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IDENTIFICATION OF POLYNOMIC SYSTEMS

S, A. Billings

Early in the twentieth century Trechet1 showed that a large
class of nonlinear time invariant systems can be represented

by the functional series

o= n

y(t) = J [ ...f h (t1,T5...7,) T u(t-1,)dt; (1)
=l e i=1

Volterra2 studied these functionals extensively and the series
has become widely known as the Volterra series. To facilitate
the identification of nonlinear systems Viener3 used the
Volterra series as a basis and applied a Gram-Schmidt ortho-
gonalisation procedure to construct a new functional series

y(t) = [ [6,(k ,u(t)] (2)
n=0

where the functionals {Gn}are orthogonal to one another for a
Gaussian white noise stimulus. The first few terms of the
Viener functional series are
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The coefficients of the n'th degree G-functional are the
coefficients of the n'th degree Eermite polynomial. Although
the Viener series is equivalent to the Volterra series, the
former spans the function space more efficiently due to the
orthogonality of the functionals.

Identification of a nonlinear system involves the
measurement of the kernels ky, in ean (2) and Viener applied
Cameron and !Martin's? idea of representing each functional
term by a Fourier-Fermite series and expanded the kernels in
a series of Lagruerre functions Rm(T) a5
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Laguerre functions were selected because they can be represented
by a series of phase shifted electrical networks called lattice
networks. Measurement9,6,7 of the coefficients le.__mn is

achieved by correlating the output of the unknown system yb(t)
with the output y (t) of a known system for a white Caussian

input to yield

; ’
C = ¥ . (tly (E) (5)
1My n!An a b

The known system is constructed such that its output for a white
Gaussian input is Gn[hn,u(t)] where the kernel in the leading term
is synthesised as a product of Laguerre functions.

The synthesis of a nonlinear system using V'iener's method can
be visualised® as a linear system with multiple outputs represent-
ing the expansion of the past of the input in terms of Laguerre
polynomials, in cascade with a nonlinear no-memory system represen-
ting the Eermite functions followed by a network of amplifiers
and adders representing the coefficients of the Laguerre expansion.

Whilst Wiener's formulation is very elepgant theoretically it
is impractical and difficult to apply because of the excessive
number of coefficients recuiredS. Identification of even a simple
system containing a second order nonlinearity would require the
evaluation of approximately 1010 coefficients.

The functional representation of nonlinear systems and
Wiener's ideas have been studied by several authors notably,
Barrett, Bose, Brilliant, Flake, George, Harris, Singleton and
Zadeh. Feferences to these authors contributions are contained
in a recent bibliography compiled by Barrett9.

An alternative method of measuring the Viener kernels k, of
a nonlinear system was developed by Lee and SchetzenlO using
correlation techniques and a white Gaussian input process. The
procedure consists of computing multidimensional correlation
functions between the white Gaussian input and the system output
to yield
n-1

k (Tq,...1,) = = {y(t) - mEOGm[km,u(t)]}u(t,Tl).wu(t—Tn)
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The second term on the rhs of ean (6) only has a value on the
diagonal and is included to remove impulse functions which would
otherwise appear when 1794 = To ... = T,. Although the method
removes many of the difficulties associated with the UWiener formu-
lation the amount of computation required can still be excessive.
For a single input system the n'th order kernel must be estimated
at ((n+m-1)!'Y(n!(m-1)!) points where m = p/At, p is the system
memory and At the sampling intervalll, Computing time therefore
increases almost exponentially with the order of the kernel to be
evaluated.

The estimation error associated with eon (6) will be more
severe at the diagonal noints because of the presence of low order



integral terms and it has been suggested that more accurate kernel
estimates at these points can be obtained by interpolation between
the nondiagonal points rather than direct estimation. The method
has been aquite widely applied notably to biological, structural

and hydrological systems. Yost of the practical applications have
however been restricted to cuadratic systems and it has recently
been suggestedl?2 that the excessive errors associated with the
diagonal kernel estimates introduce fundamental difficulties which
preclude the identification of third or higher order kernels.

Solution of the identification problem based on the Volterra
series involves measurement of the Volterra kernels. The common
approach has been to approximate the kernels by an expansion of
orthogonal functions. Methods of solution include gradient type
algorithms14-18  pattern recognition techniquesl®, and other

related methods20-23,

The identification of polynomial svstems using higher order
spectra has been investigated by Brillinger24 who derived an
asymptotically unbiased estimate of the n'th degree frequency
domain transfer function. French and Butz25 developed a frequency
domain method of measuring the Wiener kernels based on the FFT
algorithm. The method is analogous to the Lee and Schetzen
algorithmlO in the time domain but results in a considerable
reduction in the computational requirement. Recently Barker and
Davy26 have shown that estimates of the first two Volterra kernels
can be computed using Fourier transform technigues with a pseudo-

random ternary input.

Volterra series have been widely applied in the analysis of
communication systems and several authors (Bedrosian and Rice,
Brilliant, Barrett, Bussgang, Narayanan, Zames)9 have contributed

to this area.

In the search for methods of simplifying the measurement
techniques and reducing the number of data points and computations
required to identify either the Volterra or Wiener kernels numerous
authors have investigated quasi-white and pseudorandom inputs as
an alternative to white noise. Eooper and Gyftopou10527 first
described the practical measurement of a second order Volterra
kernel by cross-correlation using a ternary m-sequence, Although
the identification time using these inputs was reduced by a factor
of 70, compared with a Gaussian white input, anomalies appeared in
the fourth order autocorrelation functions which Eooper and

Gyftopoulos could not explain. Similar anomalies were also
observed by Simpson28 in the fourth order autocorrelation function
of pseudorandom inverse repeat sequences. Ream29 investigated

these anomalies, and Barker and PradisthayonBO showed that the non-
zero values in the higher than second order autocorrelation func-
tions of m-sequences are due to deterministic characteristics of
these sequences. Barker, Obidegiou and PradisthayonBl noted that
some pseudorandom signals are more¢ suitable than others for the
measurement of the second order Volterra kernel and proposed a
criterion for input selection. The selection of suitable innut
sequences was later studied by Kadri and Lamb32, and Barker and
Davy33 have recently derived an improved identification procedure
based on ternary inputs. Hernels of order higher than Sefond

can be estimated if a compound pseudorandom input34 gl w41
Ci=1TE



is used. Although the anomalies associated with the higher order
autocorrelation functiions are avoidecd rnultilevel innputs must be
employved to isolate the correlation functions associated with each
kernel. Eowever, if the system kernels are factorable all the
kernels can be identified secuentially from a single level comnound
input35 when the x4's are indenendent, zero mean pseudorandon
sequences and ¢x.x.(T) = Bié(T), i = Lok

P . 36 .

Pecently Marmarelis has introduced CRNS (constant switching
pace symmetric random signals) as an alternative to band limited
Gaussian white noise and has applied these inputs to the identifica-
tion of various biological systems. Although the autocorrelation
functions of these sigsnals exhibit fluctuations over the whole
argument space, Marmarelis3€ has shown that the accuracy of the
second order kernel estimates using these inputs is superior to

pseudorandom inputs.

Various author537 have considered the identification of a
restricted class of systems, notably cascade systems composed of a
linear system followed by a nonlinear element in cascade with
another linear systen. Gardiner38 and Economakos39 have suggested
methods of identifying the linear kernel associated with this
system by injecting multilevel inputs and isolating the kernel
outputs. Identification of the higher order kernels of these
systems was considered by Vebb40 using multilevel single frecuency
tests and by Sander and Villiamson4l using tensor technicues.

Many authors have investigated the identification of other systems
within this class; Brown42 and Simpson and Power37 considered a
feedforward system, Coldberg and Durling43 developed an algorithm
for systems composed of a linear subsystem sandwiched between two
nonlinear systems, Lawrence44 analysed feedback systems, Godfrey
and Briggs4® studied processes with direction dependent responses,
and many others have considered the identification of the
Eammerstein46-49, Uryson50 and other related model structuresd1-56.
Recently the separable class of random processes, which were
introduced by Nuttalld®? and studied by Balasubramanian and
Atherton98, "est60 and Douce®? were used as a basis to formulate

a unified identification procedure6l,62 for most of the system
structures mentioned above. Eaber and Keviczky63 give a compre-
hensive summary of many nonlinear model structures.

If the algorithms for restricted classes of nonlinear systems
outlined above are to be implemented it is often necessary to
determine the structural form, or the type of model representation
which best approximates to the process prior to the identification.
Although in general this is a very comnlex problem, the structure
of cascade systems can be determined using simple tests based on
correlation analysis€4,62, Saridis and Eofstadler®9 have inves-
tigated the characterization of the structure of unknown nonlinear
systems using pattern recognition technicues based on cross-
covariance functions.

A measure of the derree of nonlinearity was introduced by
Eajbman66 using disnersion functions., Auto and cross-dispersion
functions have been defined, based on the conditional nean, to
detect the nonlinear relationship between signals which cannot be

measured using linear correlation methods. Unfortunately disper-
sion functions are difficult to compute and similar information
can be obtained by evaluatinyﬁl ¢ o (1) which is a much =irmpler
measure of nonlincar effects. u-y



Algorithms for the identification of both stochastic and

deterministic bilinear systems have been proposed67. Balakrishnan
and Bruni, Di Pillo and KLoch proposed algorithms using maximum
likelihood technicues. Baheti and Mohler applied correlation

analysis in conjunction with least squares, and, Beghelli and
Guidorzi€8 used a simnle least squares estimator based on an input/
output expansion. Recently, Baheti, Mohler and Spang69 considered
the identification of the first two kernels in a Volterra series
expansion of bilinear systems using correlation analysis and derived
a similar algorithm based on a related integral eqguation. Unfort-
unately most of these algorithms appear to be either very difficult
to implement or apply only to a simplified class of bilinear systems.

Darameter estimation methods for nonlinear systems can be
classified according to the model structure and are based on either
linear or nonlinear-in-the-parameter models. A review of the
technigues associated with the latter approach is given by Seinfel
Recent developments in this field include an algorithm which com-
pensates for uncertain model structure and external disturbances by
introducing time varying parameters’l. Estimation using linear-
in-the-parameter models has been based largely on the Eammerstein
mode146-49 and discrete Volterra seriesl4-23 as discussed above.
Other authors have considered polynomic expansions of the system
states72,73, The Group Method of Data Eandling (GMDE) has been
developed by Ivaknenko?4 using the principles of heuristic self-
organisation to solve complex problems with large dimensionality
and short data secuences. Data splitting algorithms, cluster anal-
ysis and the application of results from catastrophe theory to
nonlinear system identification have been discussed by Mehra’5,7€,

Considerable progress has been made in the identification of
nonlinear systems over the last two decades. Properties of the
functional expansions, design of algorithms, selection and
properties of inputs and identification of specific nonlinear
model structures have been studied. There is however a distinct
lack of applications of nonlinear system identification techniagues
and this undoubtedly reflects the fact that further research 1is
required to develop improved identification and structure detection
algorithms to reduce the number of data points and simplify the
measurement techniaues.
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