springs and seeps into 

combined sewers, and, unlike groundwater infiltration through pipe cracks and joints, is 

intentional. Historic sewer engineering literature states that early sewer pipes were 

deliberately leaky (The Manufacturer and Builder 1880) to provide land drainage of springs 

and seeps or to manage high groundwater levels, such as in Manchester (Read 2004). Other 

case studies identify spring drainage into combined sewers such as in Zurich (Conradin and 

Buchli 2005) and London (Metcalf and Eddy 1914), but few provide details of the exact 

mechanisms. The wider literature acknowledges spring drainage in principle, sometimes as a 

component of general groundwater infiltration (Franz 2007, Metcalf and Eddy Inc. et al. 

2004, Uibrig et al. 2002), but we reassert that this is a direct, intentional connection, 

specifically not through degraded pipes, that contributes a clean baseflow water to 

combined sewers.   

Not all streams and springs are fully captured by these modes of entry. London’s lost rivers 

diverted into the High, Mid and Low Level Interceptors to the WwTW, such as the Walbrook, 

Fleet, Tyburn and Westbourne, do still discharge to the River Thames during heavy storm 

events, where the original courses of the rivers serve as CSOs (Myers 2012). Half of London’s 

watercourses are now culverted (Mayor of London 2009) and while many are apparently 

“sewerised”, such as the Moselle Brook, they are not all captured into combined sewers, 

instead providing storm drainage that can nevertheless be polluted. It is therefore likely that 

many towns and cities have retained partial separation of some watercourses from the 

combined sewer system, or have disconnected wastewater from culverted watercourses 

when sewer systems were installed. This is the situation, despite a lack of clarity in the grey 

literature, in Cincinnati (Metropolitan Sewer District of Greater Cincinnati 2012), Detroit 
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(Bienkowski 2011), some of New York’s lost streams (Duncan 2011a) and Tokyo (Hooimeijer 

and Vrijthoff 2008, Novotny et al. 2010), where sewerised watercourses do not flow to 

WwTWs, but remain heavily culverted and often polluted by hidden sewer misconnections, 

diffuse urban pollution, or spills from CSOs to relieve nearby combined sewers during storm 

events. 

Some reviews, such as in Pittsburgh (ALCOSAN 2012, Pinkham 2001), suggest that less 

pervious, urbanised catchments have caused springs, seeps and culverted watercourses to 

be deprived of recharge water and consequently dry up. This may result in a lower volume 

of captured stream or spring flow reaching WwTWs. However, some studies have 

demonstrated that urban recharge can still be high (Lerner 1990), so it is likely that buried 

streams and springs continue to contribute flow to combined sewers. In New York City, 

localised spring discharges to basements continue in the densely urbanised catchments of 

culverted and sewerised watercourses, and are pumped and drained into the combined 

sewers (Duncan and Barry 2010).  

3.2 Reasons for stream and spring capture 

Many natural urban watercourses had become open sewers by the period of rapid urban 

expansion in the 19th century, as they increasingly struggled to fulfil their historic use of 

diluting and flushing away discarded waste (Barton 1992, Read 2004). Urban streams that 

had become open sewers were frequently culverted and buried to provide more sanitary 

conditions, and this concept is a popular narrative (Cook 2011, Duncan 2012, Duncan and 

Head 2010, Platform 2012), predominantly explaining the conversion of many smaller 

watercourses to combined sewers (type A).  

The reason for deliberate capture of streams and springs was not just to sanitise 

watercourses that had become open sewers. Culverting streams, infilling valleys and 

draining springs and seeps also helped to maximise development space in urban areas, an 

issue explicitly described in the Pittsburgh case study (ALCOSAN 2012, Pinkham 2000, 2001, 

Schombert 2006) and in research in cities around the world (Duncan 2011b, Duncan and 

Head 2010). This engineering practicality is a reason for the conversion and interception of 

some urban watercourses into the combined sewers. The literature also indicates that 

culverting streams originally helped to manage surface water flooding, for example in Zurich 
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(Conradin and Buchli 2005) and New York (Duncan 2012). More recently, however, under-

capacity culverts in poor structural condition have themselves become a cause of urban 

flood risk (Wild et al. 2011).  

Early sewer design literature also explains the importance of stream baseflow and 

stormwater to flush the sewage to maintain self-cleansing pipes (Metcalf and Eddy 1914).  

This could indicate that stream and spring capture was a normal, widespread and even 

useful practice. 

4 Identification 

In one case study, in Beverley, UK, an historic spring reactivated following a particularly wet 

season in 2010, and was seen to mix with surface runoff across fields to a combined sewer 

drain (Ewen 2012). No other published examples have been found where stream or spring 

capture has been easily visible on the surface; in most cases it is hidden beneath the urban 

surface and requires other methods to identify it.  

No case studies describe a complete methodology to identify captured streams and springs 

in combined sewers, but drawing on the available information, we suggest two key 

requirements. First is the identification of lost watercourses from the urban landscape that 

may have been culverted into the combined sewers (an indication that streams or springs 

could be captured). Sometimes this is known from living memory of culvert and sewer 

development, such as in London (Barton 1992, Metcalf and Eddy 1914), or in Toronto, 

where photographs show the conversion of the Garrison Creek into a combined sewer 

(Cook 2011). This is a rare but valuable source of information, though cannot be relied on 

due to subsequent changes in the sewer system. Further case studies in Detroit, Cincinnati 

and Tokyo suggest that many claimed captured streams are simply culverted and not 

directly connected to combined sewers (Bienkowski 2011, Hooimeijer and Vrijthoff 2008, 

Metropolitan Sewer District of Greater Cincinnati 2012, Novotny et al. 2010). Connections of 

lost urban streams and springs to the combined sewer system cannot therefore be 

assumed, so the second requirement is verification that stream or spring flow is indeed 

present in the indicated sewers and flows to WwTWs. 
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Identifying lost watercourses and sewer routes first hand is possible through urban 

exploration (e.g. Cook 2011, Duncan 2011a, b), but this is only available in accessible, larger 

sewers. Urban exploration is often undertaken without full safety equipment or permissions 

from relevant authorities (Myers 2012), and so there are ethical concerns over the use of 

information derived from it. As streams and springs are often captured at source, secondary 

information is needed to identify whether they flow to combined sewers. San Francisco has 

detailed sewer network maps that, combined with historical mapping from 1850, show 

larger perennial and smaller seasonal watercourses replaced by combined sewers (City and 

County of San Francisco 2010). In New York, historic sewer network maps show former 

streams and springs that once covered the city’s landscape (Viele 1865). Urban explorers 

confirm that the Minetta Brook and Tibbett’s Brook probably flow to the city’s WwTW via 

interceptors, along with visible direct spring drainage seen from a pipe beneath Spring 

Street (Duncan 2012, Duncan and Barry 2010), but other culverted streams may be 

functioning as separate storm sewers (Duncan 2011a). Historical maps and clues from street 

and place names have also been extensively used to locate lost streams, springs and wells in 

London (Barton 1992, Bolton 2011, Talling 2011). Relevant information on lost urban 

watercourses helps to establish the pre-development hydrology, but the usefulness of 

historic maps depends strongly on spatial and temporal coverage, with many older towns 

and cities having altered the hydrological landscape before the first available maps. The 

smallest streams and springs may also not be marked on maps at certain scales, particularly 

intermittent and ephemeral channels (Meyer and Wallace 2000).   

In Pittsburgh, Pinkham (2001) states that the water authority was able to confirm 11 of 20 

possible sites where streams flowed directly into combined sewers, but that these were 

identified by a local engineer (ALCOSAN 2012). They then developed a sequential 

methodology to identify lost streams using modern maps, records of culverted watercourses 

and drains (very limited), topographic stream flowpath modelling and historic maps. 

Topographic modelling to locate historic watercourse routes is an established technique, 

used for example in New York to map lost catchments from LiDAR data (detailed digital 

elevation models) of the modern urban surface (Duncan and Barry 2010). In other studies, 

topographic stream flowpaths have been used to quantify watercourse fragmentation 

caused by culverts and urban development, differentiating between lost streams with 
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perennial (year-round spring fed baseflow), intermittent (seasonal spring fed baseflow) and 

ephemeral (stormwater runoff only) regimes (Brooks and Colburn 2011, Roy et al. 2009), 

and predicting their likely water chemistry (Olson and Hawkins 2012). Elmore and Kaushal 

(2008) used aerial photography to verify modelled topographic flowpaths in the Baltimore 

area and develop a predictive model of buried headwater streams based on land use 

classifications. Though this was a separate rather than combined sewer network, they found 

that up to 70% of headwater streams in small urban catchments were culverted as separate 

storm sewers. 

For the Pittsburgh case study, capture to combined sewers was determined by local 

engineers from known stream inflow sites and either implied, where mapped sewers 

followed the course of the former watercourse, or assumed, if no known culverted stream 

route could be found (Pinkham 2001). In one case, a perennial stream rising from springs in 

an open park became culverted and within a short distance intercepted by a combined 

sewer, so stream capture could be confidently identified in the field (ALCOSAN 2012, 

Pinkham 2001, US Army Corps of Engineers 2009). There is, however, a reliance on local 

knowledge of lost stream capture to sewers in Pittsburgh; no other case studies had this 

level of local knowledge. Furthermore, the study did not consider buried springs that may 

be drained directly into the combined sewer system beneath the urban surface, the location 

of which reflect hydrogeological rather than purely topographical characteristics.  

Neither Pittsburgh nor any other case studies detailed in their methodology the verification 

of suspected stream and spring flows in the combined sewer, beyond an assumption of 

connectivity. Equally viable for verifying captured stream and spring flow in combined 

sewers are the techniques used to detect general groundwater infiltration through pipe 

cracks and joints, reviewed extensively in other papers (UKWIR 2012). Indirect methods 

include the detection of infiltration (thus potentially stream or spring baseflow) by sewer 

flow hydrograph analysis, or directly by analysing sewer water chemical signatures to detect 

a groundwater fed source component in the sewage that would indicate stream or spring 

fed baseflow, using indicators such as chemical oxygen demand or stable isotopes.  

Given the minimal published experience in identifying captured streams and springs, we can 

conclude that this is a key challenge to address by further research. Identification is likely to 
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require multiple lines of evidence, as aside from opportunities arising from local knowledge, 

no single source of information is likely to identify all modes of entry of captured streams 

and springs. 

5 Quantification 

Few case studies quantify the volume of clean groundwater fed baseflow in combined 

sewers and WwTWs from captured streams and springs. Some, such as Cincinnati, Portland 

and Detroit focus primarily on the stormwater volumes entering combined sewers that 

could instead be rerouted to the former watercourses (Bienkowski 2011, City and County of 

San Francisco 2010, Metropolitan Sewer District of Greater Cincinnati 2012), and do not 

provide an estimate of the captured baseflow contribution reaching WwTWs. Because 

stream and spring capture to combined sewers will be highly localised within a sewer 

catchment, of interest is both the proportion of stream or spring flow in specific sewers to 

identify capacity issues as well as the total contribution of clean water to the WwTW.  

In New York, an estimate of the historic Minetta Brook flow in the combined sewer system 

assumes that the groundwater fed baseflow is the same now as it was in pre-development 

conditions, based on historic documents (Duncan and Barry 2010). Not only would such 

historic records be a rare resource, but urbanisation could have altered the urban 

hydrology, as discussed previously.  

In locations where streams are intercepted by combined sewers (type B), it is possible to 

measure the clean baseflow contribution directly prior to capture. The baseflows of ten 

perennial streams were surveyed in Pittsburgh, with average measured flows of 8 l/s (range 

1-16 l/s) before they entered culverts and were intercepted (ALCOSAN 2012, Pinkham 2001, 

Troianos et al. 2008). There was no attempt to quantify baseflow of streams and springs 

converted to sewers at source (type A) or from other direct spring drainage (type C), but it 

allowed them to identify sewers with reduced pipe capacity and instigate separation 

programs (Troianos et al. 2008). Similarly in Seattle, 28 l/s baseflow from the Ravenna Creek 

was measured at the point of intercept to the combined sewer (City and County of San 

Francisco 2010). 
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Attempting to scale up the effect of captured streams and springs on the network is more 

difficult. In Seattle, a local engineer is cited as estimating in addition to wastewater, 4.9 

million l/day of wet weather flow (sic, assumed to be dry weather flow) and 12.1 million 

l/day of stormwater flows are present in the network’s combined sewers (City and County 

of San Francisco 2010). It is not clear how this was estimated, and the defined dry weather 

flow does not differentiate between the contribution from captured streams and springs 

and that from general groundwater infiltration through pipe cracks and joints.  

Quantification of captured stream and spring flow in Zurich’s combined sewers has been 

used to analyse the costs and benefits of management options. In 1980, prior to a captured 

stream separation program, there was an estimated 200-300 l/s of captured stream and 

spring water baseflow in the combined sewers, plus 400-500 l/s of general groundwater 

infiltration through pipe cracks and joints, and a further 160-220 l/s of other misconnected 

clean waters (Conradin and Buchli 2005). Despite these figures being republished 

elsewhere, there is no detail in the original source on how they were derived or calculated, 

and so they can only be used as an approximate guide. Based on the reported 60-90 million 

m3 of wastewater received at Zurich’s WwTW in 2010 (Antener 2012), we can estimate that 

approximately 7-16% of sewage baseflow was from captured streams and springs, and up to 

approximately 27-54% of the sewage baseflow was steady intrusion of clean water from all 

extraneous sources including general groundwater infiltration. 

It is also important to consider the literature quantifying general groundwater infiltration to 

sewers. Studies have variously estimated infiltration through pipe cracks and joints across a 

whole sewer network to contribute between 15% and 50% of sewer baseflow to WwTWs 

(UKWIR 2012), and in some studies this figure may include a contribution from the 

unintentional capture of streams and springs, such as in Prague (Bareš et al. 2012). 

Identification methods such as hydrograph analysis could also feasibly be used to quantify 

the volumes captured stream and spring flow, though might not be able to differentiate this 

from general groundwater infiltration.  

The quantity of clean water contributed to combined sewer systems from captured streams 

and springs will, by its nature, be spatially localised. Of importance to the water industry 

should be both the total captured flow reaching WwTWs and the potentially high 
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proportions elevating baseflow in individual sewers with critical capacity issues. Quantifying 

flow from capture by interception may be easier than for other modes of entry, due to it 

being an identifiable, discrete connection. Generalised quantification figures should be 

treated with caution, but a WwTW input of 7-16% captured  water suggests that this is, 

along with general groundwater infiltration through pipe cracks and joints, worthy of water 

industry attention.   

6 Consequences and costs 

There are two recognised consequences of captured streams and springs in combined 

sewers. The first is that clean baseflow reduces sewer pipe capacity and increases the 

volumes requiring treatment (Butler and Davies 2011, Ellis 2001, Metcalf and Eddy Inc. et al. 

2004). This will have a similar impact to general groundwater infiltration, for which the 

many published studies available have been reviewed elsewhere (e.g. UKWIR 2012). The 

reduction in capacity for stormwater flows and consequent risk of CSO spills and sewer 

flooding is one of the key drivers for the North American projects on captured streams, 

following new environmental legislation on watercourse pollution (e.g. ALCOSAN 2012). 

While captured streams and springs may introduce predominantly clean water and thus 

have a diluting effect on combined sewage chemistry, they may also introduce sediment 

and debris (Ellis 2001) as experienced in Pittsburgh (ALCOSAN 2012), or may alter the 

sewage chemistry where they themselves are contaminated, such as by heavy industrial 

activities or mine workings.    

The second consequence is the loss of urban watercourses from the urban surface, and this 

shares similar effects to culverted watercourses in general. The wider literature indicates 

that culverts represent a lost habitat for aquatic and riparian ecology, and a particularly 

widespread loss of interconnecting blue-green corridors throughout an urban area (Bernet 

2010, Roy et al. 2009, Walsh et al. 2005), though there are substantial knowledge gaps here 

(Wenger et al. 2009, Wild et al. 2011). The water quality of urban rivers can also be 

impacted by the culverting and disconnection of perennial, intermittent and ephemeral 

headwaters from stream networks (Kaushal and Belt 2012, Paul and Meyer 2001), as 

demonstrated especially in Baltimore’s separate sewer system (Elmore and Kaushal 2008, 

Kaushal and Belt 2012, Paul and Meyer 2001). In addition to the environmental impact, they 
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also represent a lost socio-cultural connection to water in the city, with impacts on quality 

of life, amenity access, aesthetics, land value and urban regeneration, and public health 

(Wild et al. 2011).   

A further impact unexplored in the literature is that the diversion of clean stream and spring 

flow into sewers represents a major water transfer to the downstream WwTW. This could 

be depriving upstream watercourses of cool spring fed baseflow, which could exacerbate 

the effects of drought on both visual amenity and ecological function.  

No studies have been found to explore possible benefits of including captured baseflow, for 

example to flush sediment or prevent drying of headwater sewers as water efficiency 

measures are introduced. 

We found no case study providing a comprehensive appraisal of the costs and benefits of 

stream and spring capture to combined sewers. By drawing on all case studies and the wider 

literature on general groundwater infiltration and urban stream management (Ellis 2001, 

Franz 2007, Karpf and Krebs 2011, Schulz and Krebs 2004, Walsh et al. 2005, Wild et al. 

2011), we can summarise the impact of stream and spring capture on water industry costs:  

1. Capital expenditure 

 Land-take costs for larger WwTWs, including larger stormwater storage 

tanks. 

 Engineering costs of creating the required treatment capacity for increased 

volumes of more dilute flow. 

2. Operational expenditure 

 Chemical and energy costs for increased volumes of water to be treated and 

pumped.  

 Chemical and energy costs where captured streams and springs introduce 

contaminated waters. 

 Effluent licensing fees. 

 Maintenance costs of sewer networks damaged by excess sewer flows, made 

increasingly likely due to loss of pipe capacity. 

 Maintenance costs of sewer pipes blocked by debris and sediment washed in 

with stream and spring baseflow.  
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 Reduced maintenance costs due to baseflow reducing sewer solid build-up.  

3. Externalities 

 Environmental, regulatory and public health costs associated with CSO spills, 

sewer surcharging and sewer flooding, exacerbated by captured baseflow 

reducing pipe capacity. 

 Ecological and water resources costs of localised droughts exacerbated by 

diversion of baseflow away from local watercourses to distant WwTWs.  

 Lost environmental, social and economic benefits of open watercourses in 

the urban environment. 

For WwTWs, we have estimated the approximate effect of captured stream and spring flow 

on the treatment costs based on a proxy of domestic wastewater charging. All UK water 

companies have a volumetric sewerage charge for metered households. These charges must 

represent an average marginal cost for wastewater across a range of cities and WwTWs and 

so provide a cost suitable for national policy analysis. For 2010-11, the cost varied across the 

water companies from £0.53 to £2.67 per m3 with a weighted average of £1.05 per m3 

(Ofwat 2010b). The water companies do not, in general, have a volumetric charging scheme 

for stormwater, although three offer a rebate for households which divert all stormwater 

out of the sewers. We can use stormwater prices to represent the clean captured water. 

These rebates average £0.32 per m3 (range £0.18 to £0.47 per m3) (Ofwat 2010a).  

On this basis, the minimum cost of including a modest stream with a dry weather flow of 1 

l/s in a combined sewer system is £33,000 per year if treated as sewage and £10,000 per 

year if treated as stormwater. As an example, the Esholt WwTW serves Bradford and 

surrounding areas with a population equivalent of 600,000 in a mostly combined sewer 

catchment. It recently had a major upgrade costing £53 million (Meneaud 2009). The design 

dry weather flow is 1350 l/s (wastewater plus clean baseflow from all sources). If the 

proportion of clean water from captured streams and springs is the same as in Zurich (taken 

conservatively as 16% of dry weather flow), then the annual cost of including this in the 

sewers is between £2 million and £7 million. The costs could be significantly higher if 

general groundwater infiltration and stormwater flows were included. For the Ofwat 

discount rate of 3.5% over 20 years (HM Treasury 2011), this is equivalent to a capital 

investment (i.e. net present value) of £28 million to £100 million: 
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NPV(i, N) = ∑
  

      
 
    

Where NPV = net present value, i = discount rate, t = year, Rt = annual expenditure at year t. 

Note that these figures do not directly represent the costs or benefits of increased baseflow 

in the sewers, but we can reasonably assume that the charging rates must internalise the 

many direct and indirect consequences of increased baseflows from captured streams and 

springs. 

To provide context for our estimated costs of captured streams and springs, Ellis (2001) has 

reported that general groundwater infiltration to combined sewer systems is costing the UK 

water industry in the region of £1 million per day.  

7 Opportunities for management: lessons from a case study 

of Zurich, Switzerland 

We consider the case study of Zurich to be an exemplar for innovative management of 

captured streams and springs in combined sewers. The city has been a pioneer of separating 

captured streams and springs from combined sewers since the 1980s, principally through 

daylighting watercourses. Since then, various cities across North America have undertaken 

or proposed stream separation programs (ALCOSAN 2012, City and County of San Francisco 

2010, Jencks and Leonardson 2004, Metropolitan Sewer District of Greater Cincinnati 2012, 

Pinkham 2001, Schombert 2006, Smith 2007a, Smith 2007b). In addition, daylighting of 

culverted watercourses not captured into combined sewers is also becoming increasingly 

popular (Wild et al. 2011). Zurich was one of the first cities to bring together the issues of 

stream and spring capture with daylighting.   

Since the 1970s, the people of Zurich increasingly recognised the lost social and 

environmental values of watercourses that had become culverted and had historically been 

used as wastewater sewers (Conradin and Buchli 2005, Herrmann 1990). The Bachkonzept 

(Stream Concept) was a strategic long term plan that arose in the 1980s, aiming to daylight 

as many culverted watercourses as possible. The literature describes drivers from two 

different, and apparently equally important, standpoints (ERZ 2000, 2007). First was the 

public desire to restore culverted watercourses to revive lost living space and quality of life, 

and second, the water authority’s recognition of clean water flowing to WwTWs requiring 
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unnecessary capacity, reducing wastewater treatment efficiency and increasing costs. 

Consideration of WwTW costs is unique to Zurich; no other case studies consider this in 

detail, though it is briefly discussed in the Pittsburgh case study (Pinkham 2001). The stated 

aims of the Stream Concept are (Conradin and Buchli 2005): separate and direct flow of 

unpolluted extraneous water to receiving waters; creation of recreational space for 

different communities; enhancement of living areas; and creation of living space for animals 

and plants.  

Importantly, this concept was adopted by the City Council in 1988 as a planning policy, and 

incorporated into the 1991 Water Pollution Law (at the county level). The Swiss Water 

Protection Act later encouraged a process of combined sewer separation using daylighted 

streams as the primary surface water drainage system (Swiss Confederation 1991): 

“Article 7. Non-polluted wastewater shall be infiltrated according to the instructions 

of the [county] authorities. 

Article 12. Non-polluted wastewater with permanent flow shall not be passed 

through a central [WwTW].” 

There is no published technical detail on how the culverted streams and springs were 

identified. Maps illustrate the historic burial of watercourses entering the urban area (Figure 

3). While the literature does not detail the connectivity of the captured streams and springs 

to the combined sewer system, using the concepts in Figure 2, we hypothesise that many 

are interception (type B) of alpine streams flowing into the city into combined sewers. There 

may also be additional type A conversion to combined sewers of streams rising within the 

urban area. The literature explicitly acknowledges direct drainage from springs (type C) 

(Conradin and Buchli 2005). 

A conventional approach to converting combined sewers to separate foul and stormwater 

systems would be to install drainage pipes – as recommended in the USA (United States 

Environmental Protection Agency 1999) and exemplified in a German report (Unknown 

2009). The Stream Concept’s innovation lies in the creation or restoration of lost urban 

streams to convey captured stream and spring baseflow, as well as a proportion of 

stormwater runoff from existing and new developments (Figure 4). They therefore act as a 

form of sustainable drainage system (SuDS) (Conradin and Buchli 2005), and play a role in 
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urban flood risk management (Antener 2012). Naturalistic stream channels and riparian 

corridors are used where possible, but where space is limited, engineered “street streams” 

are installed. The latter may have a lower ecological potential, but nevertheless offer 

architectural value in urban areas (Figure 5). In one known case, a “street stream” along 

Nebelbach, Zurich, overflows into the combined sewer to prevent flooding during heavy 

rainfall periods. There has not, to our knowledge, been an independent published 

assessment of the hydrological performance (particularly with regards to localised captured 

baseflow and stormwater separation and effective reductions in combined sewer flows), or 

the ecological and social benefits from the daylighted watercourses, though the literature 

makes general claims of improved land values, quality of life and wildlife in urban areas as 

key results (Antener 2012, Conradin and Buchli 2005, ERZ 2000, 2007). 

Based on the reported 60 million m3 of wastewater flowing annually to Zurich’s WwTW 

(Antener 2012), captured stream and spring flow originally contributed approximately 16% 

of the influent, and this has been reduced to around 10% using the Stream Concept (Table 

3). This moderate reduction has been used for gauging the cost-benefit of captured stream 

and spring separation using daylighting, in addition to the social and environmental 

benefits. Conradin and Buchli (2005) state savings of CHF 5000 per l/s (approximately 

£3300) of clean stream or spring water diverted away from the WwTW, based on 

undisclosed unit treatment costs. This is significantly less than our estimated £33,000 annual 

costs of including a stream of 1 l/s from the combined sewer, based on water charging rates. 

The evidence indicates that savings are nevertheless possible, and precise economic 

evaluation is required. They also state that daylighted streams are cheaper than installing 

separate drainage pipes in urban areas (CHF 1000-2000 and CHF 2000-3000 per metre 

length, respectively) (Conradin and Buchli 2005). Additionally, some costs have been 

reduced by integrating daylighting projects with unemployed labour forces.  

The financial justification for daylighting based on wastewater treatment costs of captured 

streams and springs is unique to Zurich, but additional ecosystem services and socio-cultural 

benefits (including land value improvements) derived from the uncovered, separated 

streams is discussed in other case studies (e.g. City and County of San Francisco 2010, 

Pinkham 2000, 2001) as well as more generally in literature on daylighting (e.g. Wild et al. 

2011) and in studies on sustainable urban river corridor management (e.g. Pattacini et al. 
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2011). This indicates that Zurich’s authorities are confident in their understanding the 

concept of captured streams and springs, its consequences and costs, and the viability of 

separation. Despite this position, no peer-reviewed literature has independently verified 

these claims of economic benefits for wider scrutiny. In particular, it is not clear how these 

flows and costs have been estimated, restricting use of the figures as an indicative guide.  

Zurich’s Stream Concept, with legal and policy backing, effectively requires integrated 

management of wastewater, surface water drainage, watercourse restoration and urban 

design. Many of these concepts are now called for in Green Infrastructure or Water 

Sensitive Urban Design. We suggest that, while not a panacea, daylighting streams to 

separate clean flows from combined sewers could help with existing efforts tackle problems 

of urban water quality (such as revealing misconnections and diffuse urban pollution) and 

quantity (such as surface and river flooding). It could, subject to an assessment of 

hydrological performance, be applied in strategic areas to address critical sewer capacity 

and flooding issues.  

Policy and governance issues will almost certainly require further exploration. Protection of 

the smallest headwater streams, those most vulnerable to culverting and capture into either 

combined or separate sewers (Bishop et al. 2008, Elmore and Kaushal 2008), are offered 

only limited protection such as in the USA Clean Water Act (Elmore and Kaushal 2008) and 

in Europe can be neglected in the Water Framework Directive (Lassaletta et al. 2010). It will 

also be important to consider the responsibilities and management implications of historic 

captured streams and springs reclassified from natural waters to sewer assets. In the UK 

context, this may necessitate further integration of water management that is currently 

shared between privatised water companies, local authorities, private developers and the 

Environment Agency, but we suggest that the water industry considers the approach in 

Zurich as a means of bridging multiple goals in sustainable water management.  

8 Conclusions 

There is case study evidence that streams and springs have historically been captured into 

combined sewer systems, often to maximise development space and sanitise polluted 

watercourses. They contribute clean water baseflow to WwTWs, and the experience from 

Zurich indicates the quantity could be substantial, with 7-16% of baseflow reaching WwTWs 
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from clean, captured water. However, this capture has been little discussed or 

acknowledged until now, with most published research on steady intrusion of extraneous 

flows to combined sewers focusing on the related problem of general groundwater 

infiltration through pipe cracks and joints. The evidence suggests that captured streams and 

spring have a similar impact to this: higher risks of sewer flooding and CSO spills and 

increased treatment costs. 

We suggest that it is highly probable that clean baseflow from captured streams and springs 

is reaching WwTWs in some towns and cities in the UK, and conclude that there is a strong 

case for identifying and quantifying captured streams and springs in UK sewer networks, 

particularly with water industry interests in reducing CSO spills and sewer flooding, future-

proofing pipe networks by conserving capacity, and reducing operational costs of 

wastewater treatment (e.g. Kelda Group 2011).  

Indicative costs of treating this clean baseflow suggest economic benefits of separating it 

from combined sewers. The Zurich Stream Concept presents an enticing opportunity to 

combine water industry and river restoration interests. By using daylighted urban streams 

to convey the clean water baseflow, highly promising social and environmental benefits 

have been suggested; an independent peer-reviewed appraisal of this approach would be 

strongly recommended.  
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Tables 

Table 1 Overview of key terminology used. For clarity, all other related terms in known usage (published and 
unpublished) are also listed. 

Term Definition Other terms in literature or industry usage 

Culverting Artificial encasement of a stream or 
spring in a pipe or tunnel below the 
ground for part or all of its length.  

Stream burial. NB: culverted streams may act as 
storm sewers as part of the surface water 
drainage in a separate sewer system, which is 
distinct from the capture into combined 
sewers.  

Extraneous water Steady intrusion of all clean waters 
(including groundwater infiltration 
and stream and spring capture, but 
not surface runoff) into combined 
sewers.  

Extraneous clean water; infiltration-inflow; 
parasite flow; unaccounted for flow. 

Groundwater 
infiltration through 
pipe cracks and 
joints 

Unintentional ingress of 
groundwater through pipe cracks 
and defective joints, contributing 
clean baseflow to combined sewers. 

Extraneous clean water; infiltration-inflow; 
parasite flow; sewer leakage; steady 
groundwater intrusion; unaccounted for flow. 
NB: some of these terms implicitly include clean 
baseflow from stream and spring capture. 

Sewer inflows Unrelated problem of unintentional 
ingress of groundwater or rainfall 
runoff to separate foul sewers, 
defined here for clarity.  

Extraneous clean water; illicit connections; 
infiltration-inflow; parasite water; unaccounted 
for flow.  

Stream and spring 
capture 

Deliberate direct connection of 
streams and springs to combined 
sewers, with unintended 
consequences of increased clean 
baseflow.  

Extraneous clean water; direct stream inflows; 
infiltration-inflow; misconnected surface 
waters; parasite flow; unaccounted for flow. 
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Table 2 Case studies reporting captured streams and springs in sewers. Evaluation of the evidence indicates 
whether they contribute flow to WwTWs; some literature refers to culverted watercourses acting as storm 
sewers. Only Pittsburgh, San Francisco and Zurich case studies provide substantial detail. 

Case study Was stream/spring capture evaluated? Summary of 
supporting evidence 

Source 

Pittsburgh, 
USA 

Yes – Report from water authority details connected streams 
to combined sewers, with estimated baseflows for each. 
Separation planned, some completed.  

(ALCOSAN 2012, Pinkham 
2001, Schombert 2006, 
Troianos et al. 2008, US 
Army Corps of Engineers 
2009). 

San Francisco, 
USA (Islais 
Creek and 
others) 

Yes – Report from water authority details connected streams 
to combined sewers. Fully mapped, with indication that most 
are perennially spring fed, and some ephemeral. Separation 
planned.  

(City and County of San 
Francisco 2010, Griffith 2006, 
Jencks and Leonardson 2004, 
Smith 2007a, Smith 2007b). 

Seattle, USA 
(Ravenna 
Creek and 
others) 

Yes – Stated connection to combined sewers, but undetailed. 
Separation planned.  

(City and County of San 
Francisco 2010, Smith 
2007a). 

Portland, USA Yes – Stated connection to combined sewers, but undetailed. 
Separation planned.  

(City and County of San 
Francisco 2010, Smith 
2007a). 

Detroit, USA 
(Bloody Run 
Creek) 

Unlikely (just culverted) – Article suggests daylighting could 
separate large volumes from sewer system, but likely refers 
to using it to divert storm runoff. Culverted stream is storm 
sewer, but not flowing to combined sewers or WwTW. 

(Bienkowski 2011). 

Cincinnati, 
USA (Lick 
Run) 

Unlikely (just culverted) – Report details conversion of Lick 
Run to sewer, but now is a storm sewer and not flowing 
directly to combined sewers or WwTWs. Some captured 
stream flow a possible component in combined sewers, but 
not detailed. 

(Metropolitan Sewer District 
of Greater Cincinnati 2012). 

Philadelphia, 
USA 

Possible – Stated stream conversion to sewers, but unclear 
whether still flowing to WwTWs. Culverted streams could be 
separate storm drains or diverted to interceptor sewers.  

(Levine 2008). 

New York, 
USA 

Possible – Reports, maps and photographic evidence of 
stream conversion to sewers, but unclear whether still 
flowing to WwTWs. Culverted streams could be separate 
storm drains or diverted to interceptor sewers.  

(Duncan 2011a, 2012, 
Duncan and Barry 2010, 
Duncan and Head 2010). 

Toronto, 
Canada 
(Garrison 
Creek and 
others) 

Yes – Reports, maps and photographic evidence of stream 
conversion to combined sewers. Suggested that some 
culverted streams partly used for separate stormwater 
drainage and CSO spills, but baseflow intercepted to WwTWs.  

(Cook 2011). 

Prague, Czech 
Republic 

Yes – Stated connection of streams to combined sewers, but 
undetailed.   

(Bareš et al. 2012).  
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Zurich, 
Switzerland 

Yes – Report and maps from water authority details 
connection and conversion of streams and springs to 
combined sewers. Discusses impact on WwTW. Major 
separation project completed by daylighting streams.  

(Antener 2012, City and 
County of San Francisco 
2010, Conradin and Buchli 
2005, ERZ 2000, 2007, 
Herrmann 1990, Mühlethaler 
2011, Pinkham 2000, Smith 
2007a). 

Bamberg, 
Germany 

Yes – Stated conversion and connection of streams to 
combined sewers, but undetailed. Discusses impact on 
WwTW. Separation planned. 

(Unknown 2009). 

Beverley, UK 
(Pasture 
Terrace) 

Yes – Reactivated spring fed a stream observed to drain with 
stormwater to combined sewer causing flooding.  

(Ewen 2012).  

London, UK 
(River Fleet 
and others) 

Possible – Stated conversion of many streams to combined 
sewers. Some captured into the interceptors sewers along 
their route, with only storm overflows reaching the River 
Thames (e.g. River Fleet, River Walbrook). Some detail 
suggests connection of smaller streams and springs to 
combined sewers, intercepted to WwTWs. 

(Barton 1992, Bolton 2011, 
Metcalf and Eddy 1914, 
Myers 2012, Talling 2011). 

Tokyo, Japan 
(Kitazawa 
Stream) 

Unlikely – Report details conversion of streams to combined 
sewers, but now is a storm sewer and not flowing directly to 
WwTWs. Daylighting separation program is “fake” with 
stream water pumped from elsewhere and culverted stream 
remaining buried.  

(Hooimeijer and Vrijthoff 
2008, Novotny et al. 2010). 
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Table 3 Estimated flows of clean water sources in Zurich’s combined sewer network (Antener 2012, Conradin 
and Buchli 2005), showing the effect of the Stream Concept on separating captured streams and springs from 
the combined sewers by daylighting urban streams. 

 Prior to Stream 
Concept (1980) 

Separation possible with 
Stream Concept 

Separation so far with 
Stream Concept (2010) 

Spring and stream 
water 

200-300 l/s 180-250 l/s 140-190 l/s 

Other misconnected 
clean waters 

160-220 l/s 50-80 l/s 30-40 l/s 

General groundwater 
infiltration 

400-500 l/s 50-100 l/s 50-80 l/s 

Total 760-1020 l/s 280-430 l/s 220-310 l/s 
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Figures 
Figure 1 Idealised unit hydrograph of combined sewer flow and the effects of captured streams and springs on 
baseflow and surface runoff response.  

Figure 2 Schematic of typical combined sewer scenarios (1, 2, 3) and the different modes of entry of captured 
streams and springs to combined sewers (A, B, C). 

Figure 3 Historic loss of Zurich's streams (water in blue) with increasing urbanisation (grey). Many streams now 

flow in culverts, or are diverted into combined sewers. Since 1980, 20 km of streams have been daylighted, 

with plans for many more (ERZ 2000, 2007). (Image courtesy of Markus Antener, ERZ).  

Figure 4 Schematics showing alpine streams and springs intercepted and captured into Zurich's combined 

sewer system, circa 1980 (1); conventional sewer separation of captured streams and springs and stormflow 

into separate pipes (2); and the Stream Concept approach of separating captured streams and springs into 

daylighted urban watercourses (3). After Novotny et al. (2010) and Conradin and Buchli (2005). 

Figure 5 Daylighting urban streams for captured stream and spring separation from combined sewers: the 
experiences of the Zurich Stream Concept. Left: daylighted Albisrieder Dorfbach with naturalistic bed in a 
spacious suburban location, with ecological and social benefits (image courtesy of Markus Antener, ERZ) Right: 
daylighted Nebelbach in dense Zurich centre, illustrating innovative methods of creating engineered street 
streams with urban regeneration benefits (author’s own photograph).  
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Figure 2 Schematic of typical combined sewer scenarios (1, 2, 3) and the different modes of entry of 
captured streams and springs to combined sewers (A, B, C). 
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Figure 3 Historic loss of Zurich's streams (water in blue) with increasing urbanisation (grey). Many streams now 

flow in culverts, or are diverted into combined sewers. Since 1980, 20 km of streams have been daylighted, 

with plans for many more (ERZ 2000, 2007). (Image courtesy of Markus Antener, ERZ).  
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Figure 4 Schematics showing alpine streams and 
springs intercepted and captured into Zurich's 
combined sewer system, circa 1980 (1); 
conventional sewer separation of captured 
streams and springs and stormflow into separate 
pipes (2); and the Stream Concept approach of 
separating captured streams and springs into 
daylighted urban watercourses (3). After Novotny 
et al. (2010) and Conradin and Buchli (2005). 

1: Zurich 1980 – stream capture 2: Piped separation of captured streams 

3: Stream Concept separation through daylighting 



 

Figure 5 Daylighting urban streams for captured stream and spring separation from combined sewers: the experiences of the Zurich Stream Concept. Left: daylighted 
Albisrieder Dorfbach with naturalistic bed in a spacious suburban location, with ecological and social benefits (image courtesy of Markus Antener, ERZ) Right: daylighted 
Nebelbach in dense Zurich centre, illustrating innovative methods of creating engineered street streams with urban regeneration benefits (author’s own photograph).  

 

 


